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Abstract: D flip-flop (DFF) is the basic unit of sequential logic in digital circuits. However, because
of an internal cross-coupled inverter pair, it can easily appear as a single event upset (SEU) when
hit by high-energy particles, resulting in the error in the value stored in the flip-flop. On this basis,
a new structure D flip-flop is proposed in this paper. This flip-flop uses an asymmetric scheme in
which the master–slave latch adopts different hardening structures. By sacrificing circuit speed in
exchange for stronger SEU fortification capability, the SEU threshold of this structure is improved
by 10 times compared to traditional D flip-flops. It has also been compared with Dual Interlocked
Storage Elements (DICEs), and it saves the area cost of six transistors compared to the DICE structure.
Under the same operating conditions, the average power consumption and peak power consumption
are, respectively, 9.8% and 18.8% lower than those of the DICE circuit, making it suitable for soft
radiation environments where high circuit speed is not a critical requirement.

Keywords: D flip-flop (DFF); single event upset (SEU); reliability; hardening; fully depleted
silicon-on-insulator (FDSOI)

1. Introduction

Digital integrated circuits are widely used today, and D flip-flop (DFF) is the basic unit
of sequential logic in digital circuits. However, because there is a cross-coupled inverter [1]
similar to SRAM inside the flip-flop, if the sensitive node collects a certain charge when it
is hit by particles, it will cause the internal stored value to flip [2]. In addition, with the
development of manufacturing process technology, the feature size and operating voltage
of the device are gradually reduced, and the probability of single event upset (SEU) in the
device is also increasing [3]. The occurrence of SEU means that the value stored in the
flip-flop is wrong at this time. If the error is read by the system, it may cause the system to
crash. Therefore, in order to improve the reliability of the circuit, we need to protect against
possible SEU.

Triple modular redundancy (TMR) is a commonly used protection method [4–6],
which makes three copies of sensitive units in the circuit. When one of the units fails,
the voter can select the correct value. TMR has a good protection effect against SEU, but
it will bring a large area overhead. Error-correcting codes (ECC) are another commonly
used SEU hardening method, which is widely used in today’s processors [7–9]. The ECC
hardening method involves writing the check codes generated by the encoder at the same
time as writing data to the storage unit, reading the data and the corresponding check code
together when reading, and decoding them to detect and correct the error of the data error.
However, the error correction capability of ECC coding is limited, and if a large number of
errors occur, it cannot be corrected.

To prevent a large number of errors, it can be considered to harden the basic unit
of the flip-flop. The common hardening schemes can be divided into two categories:
adding redundant units and introducing negative feedback mechanisms [10,11]. The
DICE structure is proposed based on these two hardening methods [12], which has strong
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resistance against SEU. However, it also incurs a significant area overhead in the circuit.
Furthermore, most of the traditional hardening schemes use the symmetrical structure of
master–slave latches; this paper studies the basic structure of conventional D flip-flop and
finds that the SEU hardening capability of the master latch in the flip-flop of this structure
is stronger than that of the slave latch. On this basis, this paper introduces a novel structure
of D flip-flop with the following characteristics:

1. This DFF utilizes an asymmetric scheme. Different hardening structures are employed
for the master and slave latches based on their SEU resistance capabilities. The circuit
requires six fewer transistors compared to the DICE structure, effectively reducing
the circuit area overhead. Furthermore, the average power consumption and peak
power consumption of the circuit are 9.8% and 18.8% lower, respectively, compared to
a DICE DFF under identical operating conditions.

2. The structure exhibits strong SEU hardening capabilities. Compared to traditional D-
flip-flops, this structure achieves an almost ten-fold increase in the SEU flip threshold.
It provides the same hardening effect as DICE under single particle injection with
Linear Energy Transfer (LET) ranging from 0 to 0.7 pc/µm.

