
Citation: Udaondo, C.; Collado, C.;

Mateu, J. Quasi-3D Model for Lateral

Resonances on Homogeneous BAW

Resonators. Micromachines 2023, 14,

1980. https://doi.org/10.3390/

mi14111980

Academic Editors: Kenya Hashimoto,

Songsong Zhang, Qiaozhen Zhang

and Xing Haw Marvin Tan

Received: 7 October 2023

Revised: 23 October 2023

Accepted: 23 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Quasi-3D Model for Lateral Resonances on Homogeneous
BAW Resonators
Carlos Udaondo , Carlos Collado * and Jordi Mateu

Signal Theory and Communications (TSC) Department, Universitat Politècnica de Catalunya (UPC),
08034 Barcelona, Spain; carlos.udaondo@upc.edu (C.U.); jordi.mateu-mateu@upc.edu (J.M.)
* Correspondence: juan.carlos.collado@upc.edu

Abstract: Lateral modes are responsible for the in-band spurious resonances that appear on BAW
resonators, degrading the in-band filter response. In this work, a fast computational method based
on the transmission line matrix (TLM) method is employed to model the lateral resonances of
BAW resonators. Using the precomputed dispersion curves of Lamb waves and an equivalent
characteristic impedance for the TE1 mode, a network of transmission lines is used to calculate the
magnitude of field distributions on the electrodes. These characteristics are specific to the stack
layer configuration. The model’s implementation is based on nodal Y matrices, from which particle
displacement profiles are coupled to the electric domain via piezoelectric constitutive relations.
Consequently, the input impedance of the resonator is obtained. The model exhibits strong agreement
with FEM simulations of FBARs and SMRs, and with measurements of several SMRs. The proposed
model can provide accurate predictions of resonator input impedance, which is around 200 times
faster than conventional FEM.

Keywords: BAW resonator; Film Bulk Acoustic Resonator; Lamb wave; solidly mounted resonator;
spurious modes

1. Introduction

The advent of 5G networks has raised the bar for acoustic filters in RF front-ends,
necessitating a deeper understanding of the spurious resonances in resonators. Spurious
modes, particularly their cancellation, are essential considerations in BAW resonator de-
sign [1–3]. These spurious modes are primarily associated with the lateral propagation of
Lamb waves within a resonator [4], which can be employed for designing novel resonant
structures [5]. However, for devices like FBARs and SMR-BAW, these lateral effects pose
significant challenges [6].

To model those lateral effects, finite element method (FEM) simulations are commonly
used. Two-dimensional FEM simulations are used to analyze the Lamb modes and their
dispersion curves within a stack [7]. However, when aiming to simulate the behavior of
an in-plane arbitrarily shaped resonator, three-dimensional FEM simulations are manda-
tory [8]. Despite the accuracy of FEM simulations, it is worth noting that they demand
substantial memory and computational power, particularly for solidly mounted resonators
(SMRs) with complex layer configurations [8].

In order to model those lateral effects, finite element method (FEM) simulations are
mostly used. Two-dimensional simulations are performed to obtain a stack’s Lamb modes
and their dispersion curves [7]. However, when aiming to simulate the behavior of an in-
plane arbitrarily shaped resonator, three-dimensional FEM simulations are mandatory [8].
Despite the reliability of three-dimensional FEM simulations, the computational require-
ments are extremely heavy, especially for solidly mounted resonators (SMR) with many
layers in their stack [8].

Over the past decade, various models have been developed to address the challenges
associated with simulating spurious modes and their impact on second harmonic emissions
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(H2) in BAW filters. These models include Mason-based approaches [9–11] and analytical
solutions for two-dimensional simulations [12,13].

One advantage of these models is their computational efficiency compared to that of
the FEM. However, they are primarily suitable for modeling simple in-plane geometries.
The influence of these spurious modes on second harmonic emissions (H2) has been a
critical factor in BAW filter design, leading to the development of several models that
consider these lateral resonances [14–17]. Many of these models, however, rely on other
methods, e.g., fitting spurious resonances to a measurement, to determine the characteristics
of lateral resonances.

