Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Biochemicals
2.2. Materials and General Device Fabrication
2.3. Evaluating Adsorption of Protein Anchor on Nitrocellulose Using Hand-Spotting (Figure 2Ai,Aii)
2.4. Evaluating Adsorption of Capture Reagents on Nitrocellulose after Hand-Spotting (Figure 2Bi–Biii)
2.5. Sandwich Assay with Gold Nanoparticle Labels (Figure 5 and Figure 6)
2.6. Striping of Capture Reagents on Nitrocellulose
2.7. Protein Visualization
2.8. DNA Visualization
2.9. FAM Visualization
2.10. Image Analysis
2.11. Limit of Detection Estimation
3. Results and Discussion
3.1. Protein Characteristics to Consider in Creating a High Density of Biotin-Binding Sites on Nitrocellulose
3.2. Robustness of Protein Attachment to Nitrocellulose
3.3. Robustness of Attachment of Protein–DNA Complex to Nitrocellulose after Premixing
3.4. Evaluating Protein Anchor Immobilization on Nitrocellulose Using Multiple Passes of Reagent Deposition
3.5. Comparison of pSA and NC-SA as Protein Anchors Using Automated Liquid Dispensing for Protein Anchor Application
3.6. Demonstrating Multi-Layer pSA-Capture DNA Surfaces for Nucleic Acid Detection in a Lateral Flow Assay
4. Summary
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, N.; Toley, B.J. Paper-based nucleic acid amplification tests for point-of-care diagnostics. Analyst 2018, 143, 2213–2234. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, K.; Zheng, W.; Cheng, Y.; Li, T.; Cao, B.; Jin, Q.; Cui, D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021, 146, 1514–1528. [Google Scholar] [CrossRef] [PubMed]
- Fridley, G.E.; Holstein, C.A.; Oza, S.B.; Yager, P. The evolution of nitrocellulose as a material for bioassays. MRS Bull. 2013, 38, 326–330. [Google Scholar] [CrossRef]
- Brown, T.A. Southern Blotting. In Encyclopedia of Genetics; Miller, S.B.A.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1855–1857. [Google Scholar]
- Park, J.S.; Kim, S.; Han, J.; Kim, J.H.; Park, K.S. Equipment-free, salt-mediated immobilization of nucleic acids for nucleic acid lateral flow assays. Sens. Actuators B Chem. 2022, 351, 130975. [Google Scholar] [CrossRef] [PubMed]
- Toley, B.J.; Covelli, I.; Belousov, Y.; Ramachandran, S.; Kline, E.; Scarr, N.; Vermeulen, N.; Mahoney, W.; Lutz, B.R.; Yager, P. Isothermal strand displacement amplification (iSDA): A rapid and sensitive method of nucleic acid amplification for point-of-carediagnosis. Analyst 2015, 140, 7540–7549. [Google Scholar] [CrossRef] [PubMed]
- Lafleur, L.K.; Bishop, J.D.; Heiniger, E.K.; Gallagher, R.P.; Wheeler, M.D.; Kauffman, P.; Zhang, X.; Kline, E.C.; Buser, J.R.; Kumar, S.; et al. A rapid, instrument-free, sample-to-result nucleic acid amplification test. Lab Chip 2016, 16, 3777–3787. [Google Scholar] [CrossRef] [PubMed]
- Bruno, J.G. Application of DNA Aptamers and Quantum Dots to Lateral Flow Test Strips for Detection of Foodborne Pathogens with Improved Sensitivity versus Colloidal Gold. Pathogens 2014, 3, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Javani, A.; Javadi-Zarnaghi, F.; Rasaee, M.J. Development of a colorimetric nucleic acid-based lateral flow assay with non-biotinylated capture DNA. Appl. Biol. Chem. 2017, 60, 637–645. [Google Scholar] [CrossRef]
- Fong, W.K.; Modrusan, Z.; Mcnevin, J.P.; Marostenmaki, J.; Zin, B.; Bekkaoui, F. Rapid Solid-Phase Immunoassay for Detection of Methicillin-Resistant Staphylococcus aureus Using Cycling Probe Technology. J. Clin. Microbiol. 2000, 38, 2525–2529. [Google Scholar] [CrossRef]
- Glynou, K.; Ioannou, P.C.; Christopoulos, T.K.; Syriopoulou, V. Oligonucleotide-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Anal. Chem. 2003, 75, 4155–4160. [Google Scholar] [CrossRef] [PubMed]
- Holstein, C. Development of a Novel Paper-Based Flu Test for Improved Diagnosis at the Point of Care; Yager, P., Ed.; University of Washington: Seattle, WA, USA, 2015. [Google Scholar]