2. Conventional D Flip-Flop
2.1. Working Principle

There are many structures of D flip-flops, which can be implemented by NAND gates,
transmission gates and other structures. In this study, the D flip-flop implemented by
transmission gates shown in Figure 1 is used as the basic structure for research. This
structure does not introduce transmission gates between the inverters, which saves the
number of transistors and reduces the clock load but requires adjusting the size of the
transistors to ensure that new values can be written. The transistor-level circuit of a
conventional D flip-flop is shown in Figure 1b. A unit contains 12 transistors, which are
divided into a master latch and slave latch.
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Figure 1. Scheme of the conventional D flip-flop [13]: (a) gate-level (b) transistor-level. 

The working principle of the D flip-flop is as follows: when the clock signal is low, 
the transmission gate T1 is turned on, and the two internal cross-coupled inverters I1 and 
I2 can receive and store the value input by the D node. When the clock signal becomes 
high, the transmission gate T2 is turned on, and the two cross-coupled inverters I3 and I4 
can receive and store the value passed in by the transmission gate T2 and transmit it to the 
Q node at the same time. It is equivalent to the D flip-flop sampling from the D node and 
spreading to the Q node on the rising clock edge. 
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Figure 1. Scheme of the conventional D flip-flop [13]: (a) gate-level (b) transistor-level.

The working principle of the D flip-flop is as follows: when the clock signal is low, the
transmission gate T1 is turned on, and the two internal cross-coupled inverters I1 and I2
can receive and store the value input by the D node. When the clock signal becomes high,
the transmission gate T2 is turned on, and the two cross-coupled inverters I3 and I4 can
receive and store the value passed in by the transmission gate T2 and transmit it to the Q
node at the same time. It is equivalent to the D flip-flop sampling from the D node and
spreading to the Q node on the rising clock edge.

2.2. Simulation of Basic Function

In this study, HSPICE (Version R-2020.12) is used to simulate the basic function of
the D flip-flop. Subsequent simulations were performed using the 22 nm fully depleted
silicon-on-insulator (FDSOI) device model from Global Foundries. We obtained the single
event transient (SET) current at different LET through FDSOI device simulations. Using
the Weibull function model, we fitted the current source model with MATLAB and finally
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implemented the single-particle circuit simulation by adding the current source model
to the circuit. Table 1 presents the detailed parameters of the DFF circuit. By driving the
clock and D signal, the D flip-flop is tested twice for sampling logic 1 and sampling logic
0, respectively.

Table 1. Transistor parameter information for the conventional DFF circuit.

Device W (nm) L (nm) W/L

N1, N3, N4 92

22

4.2

N2, N5~N7, P1, P3, P4 184 8.4

P2, P5~P7 368 16.8

As shown in Figure 2, when the clock is low, the voltages of Q1 and Q2 nodes follow
the change of the D node, the master latch successfully stores the value of the D node, and
when the clock is high, the slave latch successfully receives the master latch value. The
value of the D node sampled at the rising clock edge is finally successfully transmitted to
the Q node, which is consistent with expectations.
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The propagation delay of the D flip-flop is defined as the time difference between the
moment when the clock signal voltage rises to 50% VDD and the moment when the Q node
voltage rises to 50% VDD. As shown in Figure 3, the propagation delay of a conventional D
flip-flop is 61.7 ps.
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2.3. SEU Simulation

This section will simulate the SEU of the master latch and the slave latch of the D
flip-flop, respectively. Firstly, the high-energy particle incident simulation is carried out on
the 22 nm device model. The current waveform of a single tube at each LET is obtained by
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simulation. Subsequently, the SET current was fitted using the Weibull function, resulting
in a current source model that conforms to a Weibull distribution. Each LET corresponds to
a set of Weibull model parameters. Finally, DFF circuit-level SEU simulation is realized by
adding a Weibull current source to DFF circuit. By changing the parameters, the current
source generates different currents, and the correlation between the current source model
and LET is realized.