In a recent study [18], a two-dimensional scalar wave model was introduced to enable
the modeling of arbitrary in-plane geometries. This model uses the scalar wave equation to
determine the motional values for each mBVD branch. Additionally, in another publica-
tion [19], a model utilizing the transmission line matrix (TLM) method was demonstrated
by our group for modeling the lateral dimensions of a square SMR. This research expands
upon the previous work, allowing for the simulation of various in-plane geometries.

The primary objective of this article is to introduce a fast computational model capa-
ble of delivering consistent results across different types of BAW resonator technologies,
regardless of their in-plane geometry. To meet this objective, several essential criteria must
be fulfilled:

• The parameters used to model the dispersive behavior of the resonator must be
independent of the resonator’s in-plane geometry;

• The model should adopt a discretized approach focusing solely on the lateral dimen-
sions to minimize the number of unknowns;

• The model must be adaptable to simulate multi-layered structures, even though it
models only the lateral dimensions.

Using the TLM method and extracting stack-dependent variables, including dispersive
behavior, our proposed model can calculate the in-plane field distribution of particle
velocities. This distribution is instrumental in determining the input impedance of BAW
devices with varying in-plane geometries.

The article is structured as follows. In Section 2, a brief overview of Lamb waves and
their equivalent transmission lines is given to the reader. The curve fitting of the required
dispersive curve is discussed and compared with the one provided for 2D FEM simulations
of FBAR and SMR resonators.

The model for two-dimensional resonators is presented in Section 3. The results are
then compared with 2D FEM simulations of film bulk acoustic resonators (FBARs) and
SMRs. In Section 4, the work is expanded to the third dimension and compared with 3D
FEM simulations and measurements of SMRs.

2. Lamb Waves and Their Equivalent Transmission Line

On a homogeneous isotropic plate, longitudinal (L) and transverse vertical (TV) waves
are sagittal-polarized and propagate along the lateral dimensions. On plate-free surfaces,
both waves are coupled, thus generating a set of dispersive modes [20].

2.1. Lamb Waves

The displacement distribution of a plate with a thickness, t, defined in the z direction,
that is infinite in the y direction, and a wave propagating in the x direction becomes the
following [20]:

ux = (qA cos(qz)− jkB cos(pz))e∓jkx

uz = (jkA sin(qz)− pB sin(pz))e∓jkx,
(1)
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where p and q are, respectively, defined as p2 = ω2/VL
2 − k2 and q2 = ω2/VT

2 − k2, VL and
VT being the phase velocities of the longitudinal and transverse vertical waves, respectively.
The wavenumber (k) of the Lamb wave will follow the Rayleigh–Lamb equation:

ω4

V4
T
= 4q2k2

(
1− p tan(pt/2 + α)

q tan(qt/2 + α)

)
. (2)

where the constant α becomes zero for symmetric modes and π/2 for antisymmetric ones.
Antisymmetric modes do not couple to the electric response of BAW resonators [4], so they
are not going to be considered in this work.

Equation (2) is the dispersion relation of the propagating wave. The dispersion relation
for a Lamb wave has no analytical solution and numerical methods like FEM are needed to
solve it [7]. In Figure 1, the dispersion curves of a ZnO piezoelectric membrane exhibiting
Type I dispersion are calculated with COMSOL.
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Figure 1. Dispersion curves of a 1.74 µm thickness ZnO plate. The curves for two symmetric modes
TE1, TS2, and the evanescent mode, between their cutoff frequencies, are labeled on the plot.

The TE1 mode is the one responsible for the lateral resonances on a BAW resonator [4].
In an infinite plate, the TE1 mode propagates along the lateral dimensions, but on a BAW
resonator, the acoustic energy is confined in the electrode region [21]. The reflection of the
acoustic waves on the lateral boundaries generates the lateral resonances that appear on
the resonator’s impedance [4].

2.2. Field Magnitudes of the TE1 Mode

For low wavenumbers (k~0), and with TE1 being the first odd symmetric mode (A~0),
its displacements become the following [20]:

ux ≈ 0; uz = −pB sin(pz)e∓jkx. (3)

The tangential stress, Txz, will have the same distribution on the thickness direction
than the displacement, uz:

Txz = c55(±jkpB) sin(pz)e∓jkx, (4)

where c55 is one of the constants of the material stiffness tensor.
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The field magnitudes uz and Txz are the ones that determine the propagating modes
that laterally resonate, generating the spurious resonances that can be modeled using the
TLM method.

