Influence of Technological Parameters on Chip Formation and Chip Control in Precision Hard Turning of Ti-6Al-4V
Abstract
:1. Introduction
2. Experimental Work
3. Results and Discussion
3.1. Effect of Process Parameters on Chip Control
3.2. Comparison between Chip Morphology at Micro and Macro Level
3.3. Effect of Chip Control on Measured Surface Roughness
4. Conclusions
- The interaction between process parameters has a significant effect on chip evacuation, control and breakage.
- Continuous helical chips were found at low cutting speeds and gave good chip evacuation for all values of depths of cut and feed rates.
- Increasing the feed rate and depth of cut resulted in increased chip up-curling, with a greater chip curve radius and pitch of helix at low cutting speeds.
- A combination of a low feed rate of 0.1 mm/rev and the highest cutting speed of 300 m/min led to ribbon snarled chips.
- A combination of higher cutting speed (200 and 300 m/min) and greater depth of cut (0.4 and 0.65 mm) resulted in the chip-side curl becoming snarled, with greater tangling of the chip with the workpiece during the cutting process.
- Higher feed rates of 0.2 and 0.3 mm/rev at higher cutting speeds, with a small depth of cut of 0.15 mm, gave good surface roughness results, with chip breaking and evacuation.
- Examining the generated chips using SEM allowed different chip curling formations, chip side-curl and chip up-curl, to be detected and examined.
- ◦
- It was found that large pitch segmentation resulted in increased chip curve radius. Moreover, the pitch of the helix was found to increase with the formation of a helical conical chip.
- ◦
- The tangling of chips with the workpiece was found to have a negative effect on the generated surface roughness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, H.; To, S. Serrated Chip Formation and Their Adiabatic Analysis by Using the Constitutive Model of Titanium Alloy in High Speed Cutting. J. Alloys Compd. 2015, 629, 368–373. [Google Scholar] [CrossRef]
- Devotta, A.; Beno, T.; Löf, R.; Espes, E. Quantitative Characterization of Chip Morphology Using Computed Tomography in Orthogonal Turning Process. Procedia CIRP 2015, 33, 299–304. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Zhu, X.; Lv, H. Saw-Tooth Chip Formation and Its Effect on Cutting Force Fluctuation in Turning of Inconel 718. Int. J. Precis. Eng. Manuf. 2013, 14, 957–963. [Google Scholar] [CrossRef]
- Bai, W.; Sun, R.; Roy, A.; Silberschmidt, V. V Improved Analytical Prediction of Chip Formation in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V. Int. J. Mech. Sci. 2017, 133, 357–367. [Google Scholar] [CrossRef]
- Zebala, W.; Struzikiewicz, G.; Słodki, B. Reduction of Power Consumption by Chip Breakability Control in Ti-6Al-4V Titanium Alloy Turning. Materials 2020, 13, 2642. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, B.; Karabulut, Ş.; Güllü, A. Performance Analysis of New External Chip Breaker for Efficient Machining of Inconel 718 and Optimization of the Cutting Parameters. J. Manuf. Process. 2018, 32, 553–563. [Google Scholar] [CrossRef]
- Buchkremer, S.; Schoop, J. A Mechanics-Based Predictive Model for Chip Breaking in Metal Machining and Its Validation. CIRP Ann. 2016, 65, 69–72. [Google Scholar] [CrossRef]
