Experimental Study of the Surface Quality of Form-Cutting Tools Manufactured via Wire Electrical Discharge Machining Using Different Process Parameters
Abstract
:1. Introduction
- ▪
- Reasonable behavior and performance at low cutting temperatures, which could also be applied to form-cutting tools given their low rotational and cutting speed.
- ▪
- Low prices compared with carbides (cost-effective for prototyping applications).
- ▪
- Fewer manufacturing challenges because of their lower hardness (compared with other cutting materials).
- ▪
- Sufficiency for primary machining tests used to inspect the geometric accuracy of the form contours produced (first on the tool and then on the workpiece).
- ▪
- Suitability for machining non-ferrous metals.
- ▪
- Excellent toughness compared with other cutting materials.
- ▪
- Adequacy for manual machines (depending on the influence of the operator’s skills on the quality of the process and the possibility of human error).
2. Materials and Methods
3. Results and Discussion
3.1. Influences of Number of Passes and Different Contour Profiles on Surface Quality
3.2. Surface Characterization of the Recast Layer
3.2.1. Comparative Analysis of Geometric Variations in CLSM 3D Surface Spectrum
3.2.2. Analysis of Wire Electrical Discharge Machining (WEDM) Effects on Surface Properties and Geometric Deviations in Convex and Concave Curves
3.2.3. Surface Roughness Analysis of Wire Electrical Discharge Machined Samples with Varied Geometries and Passes
3.2.4. Analysis of EDS Spectroscopy Results for Wire Electrical Discharge Machined Samples with Varied Geometries and Passes
3.2.5. Influence of Shape Contour Geometry on Recast Layer Thickness and Cutting Edge Sharpness in Wire Electrical Discharge Machining (EDM)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
CAD | Computer-Aided Design |
CAM | Computer-Aided Manufacturing |
CNC | Computer Numerical Control |
CLSM | Confocal Laser Scanning Microscopy |
DOE | Design of Experiments |
DXF | Drawing Exchange Format |
EDM | Electro-Discharge Machining |
EDS | Energy-Dispersive X-Ray Spectroscopy |
FA | Actual Feed Rate of Electrode in Cutting Direction (Base of the Mitsubishi Table) |
FESEM | Field Emission Scanning Electron Microscopy |
H | Distance Between Electrode Center to Workpiece Surface (Base of the Mitsubishi Table) |
HSS | High-Speed Steel |
IP | Intensity of Power (Base of the Mitsubishi Table) |
OFF | Pulse Interval Time (Base of the Mitsubishi Table) |
ON time | Pulse Time During Discharging (Base of the Mitsubishi Table) |
rpm | Revolutions Per Minute |
SEM | Scanning Electron Microscope |
VG | Gap Voltage During Discharging (Base of the Mitsubishi Table) |
WEDM | Wire Electrical Discharge Machining |
WS | Wire Traveling Speed (Base of the Mitsubishi Table) |
WT | Wire Tension (Base of the Mitsubishi Table) |
DF | Dielectric Fluid Flow Rate (L/m) (Base of the Mitsubishi Table) |
References
- Khan, M.R.; Tandon, P. Computer-Aided Design and Analysis of a Custom-Engineered Form Milling Cutter. Comput.-Aided Des. Appl. 2010, 7, 213–219. [Google Scholar] [CrossRef]
- Khan, M.R.; Tandon, P. Development of the geometry and its redesigning for a special shaped milling cutter. In Proceedings of the World Congress on Engineering, London, UK, 3–5 July 2013; Volume I, ISBN 978-988-19251-0-7. [Google Scholar]
- Khan, M.R.; Tandon, P. Mathematical modeling for the design of a generic custom-engineered form mill. Int. J. Adv. Manuf. Technol. 2011, 54, 139–148. [Google Scholar] [CrossRef]
- Sykora, H.T.; Hajdu, D.; Dombovari, Z.; Bachrathy, D. Chatter formation during milling due to stochastic noise-induced resonance. Mech. Syst. Signal Process. 2021, 161, 107987. [Google Scholar] [CrossRef]
- Dash, L.; Padhan, S.; Das, A.; Das, S.R. Machinability investigation and sustainability assessment in hard turning of AISI D3 steel with coated carbide tool under nanofluid minimum quantity lubrication-cooling condition. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 6496–6528. [Google Scholar] [CrossRef]
- Luk, W.K. The mechanics of symmetrical vee form tool cutting. Int. J. Mach. Tool Des. Res. 1969, 9, 17–38. [Google Scholar] [CrossRef]
- Luk, W.K. The mechanics of symmetrical circular Form tool cutting. Int. J. Mach. Tool Des. Res. 1970, 10, 293–303. [Google Scholar] [CrossRef]
- Sruthi, B.; Kumar, M.A. Design and analysis of form tool. Int. J. Res. Adv. Eng. Technol. (IJRAET) 2015, 5. Available online: https://www.scribd.com/document/357211233/1 (accessed on 13 October 2023).