2.2.1. Equivalent Transmission Line

An electrical analogy of the acoustic wave is used to develop a transmission line
model [19]. The equivalences between acoustic and electric transmission lines relate the
mechanical force (F) with the electric voltage (V), and the particle velocity (vz) with the
electric current intensity (I).

The conventional transmission line for modeling the TE1 mode is a two-port Π-
network (Figure 2) with

Zs = jZ0 · sin(βl) (5)

Zp = −jZ0
1

tan(βl/2)
, (6)

where l is the physical length of the transmission line. The phase constant (β) and the
characteristic impedance (Z0) need to be defined for the TE1 mode.

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 16 
 

 

( ) ( )55 sin ,jkx
xzT c jkpB pz e= ±   (4) 

where c55 is one of the constants of the material stiffness tensor. 
The field magnitudes uz and Txz are the ones that determine the propagating modes 

that laterally resonate, generating the spurious resonances that can be modeled using the 
TLM method. 

2.2.1. Equivalent Transmission Line 
An electrical analogy of the acoustic wave is used to develop a transmission line 

model [19]. The equivalences between acoustic and electric transmission lines relate the 
mechanical force (F) with the electric voltage (V), and the particle velocity (vz) with the 
electric current intensity (I).  

The conventional transmission line for modeling the TE1 mode is a two-port Π-net-
work (Figure 2) with 

( )0 sinsZ jZ lβ= ⋅  (5) 

( )0
1 ,

tan 2pZ jZ
lβ

= −  (6) 

where l is the physical length of the transmission line. The phase constant (β) and the 
characteristic impedance (Z0) need to be defined for the TE1 mode. 

 
Figure 2. Two-port Π-network for a transmission line. 

2.2.2. Phase Constant 
In order to model the dispersive behavior of the TE1 mode, the phase constant needs 

to satisfy the Rayleigh–Lamb relation (2), so β = k. An analytic expression can be approxi-
mated to the precomputed dispersion curve for Type I resonators [9]: 

( )1/

001
2 ,

rr r

lamb

f f
c

πβ = −  (7) 

where the exponent r is close to 2, the constant clamb is the estimated wave velocity of the 
mode, and f001 is the cut-off frequency of the TE1 mode, the so-called piston mode.  

The subscript 001 indicates the number of half-wavelengths in the directions x, y, and 
z. Here, the 0 subscript indicates that the fields are uniform in the x and y directions, while 
the 1 subscript indicates half-wavelength on the thickness direction. The constants, clamb, r 
and f001, are fitted to the measured or pre-calculated dispersion curve given a resonator’s 
stack (Figure 3). 

For a rectangular resonator, one can find the resonating frequency of each mode as 
follows [9]: 

Figure 2. Two-port Π-network for a transmission line.

2.2.2. Phase Constant

In order to model the dispersive behavior of the TE1 mode, the phase constant needs to
satisfy the Rayleigh–Lamb relation (2), so β = k. An analytic expression can be approximated
to the precomputed dispersion curve for Type I resonators [9]:

β =
2π

clamb
( f r − f r

001)
1/r, (7)

where the exponent r is close to 2, the constant clamb is the estimated wave velocity of the
mode, and f 001 is the cut-off frequency of the TE1 mode, the so-called piston mode.

The subscript 001 indicates the number of half-wavelengths in the directions x, y, and
z. Here, the 0 subscript indicates that the fields are uniform in the x and y directions, while
the 1 subscript indicates half-wavelength on the thickness direction. The constants, clamb, r
and f 001, are fitted to the measured or pre-calculated dispersion curve given a resonator’s
stack (Figure 3).
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For a rectangular resonator, one can find the resonating frequency of each mode as
follows [9]:

f r
mn1 =

(
clamb

m
2a

)r
+
(

clamb
n
2b

)r
+ ( f001)

r, (8)

where a and b correspond to the lateral dimension of the resonator. Here, the subscripts
m and n (m, n = 1, 2, 3. . .) indicate the number of half-wavelengths of the mode in each
lateral dimension.