- Cascón, I.; Sarasua, J.A.; Elkaseer, A. Tailored Chip Breaker Development for Polycrystalline Diamond Inserts: FEM-Based Design and Validation. Appl. Sci. 2019, 9, 4117. [Google Scholar] [CrossRef]
- Aramcharoen, A. Influence of Cryogenic Cooling on Tool Wear and Chip Formation in Turning of Titanium Alloy. Procedia CIRP 2016, 46, 83–86. [Google Scholar] [CrossRef]
- Sun, J.; Ke, Q.; Chen, W. Material Instability under Localized Severe Plastic Deformation during High Speed Turning of Titanium Alloy Ti-6.5 AL-2Zr-1Mo-1V. J. Mater. Process. Technol. 2019, 264, 119–128. [Google Scholar] [CrossRef]
- Pacella, M. A New Low-Feed Chip Breaking Tool and Its Effect on Chip Morphology. Int. J. Adv. Manuf. Technol. 2019, 104, 1145–1157. [Google Scholar] [CrossRef]
- Lu, J.; Khawarizmi, R.; Monclús, M.; Molina-Aldareguia, J.; Kwon, P.; Bieler, T.R. Effect of Cutting Speed on Shear Band Formation and Chip Morphology of Ti–6Al–4V Alloy Using Nanoindentation and EBSD Mapping. Mater. Sci. Eng. A 2023, 862, 144372. [Google Scholar] [CrossRef]
- Lotfi, M.; Farid, A.A.; Soleimanimehr, H. The Effect of Chip Breaker Geometry on Chip Shape, Bending Moment, and Cutting Force: FE Analysis and Experimental Study. Int. J. Adv. Manuf. Technol. 2015, 78, 917–925. [Google Scholar] [CrossRef]
- Yılmaz, B.; Karabulut, Ş.; Güllü, A. A Review of the Chip Breaking Methods for Continuous Chips in Turning. J. Manuf. Process. 2020, 49, 50–69. [Google Scholar] [CrossRef]
- Ee, K.C.; Balaji, A.K.; Jawahir, I.S. Progressive Tool-Wear Mechanisms and Their Effects on Chip-Curl/Chip-Form in Machining with Grooved Tools: An Extended Application of the Equivalent Toolface (ET) Model. Wear 2003, 255, 1404–1413. [Google Scholar] [CrossRef]
- Balaji, A.K.; Ghosh, R.; Fang, X.D.; Stevenson, R.; Jawahir, I.S. Performance-Based Predictive Models and Optimization Methods for Turning Operations and Applications: Part 2—Assessment of Chip Forms/Chip Breakability. J. Manuf. Process. 2006, 8, 144–158. [Google Scholar] [CrossRef]
- Fang, N. Kinematic Characterization of Chip Lateral-Curl—The Third Pattern of Chip Curl in Machining. J. Manuf. Sci. Eng. 2002, 124, 667–675. [Google Scholar] [CrossRef]
- Fang, Y. Theoretical Modelling and Animation of the Chip Curling Process in 3-D Metal Cutting. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1998. [Google Scholar]
- D’Acunto, A.; Le Coz, G.; Moufki, A.; Dudzinski, D. Effect of Cutting Edge Geometry on Chip Flow Direction–Analytical Modelling and Experimental Validation. Procedia CIRP 2017, 58, 353–357. [Google Scholar] [CrossRef]
- Hernández, Y.S.; Vilches, F.J.T.; Gamboa, C.B.; Hurtado, L.S. Experimental Parametric Relationships for Chip Geometry in Dry Machining of the Ti-6Al-4V Alloy. Materials 2018, 10, 1260. [Google Scholar] [CrossRef]
- Kiyak, M.; Altan, M.; Altan, E. Prediction of Chip Flow Angle in Orthogonal Turning of Mild Steel by Neural Network Approach. Int. J. Adv. Manuf. Technol. 2007, 33, 251–259. [Google Scholar] [CrossRef]
- Struzikiewicz, G. Investigation of the Cutting Fluid Incidence Angle Direction in Turning Grade 5 ELI Titanium Alloy under High-Pressure Cooling Conditions. Materials 2023, 16, 5371. [Google Scholar] [CrossRef] [PubMed]