- Ho, K.; Newman, S.; Rahimifard, S.; Allen, R. State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf. 2004, 44, 1247–1259. [Google Scholar] [CrossRef]
- Kumar, A.; Jagota, V.; Shawl, R.Q.; Sharma, V.; Sargam, K.; Shabaz, M.; Khan, M.T.; Rabani, B.; Gandhi, S. Wire EDM process parameter optimization for D2 steel. Mater. Today Proc. 2021, 37, 2478–2482. [Google Scholar]
- Abdudeen, A.; Qudeiri, J.E.A.; Kareem, A.; Ahammed, T.; Ziout, A. Recent advances and perceptive insights into powder-mixed dielectric fluid of EDM. Micromachines 2020, 11, 754. [Google Scholar] [CrossRef]
- Alam, M.N.; Siddiquee, A.N.; Khan, Z.A.; Khan, N.Z. A comprehensive review on wire EDM performance evaluation. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 1724–1746. [Google Scholar] [CrossRef]
- Liao, Z.; la Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M’Saoubi, R. Surface integrity in metal machining-Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2021, 162, 103687. [Google Scholar] [CrossRef]
- Sarkar, S.; Sekh, M.; Mitra, S.; Bhattacharyya, B. Modelling and optimization of wire electrical discharge machining of γ-TiAl in trim cutting operation. J. Mater. Eng. Perform. 2010, 19, 1031–1036. [Google Scholar]
- Jadam, T.; Datta, S.; Masanta, M. Study of surface integrity and machining performance during main/rough cut and trim/finish cut mode of WEDM on Ti–6Al–4V: Effects of wire material. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 151. [Google Scholar] [CrossRef]
- Cj, L.; Li, Y.; Tong, H.; Zhao, L. Thinning process of recast layer in hole drilling and trimming by EDM. Procedia Cirp 2016, 42, 575–579. [Google Scholar] [CrossRef]
- Lim, L.; Lee, L.; Wong, Y.; Lu, H. Solidification microstructure of electrodischarge machined surfaces of tool steels. Mater. Sci. Technol. 1991, 7, 239–248. [Google Scholar] [CrossRef]
- Raoa, S.S.M.; Raob, K.V.; Reddya, K.H.; Rao, C.V.S.P. Prediction and optimization of process parameters in wire cut electric discharge machining for High-speed steel (HSS). Int. J. Comput. Appl. 2017, 39, 140–147. [Google Scholar]
- Suresh, C.; Venkatasubbaiah, K.; Raju, C. Effect of Process Parameters on Surface Roughness of HSS M35 in Wire-EDM during Taper Cutting. Int. J. Adv. Mech. Eng. 2018, 8, 127–136. Available online: http://www.ripublication.com (accessed on 13 October 2023).
- Gajanana, S. Experimental Investigation of Process Parameters of Submerged Wire EDM for Machining High Speed Steel. Int. J. Eng. Res. 2016, 5, 427–431. Available online: https://www.researchgate.net/publication/303105594_Experimental_Investigation_of_Process_Parameters_of_Submerged_Wire_EDM_for_Machining_High_Speed_Steel (accessed on 13 October 2023).
- Singh, R.; Singh, R.P.; Tyagi, M.; Kataria, R. Investigation of dimensional deviation in wire EDM of M42 HSS using cryogenically treated brass wire. Mater. Today Proc. 2020, 25, 679–685. [Google Scholar] [CrossRef]
- Puri, A.B.; Bhattacharyya, B. An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int. J. Mach. Tools Manuf. 2003, 43, 151–159. [Google Scholar] [CrossRef]
- Farooq, M.U.; Ali, M.A.; He, Y.; Khan, A.M.; Pruncu, C.I.; Kashif, M.; Ahmed, N.; Asif, N. Curved profiles machining of Ti6Al4V alloy through WEDM: Investigations on geometrical errors. J. Mater. Sresearch Technol. 2020, 9, 16186–16201. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.; Zhang, Z.; Li, H.; Ming, W.Y.; Zhang, G. An analysis and optimization of the geometrical inaccuracy in WEDM rough corner cutting. Int. J. Adv. Manuf. Technol. 2014, 74, 917–929. [Google Scholar] [CrossRef]
- Pramanik, A.; Islam, M.N.; Basak, A.K.; Dong, Y.; Littlefair, G.; Prakash, C. Materials and Manufacturing Processes. 2019, Volume 34. Available online: https://www.tandfonline.com/loi/lmmp20 (accessed on 13 October 2023).