When the clock is low, because the transmission gate T1 is turned on, if the voltage
of the Q1 node changes, it will quickly return to the voltage of the D node. In addition,
the change in the voltage of the storage node of the master latch will not affect the Q node
because the transmission gate T2 is turned off.

However, when the clock is high, the transmission gate T1 will be turned off. If the
pulse current is injected into the Q1 node at this time, as shown in Figure 4a, the voltage
of the Q1 is prone to flipping, and the flipping linear energy transfer (LET) threshold is
between 0.09 and 0.10 pC/µm. As shown in Figure 4b, because the transmission gate T2 is
on, the inversion of the Q1 node will affect the Q node, causing the output of the D flip-flop
to also flip. At this time, if the wrong value is read, it may cause system errors.
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Different from the Q1 node, when the clock is high, if a high-energy pulse current with
an LET value of 0.7 pC/µm is injected into the Q2 node, the result is shown in Figure 5, and
the voltage of the Q2 has not yet been reversed. The reason is that the transmission gate T2
is on, the pulse current of the Q2 node has been reduced when it is transmitted to the Q3
node through the transmission gate, and the change in the voltage of the Q3 node is not
enough to cause the slave latch to flip, so the voltage of the Q2 node will gradually recover
when the pulse current disappears.
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From the above results, it can be concluded that when the master latch of the D flip-flop
is affected by SEU, if the clock signal is low, it will not affect the output of the D flip-flop,
and if the clock is high, only Q1 is a sensitive node. For the slave latch, when the clock is
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low, the transmission gate T2 is turned off, and the voltage of the internal node will not
be affected by the master latch. However, when the pulse current is directly injected into
the slave latch, the voltage will be flipped. The LET flipping threshold of the Q3 node is
between 0.07 and 0.08 pC/µm, and that of the Q node is between 0.06 and 0.07 pC/µm.

When the clock is high, a high-energy pulse current is injected into the Q node; as
shown in Figure 6, the Q node voltage drops rapidly and the Q3 node voltage rises, but
after passing through the transmission gate, the voltage change of the Q2 node decreases,
and it does not cause reverse in the master latch. Then, after the pulse current disappears,
the voltages of each node begin to recover, but the recovery time becomes longer than
other cases, about 100 ps. If the pulse current is injected into the Q3 node, there is a similar
phenomenon, and the recovery principle is the same.
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Summarizing the above results, it can be concluded that the slave latch of the D flip-
flop is easier to appear as SEU in the low state of the clock, and the flipping threshold is
lower than that of the master latch in the high state of the clock. The worst-case flipping
threshold of the D flip-flop is between 0.06 and 0.07 pC/µm, which is significantly improved
compared to 6T-SRAM (about 0.01 pC/µm). Table 2 summarizes the SEU hardening
capability of a conventional D flip-flop. For the master latch of the flip-flop, the change
of the voltage of the master latch when the clock is low will not affect the Q node as the
output. When the clock is high, only the Q1 node becomes the SEU’s sensitive node.

Table 2. SEU hardening capability of conventional D flip-flop.

Injection Position Clock Signal SEU Hardening Ability (Whether the Q
Node Is Flipped)

Master latch
Low Can resist SEU

High Q1 is sensitive node

Slave latch
Low Both Q3 and Q are sensitive nodes

High Can resist SEU

For the slave latch, the two nodes of the cross-coupled inverter are sensitive nodes
when the clock is low, and the flipping threshold is lower than that of the master latch;
that is, SEU is more likely to occur. Therefore, it can be concluded that the SEU hardening
capability of the slave latch is weaker than that of the master latch in the conventional D
flip-flop.