- Chungchoo, C.; Saini, D. A Computer Algorithm for Flank and Crater Wear Estimation in CNC Turning Operations. Int. J. Mach. Tools Manuf. 2002, 42, 1465–1477. [Google Scholar] [CrossRef]
- Nakayama, K. A Study on Chip-Breaker. Bull. JSME 1962, 5, 142–150. [Google Scholar] [CrossRef]
- Li, Z. Machining Chip-Breaking Mechanism with Applications; Dalian University: Dalian, China, 1990. [Google Scholar]
- Zhang, X.P.; Wu, S.B. Chip Control in the Dry Machining of Hardened AISI 1045 Steel. Int. J. Adv. Manuf. Technol. 2017, 88, 3319–3327. [Google Scholar] [CrossRef]
- Kamiya, M.; Yakou, T. Role of Second-Phase Particles in Chip Breakability in Aluminum Alloys. Int. J. Mach. Tools Manuf. 2008, 48, 688–697. [Google Scholar] [CrossRef]
- Shi, C.; Yu, A.; Wu, J.; Niu, W.; He, Y.; Hong, X.; Shang, Q. Study on Position of Laser Cladded Chip Breaking Dot on Rake Face of HSS Turning Tool. Int. J. Mach. Tools Manuf. 2017, 122, 132–148. [Google Scholar] [CrossRef]
- Aoki, T.; Sencer, B.; Shamoto, E.; Suzuki, N.; Koide, T. Development of a High-Performance Chip-Guiding Turning Process—Tool Design and Chip Flow Control. Int. J. Adv. Manuf. Technol. 2016, 85, 791–805. [Google Scholar] [CrossRef]
- Kim, H.-G.; Sim, J.-H.; Kweon, H.-J. Performance Evaluation of Chip Breaker Utilizing Neural Network. J. Mater. Process. Technol. 2009, 209, 647–656. [Google Scholar] [CrossRef]
- Liao, T.; Jiang, F.; Guo, B.; Wang, F. Optimization and Influence of the Geometrical Parameters of Chip Breaker for Finishing Machining of Fe-Cr-Ni Stainless Steel. Int. J. Adv. Manuf. Technol. 2017, 93, 3663–3675. [Google Scholar] [CrossRef]
- Nath, C.; Kapoor, S.G.; Srivastava, A.K. Finish Turning of Ti-6Al-4V with the Atomization-Based Cutting Fluid (ACF) Spray System. J. Manuf. Process. 2017, 28, 464–471. [Google Scholar] [CrossRef]
- Taylor, C.M.; Hernandez, S.G.A.; Marshall, M.; Broderick, M. Cutting Fluid Application for Titanium Alloys Ti-6Al-4V and Ti-10V-2Fe-3Al in a Finish Turning Process. Procedia CIRP 2018, 77, 441–444. [Google Scholar] [CrossRef]
- Miyake, A.; Kitakaze, A.; Katoh, S.; Muramatsu, M.; Noguchi, K.; Sannomiya, K.; Nakaya, T.; Sasahara, H. Chip Control in Turning with Synchronization of Spindle Rotation and Feed Motion Vibration. Precis. Eng. 2018, 53, 38–45. [Google Scholar] [CrossRef]
- Batista, M.; Salguero, J.; Gomez-Parra, A.; Fernández-Vidal, S.; Marcos, M. SOM Based Methodology for Evaluating Shrinkage Parameter of the Chip Developed in Titanium Dry Turning Process. Procedia CIRP 2013, 8, 534–539. [Google Scholar] [CrossRef]
- Iqbal, S.A.; Mativenga, P.T.; Sheikh, M.A. A Comparative Study of the Tool–Chip Contact Length in Turning of Two Engineering Alloys for a Wide Range of Cutting Speeds. Int. J. Adv. Manuf. Technol. 2009, 42, 30. [Google Scholar] [CrossRef]
- Abdelnasser, E.; Barakat, A.; Elsanabary, S.; Nassef, A.; Elkaseer, A. Precision Hard Turning of Ti-6Al-4V Using Polycrystalline Diamond Inserts: Surface Quality, Cutting Temperature and Productivity in Conventional and High-Speed Machining. Materials 2020, 13, 5677. [Google Scholar] [CrossRef]
- Hourmand, M.; Sarhan, A.A.D.; Sayuti, M.; Hamdi, M. A Comprehensive Review on Machining of Titanium Alloys; Springer: Berlin/Heidelberg, Germany, 2021; Volume 46, ISBN 1336902105420. [Google Scholar]