2.2.3. Characteristic Impedance

For a wave propagating in an acoustic transmission line, the characteristic impedance
will relate the force (Fz) and the particle velocity (vz) as [19] follows:

Fz = Z0 · vz, (9)

Fz =
∫

V

∂Txz

∂x
dV = Txz Atb, (10)

where Atb is the resonator’s cross-sectional area. Applying (3) and (4) with the definitions
above, the characteristic impedance for the TE1 results in the following:

Z0 =
1
ω

βc55 Atb. (11)

2.2.4. Low-Loss Transmission Line

Losses are introduced in the model by means of a complex propagation constant
(γ = α + jβ), where α and β are the attenuation constant and the phase constant, respectively.
Assuming that α << β, the Z0 and the phase constant remains the same as that in the
lossless case.

3. Quasi-2D Model

In a two-dimensional resonator in the xz plane, as outlined in Figure 4a, the Lamb
wave propagates in the x direction. The lateral dimension, a, is discretized in Nx elements
of length dx.
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3.1. Unit Cell

Each of the unit cells is modeled with the dispersive transmission line in Figure 2.
Since we are using nodal Y matrices, in order to implement the stress-free lateral boundary
conditions (see Section 3.2, below) [19], it is more convenient to invert the typical equiva-
lences between electric and acoustic magnitudes. This means defining V as velocities and I
as forces. Then, Z0 of the transmission line is defined as the inverse of the following (11):

Z′0 = akz
ω

β · c44 · Atb
, (12)

Here, akz acts as a scaling factor to adjust resonator coupling. This is required because
the displacement field (3) is a simplification obtained from the Lamb wave equations for
non-piezoelectric isotropic plates [9].

The equivalent circuit of a unit cell of the TL is depicted in Figure 4b, where the values
of the Π network are now as follows:

Zs = Z′0 · sinh(γ · dx) (13)

Zp = Z′0
1

tanh(γ · dx/2)
(14)

dx = a/Nx. (15)

The propagation along the lateral dimension of the resonator is modeled cascading
several unit cells.

3.2. Lateral Boundary Conditions

In an ideal resonator, the acoustic wave is reflected at its lateral edges, thus generating
each of the lateral spurious resonances.

3.2.1. Free Stress

The velocity, vz, at the boundaries will be zero, implying the full reflection of the
acoustic waves at the lateral interfaces. To impose this boundary condition, the lateral
transmission lines are ended with a short circuit. This way, the voltage at the end of the
lines becomes zero.
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3.2.2. Lateral Leakage

Acoustic energy may leak out of the resonator’s active area. This effect is called lateral
leakage and degenerates the Q factor around the antiresonance frequency [4]. If required,
this effect can be modeled adding a conductance to the ends of the transmission line.

3.3. Model Implementation

Applying an electric potential (U) on the resonator electrodes, a constant, Fz, is gener-
ated along the resonator’s lateral dimension [22,23]. Due to the impedance inversion, it is
modeled as distributed current sources (Isource) at each cell node as follows:

Isource = e · dx · b/t ·U, (16)

where e is the piezoelectric constant for the piston mode, b is the lateral dimension on the y
axis, and t is the thickness between the electrodes.

The distributed transmission line will be assembled in a nodal Y matrix made of
(13) and (14). This matrix will have the dimension N × N, and will be excited with the
current sources (16):

Ys + Yp −Ys 0 0
. . .

−Ys Ys + 2 ·Yp −Ys
. . . 0

0 −Ys
. . . −Ys 0

0
. . . −Ys Ys + 2 ·Yp −Ys

. . . 0 0 −Ys Ys + Yp


·


V1

...

VN

 =


Isource

...

