Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Crystalline Lattices of Proposed Heterostructures
3.2. Electronic Structure and Spin States of Eu-Doped Bigraphene-Based Heterostructures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 2011; ISBN 9780511973765. [Google Scholar]
- Gregg, J. The Ehrenfest Classification of Phase Transitions: Introduction and Evolution. Arch. Hist. Exact Sci. 1998, 53, 51–81. [Google Scholar]
- Dobrosavljevic, V.; Trivedi, N.; Valles, J.M. (Eds.) Conductor-Insulator Quantum Phase Transitions; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Avramov, P.V.; Ovchinnikov, S.G. Effects of strong electron correlations in X-ray and electron spectra of High-Tc superconductors. Phys. Solid State 2000, 42, 788–809. [Google Scholar] [CrossRef]
- Avramov, P.V.; Ovchinnikov, S.G. Strong Electron Correlation Effects in X-ray and Photoelectron Spectra of High-Temperature Superconductors. J. Struct. Chem. 1999, 40, 108–151. [Google Scholar] [CrossRef]
- Avramov, P.V.; Ovchinnikov, S.G. The strong electron correlation effects in XAFS spectra of HTSC cuprates. J. Phys. IV 1997, 7, C2-183–C2-185. [Google Scholar] [CrossRef]
- Avramov, P.V.; Ovchinnikov, S.G. Underestimation of forbidden gap in the electronic spectra of HTSC. Phys. Solid State 1997, 39, 389–391. [Google Scholar] [CrossRef]
- Avramov, P.V.; Ovchinnikov, S.G.; Gavrichkov, V.A.; Ruzankin, S.P. The Theory of X-ray Absorption Spectra of Strongly Correlated Copper Oxides. Phys. C 1997, 278, 94–106. [Google Scholar] [CrossRef]
- Avramov, P.V.; Ovchinnikov, S.G. Non-diagram transitions in polarized X-ray absorption CuL3-spectra of HTSC. Phys. Solid State 1996, 38, 1761–1768. [Google Scholar]
- Avramov, P.B.; Ovchinnikov, S.G. Influence of strong electron correlations on the form of the X-ray CuK Absorption spectra of La2-xSrxCuO4. J. Exp. Theor. Phys. 1995, 81, 811–816. [Google Scholar]
- Ovchinnikov, S.G.; Avramov, P.V. Manifestation of strong electron correlation effects in X-ray and X-ray electron spectra of copper in High-temperature superconductors. Phys. Solid State 1995, 37, 1405–1409. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; Willey: Hoboken, NJ, USA, 2005; ISBN 0-471-41526-X. [Google Scholar]
- Ghiasi, T.S.; Kaverzin, A.A.; Dismukes, A.H.; de Wal, D.K.; Roy, X.; van Wees, B.J. Electrical and thermal generation of spin currents by magnetic bilayer graphene. Nat. Nanotechnol. 2021, 16, 788–794. [Google Scholar] [CrossRef]
- Das, S.; Pandey, D.; Thomas, J.; Roy, T. The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 2019, 31, 1802722. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A.M.; Khan, M.F.; Nazir, G.; Dastgeer, G.; Aftab, S.; Akhtar, I.; Seo, Y.; Eom, J. Gate modulation of the spin-orbit interaction in bilayer graphene encapsulated by WS2 films. Sci. Rep. 2018, 8, 3412. [Google Scholar] [CrossRef] [PubMed]
- Oyeniyi, G.T.; Melchakova, I.A.; Chernozatonskii, L.A.; Avramov, P.V. Nanodiamond islands confined between two graphene sheets as perspective 2D quantum materials. Carbon 2022, 196, 1047–1053. [Google Scholar] [CrossRef]
- Melchakova, I.A.; Tenev, T.G.; Vitanov, N.V.; Tchaikovskaya, O.N.; Chernozatonskii, L.A.; Yakobson, B.I.; Avramov, P.V. Extreme structure and spontaneous lift of spin degeneracy in doped perforated bilayer graphenes. Carbon 2022, 192, 61–70. [Google Scholar] [CrossRef]
- Lee, B.; Kang, J. Electric-Field-Tunable Bandgaps in the Inverse-Designed Nanoporous Graphene/Graphene Heterobilayers. Adv. Electron. Mater. 2022, 8, 2200252. [Google Scholar] [CrossRef]
- Wang, S.; Dai, S.; Jiang, D. Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Appl. Nano Mater. 2018, 2, 379–384. [Google Scholar] [CrossRef]