- Li, A.; Zang, J.; Zhao, J. Effect of Cutting Parameters and Tool Rake Angle on the Chip Formation and Adiabatic Shear Characteristics in Machining Ti-6Al-4V Titanium Alloy. Int. J. Adv. Manuf. Technol. 2020, 107, 3077–3091. [Google Scholar] [CrossRef]
- Khanna, N.; Shah, P.; de Lacalle, L.N.L.; Rodríguez, A.; Pereira, O. In Pursuit of Sustainable Cutting Fluid Strategy for Machining Ti-6Al-4V Using Life Cycle Analysis. Sustain. Mater. Technol. 2021, 29, e00301. [Google Scholar] [CrossRef]
- Kumar, C.S.; Urbikain, G.; De Lucio, P.F.; De Lacalle, L.N.L.; Pérez-Salinas, C.; Gangopadhyay, S.; Fernandes, F. Investigating the Self-Lubricating Properties of Novel TiSiVN Coating during Dry Turning of Ti-6Al-4V Alloy. Wear 2023, 532–533, 205095. [Google Scholar] [CrossRef]
- Kumar, C.S.; Urbikain, G.; de Lacalle, L.N.L.; Gangopadhyay, S.; Fernandes, F. Investigating the Effect of Novel Self-Lubricant TiSiVN Films on Topography, Diffusion and Oxidation Phenomenon at the Chip-Tool Interface during Dry Machining of Ti-6Al-4V Alloy. Tribol. Int. 2023, 186, 108604. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Liu, K.; Jiang, S.; Zhao, D.; Wang, S.; Yang, Y. Experiment and Numerical Study of Chip Formation Mechanism during Cryogenic Machining of Ti-6Al-4V Alloy. J. Manuf. Process. 2022, 84, 1246–1257. [Google Scholar] [CrossRef]
- Ramesh, S.; Palanikumar, K.; Boppana, S.B.; Natarajan, E. Analysis of Chip Formation and Temperature Measurement in Machining of Titanium Alloy (Ti-6Al-4V). Exp. Tech. 2023, 47, 517–529. [Google Scholar] [CrossRef]
- Lv, M.; Li, A.; Ge, D.; Zhang, R. Step-Dependent Grain Refinement and Micro-Harness Evolution during Chip Formation Process in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2022, 119, 4219–4236. [Google Scholar] [CrossRef]
- Denkena, B.; Bergmann, B.; Schaper, F. Investigation of Chip Formation of Ti–6Al–4V in Oxygen-Free Atmosphere. Int. J. Adv. Manuf. Technol. 2023, 124, 3601–3613. [Google Scholar] [CrossRef]
- Niu, W.; Wang, Y.; Li, X.; Guo, R. A Joint Johnson–Cook-TANH Constitutive Law for Modeling Saw-Tooth Chip Formation of Ti-6AL-4V Based on an Improved Smoothed Particle Hydrodynamics Method. Materials 2023, 16, 4465. [Google Scholar] [CrossRef]
- Das, S.R.; Panda, A.; Dhupal, D. Hard Turning of AISI 4340 Steel Using Coated Carbide Insert: Surface Roughness, Tool Wear, Chip Morphology and Cost Estimation. Mater. Today Proc. 2018, 5, 6560–6569. [Google Scholar]
- Ke, Q.; Xu, D.; Xiong, D. Cutting Zone Area and Chip Morphology in High-Speed Cutting of Titanium Alloy Ti-6Al-4V. J. Mech. Sci. Technol. 2017, 31, 309–316. [Google Scholar] [CrossRef]
- Shaw, M.C.; Cookson, J.O. Metal Cutting Principles; Oxford University Press: New York, NY, USA, 2005; Volume 2. [Google Scholar]
- Li, P.; Qiu, X.; Tang, S.; Tang, L. Study on Dynamic Characteristics of Serrated Chip Formation for Orthogonal Turning Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2016, 86, 3289–3296. [Google Scholar] [CrossRef]
- Kishawy, H.A.; Nguyen, N.; Hosseini, A.; Elbestawi, M. Machining Characteristics of Additively Manufactured Titanium, Cutting Mechanics and Chip Morphology. CIRP Ann. 2023, 72, 49–52. [Google Scholar] [CrossRef]