Isource

. (17)

Once the system is solved, the velocities, vz, are obtained for each node along the
lateral dimension, a. As a result, electrical current intensity, I, is generated between the
electrodes due to each electromechanical contribution, as follows:

I = (e · dx · b/t) ·
N

∑
1

vz(n), (18)

and the acoustic contribution of the resonator’s admittance is found using (19):

Ylat = I/U. (19)

To obtain the total resonator impedance, the static capacitance (C0) and the series
resistance (Rs) to model the Ohmic losses on the electrode [24] are included, resulting in
the following:

Zin = Rs +
1

Ylat + jωC0
. (20)

3.4. Comparison with FEM Simulations

A simple ZNO membrane of a thickness of 1.74 µm and with a lateral dimension a
equal to 80 µm is simulated in 2D using COMSOL. Losses are kept artificially low to achieve
more pronounced spurious modes. The dispersive curves of the membrane are obtained
with COMSOL following the procedure described in [7], and the curve corresponding to
the TE1 mode is fitted using the function described in (7) as is shown in Figure 3.

Using the obtained dispersive phase constant, with f 001 = 1.787 GHz, clamb = 6745, and
r = 1.955, the lateral dimension of the resonator is modeled with Nx = 80. This level of
discretization is enough to ensure the convergence of the model for these resonators. The
boundary conditions are set on the two extremes of the lateral line, shorting the nodes of
the Y matrix that correspond to the boundaries. We refer to these kinds of simulations as
quasi-2D simulations, since we are modeling only propagation in one direction, and the
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characteristics of the propagation mode along the thickness direction are considered using
the dispersive phase constant and the associated characteristic impedance of the TE1 mode.

Figure 5a shows the fitting of the quasi-2D model to the FEM simulation. The scaling
of the characteristic impedance was fine-tuned with akz = 0.9. This can be justifiable because
the characteristic impedance was derived for an isotropic layer. The electric permittivity
(εr) and the piezoelectric constant are the same than that provided by COMSOL for ZnO.
The attenuation constant of the dispersive line was set to α = 2000 Np/m.
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The model was also tested simulating an AlN SMR resonator. FEM 2D simulations
were performed with realistic losses in all layers in this case. The resonator has a top
electrode comprising Al, W layers, a SiN passivation layer, a bottom electrode of W and Al
layers, and a Bragg reflector comprising alternating SiO2 and W layers on a Si substrate. Its
series resonance is around 2.48 GHz, and the k2

eff is about 6.8%.
The dispersion curve was fitted with f 001 = 2.48 GHz, clamb = 5740, and r = 2.05,

and the attenuation constant was tuned to α = 7800 Np/m. FEM simulations unveiled
displacements outside the active area at frequencies near the antiresonance frequency.
These losses (lateral leakage) were modeled with a conductance of 0.3 mS connected at the
boundary nodes. The fitting of the Quasi-2D model can be seen in Figure 5b. In this case,
the characteristic impedance was scaled using akz = 0.5.

4. Quasi-3D Model

The Quasi-2D model can be extended to the other in-plane dimension using the
transmission line matrix (TLM) method [25–27]. We refer to this model as Quasi-3D model.
The TLM method appears as a discrete implementation of Huygens’ principle, where the
waves propagate along a mesh of transmission lines connected by nodes (Figure 6a) [25].
When a node of the TLM mesh is excited, the energy spreads isotropically from the excited
node. All the scattered fields along the mesh combine to form the overall waveform.

4.1. Unit Cell

To add the other dimension, an additional transmission line is added. The new
transmission line will have the same dispersive behavior, and the length of the lateral
dimension, b, will be discretized in Ny elements of length dy = b/Ny. The cross-sectional
area will be different for each propagating direction. It ends up being Atb = dy·t for the x
direction, and Ata = dx·t for the y direction. Note that this would allow the simulation of
resonators with non-uniform shapes.

In Figure 6b, four nodes of the TLM mesh are shown. The impedances for each
dimension are calculated considering dx, dy, and the different cross-sectional areas.
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4.2. Losses and Boundary Conditions

Losses and boundary conditions are set as in the Quasi-2D model. A complex propaga-
tion constant is used in each propagation direction, and all the boundary nodes are shorted;
if not, lateral leakage is considered or otherwise set with the correspondent conductance.

4.3. Implementation of the Model

The resulting nodal Y matrix has a size of (Nx·Ny)2, where Nx and Ny are the number of
discretizations along the x and y direction, respectively. The node numbering is illustrated
in Figure 6b for the sake of clarity.

