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Abstract: In this paper, Silvaco TCAD software is used to simulate the buffer traps in AlGaN/GaN
high electron mobility transistors (HEMTs), and its effects on the breakdown performance and key
parameters of the devices are investigated by changing the position and concentration of the acceptor
traps in the buffer layer. The results show that with the increase of trap concentration, the traps
capture electrons and reduce the off-state leakage current, which can improve breakdown voltage
of the devices. At the same time, as the trap concentration increases, the ionized traps make a high
additional electric field near the drain edge, leading to the decrease of breakdown voltage. With
the combined two effects above, the breakdown voltage almost ultimately saturates. When the
source-to-gate (Access-S) region in the GaN buffer layer is doped alone, the minimum and most linear
leakage current for the same trap concentrations are obtained, and the additional electric field has a
relatively small effect on the electric field peak near the drain as the ionized traps are furthest from
drain. All these factors make the breakdown voltage increase more controllably with the Access-S
region doping, and it is a more potential way to improve the breakdown performance.

Keywords: AlGaN/GaN HEMTs; acceptor traps; Silvaco TCAD; breakdown voltage; leakage current;
additional electric field

1. Introduction

The AlGaN/GaN high electron mobility transistors (HEMTs) are considered to be
promising candidates for the next generation of high power and high frequency devices,
due to their outstanding combination of fundamental physical properties, such as large
breakdown fields, high two-dimensional electron gas (2DEG) density, low on-state resis-
tance, and high electron mobility [1,2]. In recent years, GaN power electronic devices
have received wide attention in microwave and power applications [3,4]. However, under
the standard growth conditions, n-type background carriers are introduced within the
GaN buffer layer, leading to an increase of leakage current, which in turn leads to poor
breakdown performance of the devices. Breakdown voltage of the devices determines the
maximum operating voltage and output power [5]. Therefore, in order to achieve a semi-
insulating GaN buffer layer, compensation doping in the GaN buffer layer is a common
technique. Through density functional theory-based calculations, it is shown that C (or Fe)
has a higher probability to replace N due to lower formation energy required for C-N (or
C-Fe) substitution in the GaN buffer layer [6]. As a result, the injection of impurities (Fe, C,
etc.) into the GaN buffer layer are often used in the manufacturing process to form acceptor
traps with deep energy levels [7]. Therefore, the acceptor traps can capture the background
electrons to achieve the high resistance characteristic of the buffer layer and reduce the
undesirable effect of buffer leakage currents [8]. The effects of the doping concentration
in the buffer layer on the DC as well as frequency characteristics of the devices have been
studied extensively [8,9]. However, the trend and mechanism of the doping concentration
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effect on delaying the avalanche breakdown and increasing the breakdown voltage of the
devices are not clear. Bahat-Treidel et al. propose that the subthreshold buffer leakage
currents are reduced and thus, postpone Vbd (breakdown voltage) to higher voltages by
doping in the buffer layer [10]. Zhu et al. believe that with gate-to-drain spacing increasing,
the negatively charged buffer traps region spreads wider and the depletion region length
becomes longer, playing a key role in the linear dependence of off-state breakdown voltage
on gate to drain spacing [11]. Joshi et al. propose that there is an optimum moderate
buffer acceptor trap concentration for maximizing the breakdown voltage as a function of
gate–drain distance and field plate length [12], but the mechanism of acceptor trap action
in the buffer layer is not described. Therefore, it is important to study the influence of the
acceptor trap concentration on the breakdown voltage of the AlGaN/GaN HEMTs. Also,
selecting a reasonable doping concentration for the reduction of the leakage current and the
improvement of breakdown voltage is very beneficial to improve the device performances.
In this paper, we investigated the effects of the acceptor trap concentration in the GaN
buffer layer on the leakage current and breakdown performance of conventional depletion-
mode (D-mode) AlGaN/GaN HEMTs by using Silvaco TCAD software [13]. Furthermore,
the physical mechanism and degradation trend were analyzed by combining the device
electric field and electrons concentration distribution with simulation plots; the key region
affecting the breakdown performance of AlGaN/GaN HEMTs was proposed to provide a
theoretical basis for optimizing the breakdown performance of the devices.