- Shao, H.; Wu, Y.-C.; Lin, Z.; Taberna, P.-L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, H.; Peng, Y.; Thomson, A.; Lewandowski, C.; Polski, R.; Zhang, Y.; Arora, H.S.; Watanabe, K.; Taniguchi, T. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 2021, 589, 536–541. [Google Scholar] [CrossRef]
- Xie, Y.; Lian, B.; Jäck, B.; Liu, X.; Chiu, C.-L.; Watanabe, K.; Taniguchi, T.; Bernevig, B.A.; Yazdani, A. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 2019, 572, 101–105. [Google Scholar] [CrossRef]
- Jiang, Y.; Lai, X.; Watanabe, K.; Taniguchi, T.; Haule, K.; Mao, J.; Andrei, E.Y. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 2019, 573, 91–95. [Google Scholar] [CrossRef]
- Kerelsky, A.; McGilly, L.J.; Kennes, D.M.; Xian, L.; Yankowitz, M.; Chen, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 2019, 572, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.-D.; Xu, X.-Y.; Meng, Z.-Y.; Kang, J. Correlated insulating phases in the twisted bilayer graphene. Chin. Phys. B 2021, 30, 017305. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Alavirad, Y.; Sau, J. Ferromagnetism and its stability from the one-magnon spectrum in twisted bilayer graphene. Phys. Rev. B 2020, 102, 235123. [Google Scholar] [CrossRef]
- Saito, Y.; Ge, J.; Rademaker, L.; Watanabe, K.; Taniguchi, T.; Abanin, D.A.; Young, A.F. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nat. Phys. 2021, 17, 478–481. [Google Scholar] [CrossRef]
- Lin, J.-X.; Zhang, Y.-H.; Morissette, E.; Wang, Z.; Liu, S.; Rhodes, D.; Watanabe, K.; Taniguchi, T.; Hone, J.; Li, J.I.A. Spin-orbit–driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 2022, 375, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Jeon, S.; Lee, S.; Park, H.C.; Kim, Y. Higher-order topological corner state tunneling in twisted bilayer graphene. Carbon 2021, 174, 260–265. [Google Scholar] [CrossRef]
- Sharpe, A.L.; Fox, E.J.; Barnard, A.W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M.A.; Goldhaber-Gordon, D. Evidence of orbital ferromagnetism in twisted bilayer graphene aligned to hexagonal boron nitride. Nano Lett. 2021, 21, 4299–4304. [Google Scholar] [CrossRef]
- Balents, L.; Dean, C.R.; Efetov, D.K.; Young, A.F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 2020, 16, 725–733. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef]
- Nkou, F.B.S.; Douma, D.H.; Boungou, B.R.M.; Raji, A.T.; Kenmoe, S.; Mabiala, B. Theoretical insights into magnetization in graphene containing single and interacting nanoporous defects. Phys. E Low-Dimens. Syst. Nanostructures 2021, 128, 114564. [Google Scholar] [CrossRef]
- Dai, X.Q.; Zhao, J.H.; Xie, M.H.; Tang, Y.N.; Li, Y.H.; Zhao, B. First-principle study of magnetism induced by vacancies in graphene. Eur. Phys. J. B 2011, 80, 343–349. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, F.; Gao, S.; He, L. Tunable magnetism of a single-carbon vacancy in graphene. Sci. Bull. 2020, 65, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.-Y.; Huang, H.; Li, W.-T.; Qiao, J.-B.; Wang, W.-X.; Yin, L.-J.; Bai, K.-K.; Duan, W.; He, L. Scanning tunneling microscopy of the π magnetism of a single carbon vacancy in graphene. Phys. Rev. Lett. 2016, 117, 166801. [Google Scholar] [CrossRef]
- Douma, D.H.; Poaty, L.T.; Nkou, F.B.S.; Nianga-Obambi, P.S.; Raji, A.T.; Malonda-Boungou, B.R.; M’Passi-Mabiala, B. Influence of Nitrogen and Boron on the magnetization of nanoporous graphene: A first-principle investigation. Comput. Condens. Matter. 2022, 30, e00603. [Google Scholar] [CrossRef]