- Bejjani, R.; Balazinski, M.; Attia, H.; Plamondon, P.; L’Éspérance, G. Chip Formation and Microstructure Evolution in the Adiabatic Shear Band When Machining Titanium Metal Matrix Composites. Int. J. Mach. Tools Manuf. 2016, 109, 137–146. [Google Scholar] [CrossRef]
- Vyas, A.; Shaw, M.C. Mechanics of Saw-Tooth Chip Formation in Metal Cutting. ASME J. Manuf. Sci. Eng. 1999, 121, 163–172. [Google Scholar] [CrossRef]
- Sima, M.; Özel, T. Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti–6Al–4V. Int. J. Mach. Tools Manuf. 2010, 50, 943–960. [Google Scholar] [CrossRef]
- Cotterell, M.; Byrne, G. Dynamics of Chip Formation during Orthogonal Cutting of Titanium Alloy Ti–6Al–4V. CIRP Ann. 2008, 57, 93–96. [Google Scholar] [CrossRef]
- Sutter, G.; List, G. Very High Speed Cutting of Ti–6Al–4V Titanium Alloy–Change in Morphology and Mechanism of Chip Formation. Int. J. Mach. Tools Manuf. 2013, 66, 37–43. [Google Scholar] [CrossRef]
- Li, W.; Daochun, X.; Danping, X.; Qingchan, K. Compression Deformation in the Primary Zone during the High-Speed Cutting of Titanium Alloy Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2019, 102, 4409–4417. [Google Scholar] [CrossRef]
- Kumar, S.M.R.; Kulkarni, S.K. Analysis of Hard Machining of Titanium Alloy by Taguchi Method. Mater. Today Proc. 2017, 4, 10729–10738. [Google Scholar] [CrossRef]
- Ramana, M.V.; Aditya, Y.S. Optimization and Influence of Process Parameters on Surface Roughness in Turning of Titanium Alloy. Mater. Today Proc. 2017, 4, 1843–1851. [Google Scholar] [CrossRef]
- Nithyanandam, J.; LalDas, S.; Palanikumar, K. Surface Roughness Analysis in Turning of Titanium Alloy by Nanocoated Carbide Insert. Procedia Mater. Sci. 2014, 5, 2159–2168. [Google Scholar] [CrossRef]
Element | Ti | Al | V | Cu | Fe | Sn | Si | W |
---|---|---|---|---|---|---|---|---|
% | 89.4 | 5.74 | 4.4 | 0.0685 | 0.162 | 0.014 | 0.0119 | 0.165 |
Workpiece Material | Ti-6Al-4V Alloy |
---|---|
Insert material | PCD |
Feed rate (f) | 0.1, 0.2, 0.3 mm/rev |
Cutting speed (vc) | 75, 200, 300 m/min |
Depth of cut (ap) | 0.15, 0.4, 0.65 mm |
Cooling condition | Dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelnasser, E.; El-Sanabary, S.; Nassef, A.; Barakat, A.; Elkaseer, A. Influence of Technological Parameters on Chip Formation and Chip Control in Precision Hard Turning of Ti-6Al-4V. Micromachines 2023, 14, 1973. https://doi.org/10.3390/mi14101973
Abdelnasser E, El-Sanabary S, Nassef A, Barakat A, Elkaseer A. Influence of Technological Parameters on Chip Formation and Chip Control in Precision Hard Turning of Ti-6Al-4V. Micromachines. 2023; 14(10):1973. https://doi.org/10.3390/mi14101973
Chicago/Turabian StyleAbdelnasser, Elshaimaa, Samar El-Sanabary, Ahmed Nassef, Azza Barakat, and Ahmed Elkaseer. 2023. "Influence of Technological Parameters on Chip Formation and Chip Control in Precision Hard Turning of Ti-6Al-4V" Micromachines 14, no. 10: 1973. https://doi.org/10.3390/mi14101973
APA StyleAbdelnasser, E., El-Sanabary, S., Nassef, A., Barakat, A., & Elkaseer, A. (2023). Influence of Technological Parameters on Chip Formation and Chip Control in Precision Hard Turning of Ti-6Al-4V. Micromachines, 14(10), 1973. https://doi.org/10.3390/mi14101973