2. Computational Framework

Based on the reference [14] and the actual manufacturing process, device cross section
as shown in Figure 1 is used for computations in this paper. The materials from bottom
to top are sapphire substrate, 1 µm GaN buffer layer, 20 nm AlGaN barrier layer with Al
component of 0.3, and Si3N4 passivation material with 60 nm thickness, respectively. In
addition, the gate width of the device is 50 µm. A background carrier concentration of
1 × 1015 cm−3 is added to the GaN buffer layer. The device has Ohmic contacts at the drain
and source electrodes. The gate electrode is a Schottky contact; a barrier height of 1.6 eV is
considered [15].
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The distance (Lgs) of source to gate and the distance (Lgd) of gate to drain are 1 µm and
4 µm, respectively, and the length of gate (Lg), drain (Ld), and source (Ls) electrodes are all
1 µm. The one-dimensional Schrodinger equation is applied to obtain two-dimensional elec-
tron gas (2DEG) in the AlGaN/GaN heterostructure [16]. The Shockley–Read–Hall (SRH)
recombination model is used to simulate the charging and discharging effect of the acceptor
traps. To simulate carrier mobility changes in practice, the doping-dependent mobility
model and high-field saturation model are used to calculate the electron mobility, including
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the low-field mobility model (Albrct.n) and high-field mobility model (Gansat) [17,18]. A
fixed temperature of T = 300 K is assumed in simulation because a self-heating effect could
be neglected due to off-state working conditions of devices. Furthermore, the Selberherr’s
impact ionization model is used in the paper to simulate the breakdown of the buffer layer
caused by impact ionization. The material parameters of AlGaN, such as work function,
bandgap, and dielectric coefficient, are obtained by linear interpolation between GaN
and AlN [6]. In addition, we define the source-to-gate region in the buffer layer as the
Access-S (green area in Figure 1), the region below the gate as the Access-G (white area in
Figure 1), and the gate-to-drain region in the buffer layer as the Access-D region (blue area
in Figure 1). To ensure consistency with the actual manufacturing process, the source and
drain electrodes are all etched into the GaN buffer layer in simulation to be able to directly
contact the heterojunction channel [19]. Meanwhile, the parameters of the GaN material
are set in simulation as shown in Table 1 [20,21].

Table 1. The parameters of GaN material in simulation.

Parameters of GaN Material GaN

the band-gap energy 3.4/eV
the relative dielectric permittivity 9.5

lattice temperature 300/K
electron low-field mobility in GaN layer 900/(cm2/(V × s))

saturated velocity of electrons 2 × 107 /(cm/s)

When the device is in the off-state, there are two general methods for determining
breakdown voltage (Vbd): one is defined as the drain voltage corresponding to a drain
current of 1 mA/mm [22]; the other is defined as the drain voltage corresponding to a
sharp rise in the drain current [23], which is also the way to determine the occurrence of
breakdown in this paper. To ensure that the trap parameters in the buffer layer are consistent
with the trap introduced by the actual doping, only the acceptor traps are added to the buffer
layer. The trap energy level and capture cross section are Ec −0.5 eV and 1 × 10−15 cm−2,
respectively [24,25]. As the GaN buffer layer doping process introduces the acceptor trap
concentration in the range of 1015 cm−3 to 1018 cm−3 in the actual process [26,27], we define
that the concentration of the acceptor traps varies from 1 × 1015 cm−3 to 1 × 1018 cm−3 in
each region. The transfer and transconductance curves of the device are shown in Figure 2a.
Transductance is the differential of the drain current (Id) to the gate voltage (Vg), reflecting
the ability of the gate electrode to control the drain current. The threshold voltage obtained
from the transfer curve is −2.465 V and the maximum transconductance is 334.3 mS/mm,
which meet the simulation requirements for depletion-mode devices [7,26]. The variation
of threshold voltage with acceptor trap concentrations is shown in Figure 2b; it can be
seen that the threshold voltage increases with the increase of trap concentration, which
is consistent with others’ research [9,12,27]. Therefore, the structure can be used as the
simulation of breakdown performance.