- Sukhanova, E.V.; Kvashnin, D.G.; Popov, Z.I. Induced spin polarization in graphene via interactions with halogen doped MoS2 and MoSe2 monolayers by DFT calculations. Nanoscale 2020, 12, 23248–23258. [Google Scholar] [CrossRef]
- González-Herrero, H.; Gómez-Rodríguez, J.M.; Mallet, P.; Moaied, M.; Palacios, J.J.; Salgado, C.; Ugeda, M.M.; Veuillen, J.-Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441. [Google Scholar] [CrossRef]
- Blackwell, R.E.; Zhao, F.; Brooks, E.; Zhu, J.; Piskun, I.; Wang, S.; Delgado, A.; Lee, Y.-L.; Louie, S.G.; Fischer, F.R. Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons. Nature 2021, 600, 647–652. [Google Scholar] [CrossRef]
- Khan, M.E.; Wali, Q.; Aamir, M.; Kim, Y.-H. Spin transport properties of carbon nanotubes by ferromagnetic zigzag triangular defects: A first-principles study. Mater. Today Commun. 2022, 32, 104074. [Google Scholar] [CrossRef]
- Wolf, M.J.; Sürgers, C.; Fischer, G.; Beckmann, D. Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide. Phys. Rev. B 2014, 90, 144509. [Google Scholar] [CrossRef]
- Zhai, X.; Blanter, Y.M. Proximity-induced diversified magnetic states and electrically controllable spin polarization in bilayer graphene: Towards layered spintronics. Phys. Rev. B 2022, 106, 75425. [Google Scholar] [CrossRef]
- Wei, P.; Lee, S.; Lemaitre, F.; Pinel, L.; Cutaia, D.; Cha, W.; Katmis, F.; Zhu, Y.; Heiman, D.; Hone, J. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat. Mater. 2016, 15, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Averyanov, D.V.; Sokolov, I.S.; Tokmachev, A.M.; Parfenov, O.E.; Karateev, I.A.; Taldenkov, A.N.; Storchak, V.G. High-temperature magnetism in graphene induced by proximity to EuO. ACS Appl. Mater. Interfaces 2018, 10, 20767–20774. [Google Scholar] [CrossRef] [PubMed]
- Swartz, A.G.; Odenthal, P.M.; Hao, Y.; Ruoff, R.S.; Kawakami, R.K. Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 2012, 6, 10063–10069. [Google Scholar] [CrossRef]
- Klinkhammer, J.; Förster, D.F.; Schumacher, S.; Oepen, H.P.; Michely, T.; Busse, C. Structure and magnetic properties of ultra thin textured EuO films on graphene. Appl. Phys. Lett. 2013, 103, 131601. [Google Scholar] [CrossRef]
- Klinkhammer, J.; Schlipf, M.; Craes, F.; Runte, S.; Michely, T.; Busse, C. Spin-polarized surface state in euo (100). Phys. Rev. Lett. 2014, 112, 16803. [Google Scholar] [CrossRef]
- Schumacher, S.; Förster, D.F.; Rösner, M.; Wehling, T.O.; Michely, T. Strain in epitaxial graphene visualized by intercalation. Phys. Rev. Lett. 2013, 110, 86111. [Google Scholar] [CrossRef]
- Huttmann, F.; Klar, D.; Atodiresei, N.; Schmitz-Antoniak, C.; Smekhova, A.; Martinez-Galera, A.J.; Caciuc, V.; Bihlmayer, G.; Blügel, S.; Michely, T. Magnetism in a graphene-4 f− 3 d hybrid system. Phys. Rev. B 2017, 95, 75427. [Google Scholar] [CrossRef]
- Schumacher, S.; Huttmann, F.; Petrović, M.; Witt, C.; Förster, D.F.; Vo-Van, C.; Coraux, J.; Martinez-Galera, A.J.; Sessi, V.; Vergara, I. Europium underneath graphene on Ir (111): Intercalation mechanism, magnetism, and band structure. Phys. Rev. B 2014, 90, 235437. [Google Scholar] [CrossRef]
- Anderson, N.A.; Hupalo, M.; Keavney, D.; Tringides, M.C.; Vaknin, D. Intercalated europium metal in epitaxial graphene on SiC. Phys. Rev. Mater. 2017, 1, 54005. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B-Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Anisimov, V.I.; Zaanen, J.; Andersen, O.K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44, 943. [Google Scholar] [CrossRef]
- An, J.M.; Barabash, S.V.; Ozolins, V.; Van Schilfgaarde, M.; Belashchenko, K.D. First-principles study of phase stability of Gd-doped EuO and EuS. Phys. Rev. B-Condens. Matter Mater. Phys. 2011, 83, 064105. [Google Scholar] [CrossRef]