- Conde, A.; Sanchez, J.A.; Plaza, S.; Ramos, J.M. On the influence of wire-lag on the WEDM of low-radius free-form geometries, 18th CIRP Conference on Electro Physical and Chemical Machining (ISEM XVIII). Procedia CIRP 2016, 42, 274–279. [Google Scholar] [CrossRef]
- Firouzabadi, H.A.; Parvizian, J.; Abdullah, A. Improving accuracy of curved corners in wire EDM successive cutting. Int. J. Adv. Manuf. Technol. 2015, 76, 447–459. [Google Scholar] [CrossRef]
- Available online: https://www.bohler-edelstahl.com/en/products/s200/ (accessed on 13 October 2023).
Böhler Grade | Chemical Composition in % | Standards | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Cr | W | Mo | V | Co | Others | DIN/EN | AISI | ||
Conventional high-speed steel | ||||||||||
Böhler S200 | 0.76 | 4.1 | 18 | - | 1.1 | - | - | <1.3355> | HS18-0-1 | T1 |
Tool | Brass—Wire 0.25 mm |
Workpiece | HSS: VCN 150 (12 mm) |
Parameter | Specification of spark energy (1 pass): Pass No. 1: IP: 14, ON time: 0.75 μs, OFF time: 30 μs, VG: 80 v, WT: 1 N/m, WS: 8.4 m/min, DF: 8 (L/m), FA: 10 mm/min, H: 0.156 mm |
Specification of spark energy (2 passes): Pass No. 1: IP: 14, ON time: 0.75 μs, OFF time: 30 μs, VG: 80 v, WT: 1 N/m, WS: 8.4 m/min, DF: 8 (L/m), FA: 10 mm/min, H: 0.186 mm Pass No. 2: IP: 9, ON time: 0.75 μs, OFF time: 30 μs, VG: 20 v, WT: 1.4 N/m, WS: 9 m/min, DF: 0 (L/m), FA: 2.775 mm/min, H: 0.140 mm | |
Specification of spark energy (3 passes): Pass No. 1: IP: 14, ON time: 0.75 μs, OFF time: 30 μs, VG: 80 v, WT: 1 N/m, WS: 8.4 m/min, DF: 8 (L/m), FA: 10 mm/min, H: 0.186 mm Pass No. 2: IP: 9, ON time: 0.75 μs, OFF time: 30 μs, VG: 20 v, WT: 1.4 N/m, WS: 9 m/min, DF: 0 (L/m), FA: 2.775 mm/min, H: 0.140 mm Pass No. 3: IP: 4, ON time: 0.45 μs, OFF time: 30 μs, VG: 14 v, WT: 1.4 N/m, WS: 6.8 m/min, DF: 0 (L/m), FA: 2 mm/min, H: 0.128 mm | |
Dielectric | Oil—oil bath |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alinaghizadeh, A.; Hadad, M.; Azarhoushang, B. Experimental Study of the Surface Quality of Form-Cutting Tools Manufactured via Wire Electrical Discharge Machining Using Different Process Parameters. Micromachines 2023, 14, 1976. https://doi.org/10.3390/mi14111976
Alinaghizadeh A, Hadad M, Azarhoushang B. Experimental Study of the Surface Quality of Form-Cutting Tools Manufactured via Wire Electrical Discharge Machining Using Different Process Parameters. Micromachines. 2023; 14(11):1976. https://doi.org/10.3390/mi14111976
Chicago/Turabian StyleAlinaghizadeh, Amir, Mohammadjafar Hadad, and Bahman Azarhoushang. 2023. "Experimental Study of the Surface Quality of Form-Cutting Tools Manufactured via Wire Electrical Discharge Machining Using Different Process Parameters" Micromachines 14, no. 11: 1976. https://doi.org/10.3390/mi14111976
APA StyleAlinaghizadeh, A., Hadad, M., & Azarhoushang, B. (2023). Experimental Study of the Surface Quality of Form-Cutting Tools Manufactured via Wire Electrical Discharge Machining Using Different Process Parameters. Micromachines, 14(11), 1976. https://doi.org/10.3390/mi14111976