The off-state gate voltage is set to –6 V in the simulation of breakdown performance.
When the device is in the off-state, some unexpected electrons will still flow to the drain
electrode, and the drain current will increase with the increase of drain voltage. When
the device breaks down, the drain current will rise sharply. Therefore, when the device
is in the off-state, we call the leakage drain current in the breakdown curve as the off-
state leakage current. We define Id-leak (the parameter of leakage current) as the drain
current, corresponding to Vd = Vbd/2 in the breakdown curve [27], and the expression is
shown below.

Id−leak = Id@(Vd = Vbd/2) (1)
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acceptor trap concentrations.

3. Effect of Traps in the Whole Buffer Layer

The breakdown voltage and leakage current of the device with the acceptor traps
introduced in the whole buffer layer are shown in Figure 3a. It can be observed that
when the acceptor trap energy level is fixed, the breakdown voltage (Vbd) increases and
gradually saturates with the increase of trap concentration. Its maximum value exists
around 5 × 1016 cm−3 and then starts to decrease slightly with the trap concentration
increasing. Figure 3b shows the electric field distribution at 1 nm below the heterojunction
channel when the device breaks down. As the concentration of acceptor traps in the GaN
buffer layer increases, the electric field near the gate is almost unchanged, while it is more
variable near the drain edge. This means that the change in the concentration of the traps
mainly affects the electric field peak near the drain edge, which in turn affects the variation
of breakdown voltage. The breakdown location of AlGaN/GaN HEMTs tends to occur at
the electric field peak [28].
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It can be seen from Figure 3a that the leakage current (Id-leak) decreases continuously
with the increase of trap concentration. At the same time, the breakdown voltage continues
to increase until the acceptor trap concentration reaches 5 × 1016 cm−3. Under the condition
of considering that only electrons capture effect, the SRH capture rate (RSRH

net ) can be
expressed as [29,30]:

RSRH
net =

p

τp

[
1 + n1

Nc exp(ηn)

] (2)
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n1 = ni exp
(

Etrap

kT

)
; ηn =

Ec − EFn

kT
(3)

where p is the concentration of acceptor traps, τp is the lifetime of hole, NC is the effec-
tive density of states for electrons, ni is the intrinsic electron concentration, Etrap is the
difference between the trap energy level and the intrinsic Fermi level, EFn is the electron
quasi-Fermi energy, Ec is the conduction band energy, k is Boltzman’s constant, T is the
lattice temperature.

From Equations (2) and (3), it can be seen that when the acceptor trap energy is fixed
(i.e., Etrap is fixed), the electrons’ capture rate increases with the increase of acceptor trap
concentration p and parameter ηn, and the parameter ηn is proportional to the difference
between the conduction band energy (Ec) and the Fermi energy (EFn). Figure 4a shows
the conduction band energy of the device at different trap concentrations; it can be seen
that the Fermi energy (EFn) is closer to the conduction band (Ec) when the acceptor trap
concentration is lower. That is, ηn is smaller when the trap concentration is lower. In other
words, the number of electrons captured by acceptor traps will increase with the high
trap concentration, which in turn leads to a decrease in the leakage current in the buffer
layer. With the decrease of the leakage current, the resistivity of the buffer layer gradually
increases, thus delaying its avalanche breakdown [9,31]. Therefore, the breakdown voltage
continues to increase until the trap concentration reaches 5 × 1016 cm−3.
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vertical line (at the center of the gate electrode) traversing from AlGaN surface (0 nm) to GaN buffer
layer. (b) Electric fields extracted along the vertical line (C-C’) near the drain edge when the drain
voltage is 300 V. Inset: cut-line along which electric fields are extracted.