3. Proposed D Flip-Flop
3.1. Asymmetric Reinforcement Circuit Structure

Based on the research findings from the previous section, it can be concluded that for
hardening D flip-flops, a structure with a better hardening effect than the master latch can
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be adopted for the slave latch. Moreover, compared with 6T-SRAM, the flip threshold of the
conventional D flip-flop itself is higher. Based on the above two points, this study proposes
a new structure D flip-flop, as shown in Figure 7. Table 3 presents the detailed parameters
of the asymmetric reinforcement circuit. For the main latch with strong SEU immunity,
a redundancy fortification method is adopted. Two normally-on PMOS transistors are
added to the Q1 and Q2 nodes of the circuit to mitigate the impact of SET current. For the
slave latch with weaker SEU immunity, we added four additional PMOS transistors to the
original circuit. When the Q point voltage is high and the Q3 point voltage is low, the P9
transistor conducts, causing P7 to conduct as well, making the S4 node low and the S3 node
high. When the Q point or the Q3 point is subjected to an SET current, the influence on
the S3 and S4 nodes is relatively small. If the logic of the S3 and S4 can remain unchanged,
the voltage at Q and Q3 points can be restored to their initial states by affecting P5 and P6,
thereby maintaining the logic integrity of the circuit. The area overhead of the structure is
not large and it has better SEU hardening ability.
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Table 3. Transistor parameter information for the proposed DFF circuit.

Device W (nm) L (nm) W/L

N1, N4 92

22

4.2

N13 184 8.4

N2, N11, N12 276 12.6

P1, P5~P8, N3 46 2.1

P3, P9, P10, P13 368 16.8

P2, P4, P11, P12 552 25.1

The results of simulation show that the propagation delay of this structure is 461.5 ps,
which is larger than that of the conventional D flip-flop. The reason is that the slave latch
contains P9 and P10 transistors with the drain grounded, which causes the voltage change of
the node in the slave latch to be relatively slow, which is the shortcoming of this structure.

3.2. SEU Simulation

When the clock is low, pulse currents are injected into the Q1 and Q2 nodes, respec-
tively, and the results are shown in Figure 8. The voltages of the Q1 and Q2 will recover
quickly, because the transmission gate T1 is turned on. At the same time, the voltage change
in the master latch will not affect the Q node because the transmission gate T2 is turned off,
so the output of flip-flop will not be affected.



Micromachines 2023, 14, 1836 7 of 12Micromachines 2023, 14, x FOR PEER REVIEW 7 of 12 
 

 

  
(a) (b) 

Figure 8. The voltage diagram of the new structure D flip-flop when the pulse current is injected 
into (a) Q1 (b) Q2. 

In this structure, two additional P transistors are introduced to the master latch. As-
sume that the initial logic of the Q1 node is 1, and Q2 is 0. If the N1 transistor is hit by 
particles, the logic of the Q1 node changes from 1 to 0, but because there will be a voltage 
difference between the source and drain of the P3, the voltage of the S1 node will not 
change rapidly to 0, so that the P2 will not be turned on immediately and the Q2 node will 
also flip, achieving the SEU hardening effect. 

Figure 9 shows the voltage variations at different nodes of the circuit when subjected 
to an SET current with LET = 0.7 pc/µm. Assuming that the potential of the Q3 node rises 
from logic 0 to 1, the N4 is turned on, the Q node voltage drops, and the P10 is turned on. 
However, because the P10 is connected to the ground, and there is a voltage difference of 
the transistor itself, at this time, the voltage of the S3 node will not drop to 0, so that the P5 
will not be turned on. After the pulse current disappears, the voltage of the Q3 node will 
return to its original value. In an ideal hardening scheme, the width of the P7 and P8 should 
be greater than that of the P9 and P10 so that when the voltage of the Q3 or Q node changes, 
the voltage of the S3 and S4 nodes hardly changes. But this will affect the normal writing 
function of the D flip-flop, so the P7 and P8 should not be too wide. 

  
(a) (b) 

Figure 8. The voltage diagram of the new structure D flip-flop when the pulse current is injected into
(a) Q1 (b) Q2.