- Sayyad, M.; Qin, Y.; Kopaczek, J.; Gupta, A.; Patoary, N.; Sinha, S.; Benard, E.; Davis, A.; Yumigeta, K.; Wu, C.-L.; et al. Strain Anisotropy Driven Spontaneous Formation of Nanoscrolls from 2D Janus Layers. arXiv 2023, arXiv:2306.00162. [Google Scholar] [CrossRef]
- Kuklin, A.; Ågren, H.; Avramov, P.V. Structural stability of single-layer PdSe2 with pentagonal puckered morphology and its nanotubes. Phys. Chem. Chem. Phys. 2020, 22, 8289–8295. [Google Scholar] [CrossRef]
- Avramov, P.; Demin, V.; Luo, M.; Choi, C.H.; Sorokin, P.B.; Yakobson, B.; Chernozatonskii, L. Translation Symmetry Breakdown in Low-Dimensional Lattices of Pentagonal Rings. J. Phys. Chem. Lett. 2015, 6, 4525–4531. [Google Scholar] [CrossRef] [PubMed]
- Avramov, P.V.; Fedorov, D.G.; Sorokin, P.B.; Sakai, S.; Entani, S.; Ohtomo, M.; Matsumoto, Y.; Naramoto, H. Intrinsic Edge Asymmetry in Narrow Zigzag Hexagonal Heteroatomic Nanoribbons Causes their Subtle Uniform Curvature. J. Phys. Chem. Lett. 2012, 3, 2003–2008. [Google Scholar] [CrossRef]
- Avramov, P.V.; Kuklin, A.V. Topological and Quantum Stability of Low-Dimensional Crystalline Lattices with Multiple Nonequivalent Sublattices. New J. Phys. 2022, 24, 103015. [Google Scholar] [CrossRef]
- Torbjörnsson, M.; Ryde, U. Comparison of the accuracy of DFT methods for reactions with relevance to nitrogenase. Electron. Struct. 2021, 3, 034005. [Google Scholar] [CrossRef]
- Bogojeski, M.; Vogt-Maranto, L.; Tuckerman, M.E.; Müller, K.R.; Burke, K. Quantum chemical accuracy from density functional approximations via machine learning. Nat. Commun. 2020, 11, 5223. [Google Scholar] [CrossRef]
- Ye, Z.; Wu, P.; Wang, H.; Jiang, S.; Huang, M.; Lei, D.; Wu, F. Multimode tunable terahertz absorber based on a quarter graphene disk structure. Results Phys. 2023, 48, 106420. [Google Scholar] [CrossRef]
- Tang, B.; Guo, Z.; Jin, G. Polarization-controlled and symmetry-dependent multiple plasmon-induced transparency in graphene-based metasurfaces. Opt. Express 2022, 30, 35554–35566. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cai, P.; Wen, Q.; Chen, H.; Tang, Y.; Yi, Z.; Wei, K.; Li, G.; Tang, B.; Yi, Y. Graphene Multi-Frequency Broadband and Ultra-Broadband Terahertz Absorber Based on Surface Plasmon Resonance. Electronics 2023, 12, 2655. [Google Scholar] [CrossRef]
Number of Atoms Per Cell, Nat | Magnetic Moment Per Cell, µB | Cell Parameter a, Å | Cell Parameter b, Å | |
---|---|---|---|---|
Eu/BG (AA) | 197 | 0.00 | 17.26 | 17.26 |
Eu/BG (AB) | 197 | 0.00 | 17.25 | 17.26 |
Eu/TBG | 195 | 4.14 | 16.93 | 16.90 |
Eu/NPBG (AA) | 133 | 0.74 | 14.74 | 14.74 |
Eu/NPBG (AB) | 137 | 0.00 | 14.72 | 14.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melchakova, I.A.; Oyeniyi, G.T.; Polyutov, S.P.; Avramov, P.V. Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes. Micromachines 2023, 14, 1889. https://doi.org/10.3390/mi14101889
Melchakova IA, Oyeniyi GT, Polyutov SP, Avramov PV. Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes. Micromachines. 2023; 14(10):1889. https://doi.org/10.3390/mi14101889
Chicago/Turabian StyleMelchakova, Iu. A., G. T. Oyeniyi, S. P. Polyutov, and P. V. Avramov. 2023. "Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes" Micromachines 14, no. 10: 1889. https://doi.org/10.3390/mi14101889
APA StyleMelchakova, I. A., Oyeniyi, G. T., Polyutov, S. P., & Avramov, P. V. (2023). Spin Polarization and Flat Bands in Eu-Doped Nanoporous and Twisted Bilayer Graphenes. Micromachines, 14(10), 1889. https://doi.org/10.3390/mi14101889