As the acceptor trap concentration increases, the leakage current continues to decrease.
However, when the acceptor trap concentration exceeds 5 × 1016 cm−3, the breakdown
voltage no longer continues to increase as the leakage current decreases, but reaches
saturation and even decreases slightly as shown in Figure 3a. This is mainly due to the
formation of negative charges (ionized traps) after trapping electrons [32]. The trapping
electrons can create an additional built-in electric field whose direction is the same to
that applied by the drain voltage [27], and then the whole electric field is strengthened.
Therefore, when the drain voltage is fixed, the difference of electric fields with different
acceptor trap concentrations in the buffer layer is caused by the additional built-in electric
field. As the acceptor traps mainly affect the peak of the electric field near the drain edge
(see Figure 3b), the electric fields near the drain edge are extracted along the vertical line
(C-C’) and shown in Figure 4b when the drain voltage is fixed at a high value. It can
be seen that the electric field near the drain becomes larger with the increase of acceptor
trap concentration by the effect of the additional electric field, and the higher the electric
field is, the easier the breakdown takes place [28]. Therefore, the additional electric field
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whose direction is the same to that applied by the drain voltage can make the breakdown
voltage decrease.

As discussed above, there are two factors affecting the breakdown voltage. One is
that the capture of electrons by the acceptor traps reduces the leakage current and then
increases the breakdown voltage of the device. Second is that the ionized traps can generate
an additional electric field near the drain edge and the direction is the same to that applied
by the drain voltage, resulting in a decrease in the breakdown voltage. Under the combined
two effects above, the breakdown voltage almost saturates when the trap concentration
increases to 5 × 1016 cm−3 and then decreases slightly as the additional electric field effect
becomes a little larger with the trap concentration continuously increases as shown in the
Figure 3a.

To further investigate the availability of region doping in the GaN buffer layer, we will
analyze the effects of acceptor traps in the Access-D, Access-G, and Access-S regions on the
breakdown performance of the device in the following subsections, respectively.

3.1. Effect of Traps in the Access-D Region

When the acceptor traps are only introduced in the Access-D region, the variation of
leakage current and breakdown voltage with the acceptor trap concentration are shown
in Figure 5a. The breakdown voltage reaches a maximum value by increasing the concen-
tration of traps up to 2 × 1017 cm−3 and then decreases. The leakage current decreases
by about 5 orders of magnitude. For different acceptor trap concentrations, electric fields
extracted along the vertical line (C-C’) near the drain edge with a high drain voltage are
shown in Figure 5b. It shows that the electric field near the drain increases continuously
with the increase of the acceptor trap concentration. As a result, when the trap concentra-
tion is lower (before 2 × 1016 cm−3), a slight decrease in leakage current occurs, resulting
in a little change in breakdown voltage. As the trap concentration continues to increase,
the leakage current decreases rapidly, causing a rapid increase in the breakdown voltage.
Also, because of the higher acceptor trap concentration, a higher additional electric field
is introduced near the drain edge [33]. As the acceptor traps in the Access-D region are
closer to the drain electrode, the additional electric field formed by ionized traps has a more
obvious effect on the electric field peak near the drain. As discussed above, the breakdown
voltage starts to drop after saturation as shown in Figure 5a.
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3.2. Effect of Traps in the Access-G Region

When the acceptor traps are only introduced in the Access-G region, the variation of
leakage current and breakdown voltage with the acceptor trap concentration are shown
in Figure 6a. It can be seen that the breakdown voltage increases first and then gradually
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saturates as the trap concentration in the Access-G region increases. The leakage current
decreases by about 6 orders of magnitude. When the trap concentration is lower, the
leakage current decreases rapidly with the acceptor trap concentration increasing, leading
to a rapid increase in the breakdown voltage. For different acceptor trap concentrations,
electric fields extracted along the vertical line (C-C’) near the drain edge with a high drain
voltage are shown in Figure 6b. It can be seen that with the change of the acceptor trap
concentration in the Access-G region, the electric field varies less than that with introducing
acceptor traps in the Access-D region. This behavior can be explained as follows.
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are extracted.