In this structure, two additional P transistors are introduced to the master latch.
Assume that the initial logic of the Q1 node is 1, and Q2 is 0. If the N1 transistor is hit by
particles, the logic of the Q1 node changes from 1 to 0, but because there will be a voltage
difference between the source and drain of the P3, the voltage of the S1 node will not change
rapidly to 0, so that the P2 will not be turned on immediately and the Q2 node will also flip,
achieving the SEU hardening effect.

Figure 9 shows the voltage variations at different nodes of the circuit when subjected
to an SET current with LET = 0.7 pc/µm. Assuming that the potential of the Q3 node rises
from logic 0 to 1, the N4 is turned on, the Q node voltage drops, and the P10 is turned on.
However, because the P10 is connected to the ground, and there is a voltage difference of
the transistor itself, at this time, the voltage of the S3 node will not drop to 0, so that the
P5 will not be turned on. After the pulse current disappears, the voltage of the Q3 node
will return to its original value. In an ideal hardening scheme, the width of the P7 and P8
should be greater than that of the P9 and P10 so that when the voltage of the Q3 or Q node
changes, the voltage of the S3 and S4 nodes hardly changes. But this will affect the normal
writing function of the D flip-flop, so the P7 and P8 should not be too wide.

The results demonstrate that the circuit exhibits strong resistance to SEU. When
subjected to an SET current with LET = 0.7 pc/µm, the voltages at various nodes of the
circuit can still recover to their initial state within 30~170 ps, indicating that the circuit
has an LET flip threshold greater than 0.7 pc/µm. In contrast, the LET flip threshold of a
regular DFF circuit is typically between 0.06 and 0.07 pc/µm. The fortified circuit shows a
tenfold increase in the flip threshold compared to the standard DFF circuit.

3.3. Circuit Comparison

The DICE circuit, renowned for its exceptional radiation tolerance, has found extensive
applications in reinforced circuits [14]. We uniformly employed a 22 nm FDSOI process
library to construct the circuit models. The DFF of the DICE structure is shown in Figure 10,
in which the cross-coupled inverter inside the flip-flop is replaced by the DICE structure.
At the same time, due to the isolation structure of DICE, two additional transmission gates
need to be added to realize data transmission. The DICE structure adopts the internal
isolation method to realize the reinforcement of the SEU. The D flip-flop of this structure
contains 24 transistors in total, 12 transistors are added compared with the conventional
D flip-flop, and the area overhead is relatively large. A comprehensive set of circuit
parameters is presented in Table 4 for reference.
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Table 4. Transistor parameter information for the DICE DFF circuit.

Device W (nm) L (nm) W/L

N1~N3, N5~N8, N13 100

22

4.6

N9~N12 300 13.7

P5 50 2.3

N4, P1~P3, P6~P8, P13 200 9.1

P4 400 18.2

P9~P12 600 27.3
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Figure 11 presents a comparison of the propagation delays of the two circuits. The
results demonstrate that the DICE structure’s D flip-flop exhibits a very low propagation
delay, measuring only 23.5 ps. Compared to the traditional D flip-flop, it represents a
reduction of approximately 62%, indicating an improved performance. This improvement
primarily stems from the inclusion of two transmission gates in each latch, which accelerates
the storage speed of the latch voltage. The asymmetrically hardened DFF exhibits a
propagation delay of 461.5 ps, which is approximately 7.5 times that of the traditional D
flip-flop. This suggests that the circuit is not suitable for high-speed applications.
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The DICE structure D flip-flop is similar to the SRAM of this structure, and each node
can resist SEU. As shown in Figure 12, under various energy pulse current injections, the
voltage of the Q node can eventually return to the original value. The DICE structure D
flip-flop has a smaller propagation delay and better SEU hardening ability, but it will bring
a larger area overhead. Figure 13 illustrates the voltage variations at the Q nodes of the two
circuits under SET current with LET = 0.7 pc/µm (particle energy loss) conditions. It can
be observed that both the asymmetrically fortified DFF and DICE DFF can maintain circuit
logic integrity under high-energy particle impacts. In this figure, we define the recovery
time (Trc) as the time difference between the voltage dropping to 50% VDD and recovering
to 50% VDD. According to the results, it is found that DICE exhibits a significantly shorter
recovery time than the asymmetrically fortified circuit, only requiring approximately
20.9 ps, while the asymmetrically fortified circuit needs 133.5 ps. Nevertheless, both circuits
demonstrate strong capabilities in recovering from soft errors.
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when an SET current with LET = 0.7 pc/µm was injected.