- Holstein, C.A.; Chevalier, A.; Bennett, S.; Anderson, C.E.; Keniston, K.; Olsen, C.; Li, B.; Bales, B.; Moore, D.R.; Fu, E.; et al. Immobilizing affinity proteins to nitrocellulose: A toolbox for paper-based assay developers. Anal. Bioanal. Chem. 2016, 408, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, A.; Verboket, R.D.; Kainz, D.M.; von Stetten, F.; Früh, S.M. Rapid Detection of Pathogens in Wound Exudate via Nucleic Acid Lateral Flow Immunoassay. Biosensors 2021, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.D.; Anderson, C.E.; Williford, J.R.; Alonzo, L.F.; Glukhova, V.A.; Boyle, D.S.; Weigl, B.H.; Nichols, K.P. SARS-CoV-2 Coronavirus Nucleocapsid Antigen-Detecting Half-Strip Lateral Flow Assay Toward the Development of Point of Care Tests Using Commercially Available Reagents. Anal Chem. 2020, 92, 11305–11309. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zeng, K.; Zhang, S.; Gurung, A.S.; Baloda, M.; Zhang, X.; Liu, G. Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens. Bioelectron. 2012, 31, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-Y.; Gao, Y.; Zhang, H.; Luo, Y.; Sun, Y.; Qiu, H.-J. Cross-priming amplification-based lateral flow strip as a novel tool for rapid on-site detection of wild-type pseudorabies virus. Sens. Actuators B Chem. 2018, 259, 573–579. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Buser, J.R. Heat, Fluid, and Sample Control in Point-of-Care Diagnostics; Yager, P., Ed.; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Tran-Nguyen, T.-S.; Ngo-Luong, D.-T.; Nguyen-Phuoc, K.-H.; Tran, T.L.; Tran-Van, H. Simultaneously targeting nitrocellulose and antibody by a dual-headed protein. Protein Expr. Purif. 2020, 177, 105764. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.C. Antibodies: Key to a Robust Lateral Flow Immunoassay. In Lateral Flow Immunoassay; Raphael Wong, H.T., Ed.; Humana Press: Totowa, NJ, USA, 2009; pp. 1–16. [Google Scholar]
- Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlén, M. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bhushan, P.; Krishna, V.; Bhattacharya, S. Tapered lateral flow immunoassay based point-of-care diagnostic device for ultrasensitive colorimetric detection of dengue NS1. Biomicrofluidics 2018, 12, 0341044. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, S.K.; Gibson, C.M.; Branen, J.R.; Aston, D.E.; Branen, A.L.; Hrdlicka, P.J. DNA detection on lateral flow test strips: Enhanced signal sensitivity using LNA-conjugated gold nanoparticles. Chem. Commun. 2012, 48, 7714–7716. [Google Scholar] [CrossRef] [PubMed]
Name | DNA Sequence (5’–3’) |
---|---|
Target DNA with FAM | FAM-ACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTG |
Target DNA | ACACTAGCCATCCTTACTGCGCTTCGATTGTGTGCGTACTGCTGCAATATTG |
Biotin-labeled capture DNA (with 35 A spacer) | Biotin-AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATATTGCAGCAGTACGCACACA |
Biotin-labeled label DNA (with 35 A spacer) | GCGCAGTAAGGATGGCTAGTGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA-Biotin |
Protein anchor | Molecular Weight (kD) | Biotin-Binding Sites per Molecular Unit and Relative to SA | Estimated Biotin-Binding Sites per 0.5 μg of Protein Mass | Estimated Biotin-Binding Sites per 0.5 Μg Of Protein Adsorbed Mass | Packing Density Relative to SA | Cost per 0.1 mg |
---|---|---|---|---|---|---|
Streptavidin (SA) | 60 | 4 and 1 | 33 pmoles | ~16.7 pmoles (assuming adsorbed form reduces no. of binding sites by 50%) | 1 | $17.5 |
Nitrocellulose-binding streptavidin mutant (NC-SA) | 24 | 1 and 0.625 | 21 pmoles | ~20.8 pmoles with biotin-binding domain oriented away from NC-binding domain | <1 | $150 |
Polystreptavidin (pSA) | 2000 | 132 and 1 | Similar to SA | ~10.3 pmoles (20 μg binds 414 pmoles biotin from manufacturer) | Similar to SA | $11 |
Anti-biotin antibody (Ab) | 150 | 2 and 0.2 | 6.7 pmoles | ~2.1 pmoles (assuming factor of orientation dependence for binding sites per molecule) | <<1 | $91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallerbach, K.; Khederlou, K.; Wentland, L.; Senten, L.; Brentano, S.; Keefe, B.; Fu, E. Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays. Micromachines 2023, 14, 1936. https://doi.org/10.3390/mi14101936
Hallerbach K, Khederlou K, Wentland L, Senten L, Brentano S, Keefe B, Fu E. Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays. Micromachines. 2023; 14(10):1936. https://doi.org/10.3390/mi14101936
Chicago/Turabian StyleHallerbach, Kira, Khadijeh Khederlou, Lael Wentland, Lana Senten, Steven Brentano, Brian Keefe, and Elain Fu. 2023. "Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays" Micromachines 14, no. 10: 1936. https://doi.org/10.3390/mi14101936
APA StyleHallerbach, K., Khederlou, K., Wentland, L., Senten, L., Brentano, S., Keefe, B., & Fu, E. (2023). Protein-Based Anchoring Methods for Nucleic Acid Detection in Lateral Flow Format Assays. Micromachines, 14(10), 1936. https://doi.org/10.3390/mi14101936