The distribution of the ionized acceptor traps in the Access-G region is simulated and
shown in Figure 7. Ionized traps move down because of the repelling effect of negative gate
voltage [32]. Therefore, compared with traps in the Access-D region, the ionized traps in
the Access-G region are mainly distributed in the region below the gate and further away
from the drain. This results in a relatively small increase of the additional electric field near
the drain. Under the combined effect of the decreasing leakage current and the smaller
increasing additional electric field near the drain, the breakdown voltage saturates at last
(see Figure 6a).
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3.3. Effect of Traps in the Access-S Region

When the acceptor traps are only introduced in the Access-S region, the variation of
leakage current and breakdown voltage with the acceptor trap concentration are shown in
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Figure 8a. The breakdown voltage increases rapidly and then slowly with the increase of
the acceptor trap concentration in the Access-S region. The leakage current decreases by
about 6 orders of magnitude. With the increase of trap concentration in the Access-S region,
the leakage current decreases and the breakdown voltage increases. Meanwhile, ionized
traps create an additional electric field in the GaN layer. The electric fields extracted along
the lateral line (C-C’) near the drain edge are shown in Figure 8b. The result shows that the
electric field near the drain edge varies less with trap concentration compared with that in
the Access-D and Access-G regions. This means that the additional electric field generated
by the ionized traps has the smallest effect on the electric field peak near the drain edge, as
the traps in the Access-S region are farthest from the drain electrode. Therefore, with the
smallest effect of the additional electric field, the breakdown voltage still increases slowly
instead of dropping or saturation at the larger trap concentrations as shown in Figure 8a.
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3.4. Comparison of Leakage Current When Traps Are Introduced in Different Regions

The simulation results show that the artificial doping concentrations of Fe or C should be
strictly controlled to improve the breakdown voltage. In particular, it is important to avoid the
deterioration of the breakdown performance due to the high doping concentration [34–36].

Figure 9 shows the variations of off-state leakage currents when acceptor traps are
introduced in different regions. It can be seen that the traps in the Access-S region cause
the minimum leakage current for the same trap concentration. The distribution of electrons
inside the device under the off-state gate voltage condition is shown in Figure 10. The
flow direction of electrons in the buffer layer is from the source to the drain when the
device is at a negative gate voltage and positive drain voltage [37]. Therefore, the electron
concentration in the Access-S region is the highest compared with those in the Access-D
and Access-G regions as shown in Figure 10, which makes it easier for the acceptor traps in
the Access-S region to capture electrons. As a result, for the same trap concentration, the
leakage current is relatively small as more electrons are trapped when the traps are located
in the Access-S region.

In addition, the variation of the leakage current is directly related to the breakdown
voltage of the device [38]. The acceptor traps in the Access-S region can obtain a more
uniform variation of the leakage current, and the decreasing trend of the leakage current
is almost linear (see Figure 9). Thus, the breakdown voltage rises more gently and evenly
with doping in the Access-S region. Moreover, because the acceptor traps in the Access-S
region are farthest away from the drain, the additional electric field caused by ionized traps
has the smallest effect on the electric field peak near the drain. All factors above make
the breakdown voltage increase more controllably. Therefore, it is a potential approach to
control breakdown voltage by doping in the Access-S region during the fabrication process,
though more research and practice are needed before its practical application.
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4. Conclusions

This paper focuses on the effect of the concentration and distribution of the acceptor
traps in the buffer layer on breakdown performance of the AlGaN/GaN HEMTs. The
results show that the acceptor traps can capture electrons generated by ionization collisions
and then decrease off-state leakage currents, which result in an increase of the breakdown
voltage. At the same time, with the increase of trap concentration, the electric field near
the drain will increase as the ionized traps can create an additional built-in electric field
whose direction is the same to that applied by the drain voltage. Under the combination of
the above two effects, the breakdown voltage almost ultimately saturates even though the
leakage current continues to decrease when the traps are introduced in the whole buffer
layer. In addition, the effects of traps in the source-to-gate region (Access-S), the region
below the gate (Access-G), and the gate-to-drain region (Access-D) on the breakdown
performance of the device are studied separately. The results show that the acceptor
traps in the Access-S region can cause the minimum and linear leakage current, and the
breakdown voltage can be increased more controllably. Therefore, doping in the Access-S
region during the fabrication process is a more potential way to improve the breakdown
performance of the device than doping in the other two regions.
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