The power consumption of the two circuits is also compared. The average power
and peak power of these three circuits within the first 40 ps under the same operating
conditions were calculated using Hspice software. Under the same operating conditions,
the power consumption of the conventional DFF is defined as 1. Figure 14 shows the power
consumption comparison of the three circuits. Due to the advantages of the asymmetrically
fortified structure, the circuit has six fewer transistors compared to DICE, resulting in
lower average and peak power consumption. Under the same operating conditions, the
average power and peak power of the asymmetrically fortified DFF are 1.57 and 1.21,
respectively, while those of DICE are 1.74 and 1.49. Therefore, it can be concluded that the
asymmetrically fortified circuit has a significant advantage in power control. The complete
comparative results are listed in Table 5.
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Table 5. Comparison of the results of D flip-flop with different structures.

Structures Number of
Transistors

Propagation
Delay (ps)

SEU
Threshold

(pc/um)

Average
Power

Maximum
Power

Conventional 12 61.7 0.06~0.07 1 1

DICE 24 23.5 >0.7 1.74 1.49

Proposed 18 461.5 >0.7 1.57 1.21

Table 5 shows the various results of D flip-flops with different structures. Compared
with conventional D flip-flops, the proposed structure D flip-flop has increased propa-
gation delay, but the SEU hardening ability has been enhanced. In addition, referring to
experimental data [15] from the 65 nm FDSOI DICE DFF, the soft error rate of the DICE
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circuit is significantly lower compared to the conventional DFF and TMR circuits. Exper-
imental data [16,17] from the 22 nm FDSOI DICE indicate that the SEU cross-section of
DICE is an order of magnitude lower than that of the traditional DFF in static state. The
asymmetrically fortified DFF exhibits a similar performance to DICE in SEU simulations,
indirectly demonstrating the reliability of this circuit.

4. Conclusions

Because of the cross-coupled inverters in the D flip-flop, the sensitive node is easy
to appear as an SEU when it is hit by particles, resulting in errors in its internal storage
values. In this study, it is found that the SEU hardening ability of the master latch in
the D flip-flop of this structure is stronger than that of the slave latch. Therefore, for the
hardening of the D flip-flop, a structure in which the hardening effect of the slave latch
is better than that of the master latch can be used. Moreover, compared with 6T-SRAM,
the flip threshold of the conventional D flip-flop itself is higher. If the DICE structure
D flip-flop is used, it will bring excess SEU hardening capability, and the overall area of
the circuit will be larger. Based on the above two points, a new structure D flip-flop is
proposed in this paper. The flip-flop uses an asymmetric scheme in which master–slave
latches adopt different hardening structures. This structure has strong SEU hardening
ability. Compared to the DICE structure, it achieves a reduction in area occupancy by six
transistors, which is accompanied by lower power consumption. However, the propagation
delay is 461.5 ps with some loss in performance. The D flip-flop of this structure is suitable
for application scenarios that do not require high performance but have a limited area.
The simulation results demonstrate that our proposed circuit can withstand SET current
shocks at LET = 0.7 pc/µm. However, it is possible that in practical application scenarios,
such a high level of SEU fortification may not be necessary, and the circuit’s SEU resistance
performance may exceed the requirements. Therefore, further consideration will be given
to improving the transistor sizes in the circuit to achieve an enhancement in circuit speed.
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