The linear system of equations, an extended version of (17) will be solved. However,
note that the excitation will be slightly different than the one described in (16), since now
we must consider the discretization of the y direction (dy), which results in the following:

Isource = e · dx · dy/t ·U. (21)

Once the linear system is solved, the electric current generated between the electrodes
is calculated as follows:

I = (e · dx · dy/t) ·
N

∑
1

vz(n). (22)

Finally, the electric input impedance of the resonator is calculated using (20), as is
carried out for the quasi-2D model.

4.4. Quasi-3D Model vs. 3D FEM Simulations

A 3D ZnO membrane with the same thickness as that in the 2D case was simulated
using COMSOL 6.0. Three different resonators with different in-plane geometries were
simulated: a square resonator with an area of 80 × 80 µm2, a rectangular resonator with an
area of 80 × 100 µm2, and a trapezoidal resonator with a height of 80 µm and two bases
with heights of 40 µm and 80 µm, respectively. Losses are artificially kept much lower than
those in a real resonator to show highly coupled modes.

The phase constant and characteristic impedance of the TE1 mode remains the same
as that previously used in the quasi-2D model (f 001 = 1.787 GHz, clamb = 6745, r = 1.955,
akz = 0.9, and α = 2000 Np/m) as they are assumed to be characteristics of the stack. The
stress-free lateral boundary conditions are applied at each edge node.
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Figure 7a,b show the electrical input impedances for the square and rectangular
resonators, respectively.
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Figure 7. (a) Magnitude and phase of the impedance of the 3D FEM ZnO square resonator (blue), and
the quasi-3D model (red); (b) magnitude and phase of the impedance of the 3D FEM ZnO rectangular
resonator (blue), and the quasi-3D model (red); (c) standing wave pattern of |vz| at the frequency
of mode 311 and 131 in the square resonator; (d) standing wave pattern of |vz| at the frequency of
mode 311 in the rectangular resonator.

Comparing Figures 5a and 7a, one can notice that although both are for the same square
resonator, the latter has additional spurious modes. In the 2D model, constant displacement
in the y direction of the resonator was assumed, and only m01 modes were simulated,
in both the FEM simulation and the quasi-2D model. Adding the extra dimension, y,
allowed the simulation of mn1 modes with an n different to zero. Those are the additional
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spurious modes that appear in Figure 7a. In a square resonator, since a = b, mn1 and the nm1
are degenerated modes, meaning that they occur at the same frequency. As an example,
Figure 7c shows the resulting standing wave pattern of vz of the modes sharing the same
frequency, modes 311 and 131.

Notice that the rectangular resonator (Figure 7b) shows more spurious modes, since
a 6= b, and therefore, the mn1 and the nm1 modes do not fall at the same frequency. In
this case, and just for illustrative purposes, Figure 7c shows the vz of mode 311, showing
three half wavelengths in the x direction and one in the y direction.

The electrical impedance of a trapezoidal resonator is shown in Figure 8a. The quasi-
3D model shows good agreement with FEM modeling. The number of discretization has to
be increased from that of 80 × 80 used on the square and rectangular resonator to that of
180 × 180 to achieve convergence.
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The first four resonant modes of the trapezoidal resonator can be observed in Figure 8b.
The fundamental mode and the ones exhibiting three half-wavelengths in the larger di-
mensions can be clearly identified. The other mode cannot be defined as is usually carried
out in rectangular resonators since it is a combination of the scatterings produced at the
non-parallel interfaces.

4.5. Computational Time

Since the thickness dimension of the resonator does not have to be simulated, the
number of DoFs is significantly reduced.

The computational time for both the FEM simulations and for our proposed model
are presented in Table 1. They were calculated using the same number of frequencies and
achieved mesh convergence in both cases.
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Table 1. Comparison of computational times between FEM and the proposed models.

Simulation FEM (Time [DoF]) Quasi-2(3)D Model (Time [DoF])

ZnO membrane 2D
( 1

2 symmetry) 3 min 22 s [9300] 0.134 s [80]

SMR 2D
( 1

2 symmetry) 11 min 4 s [163,391] 0.134 s [80]

ZnO membrane 3D
( 1

4 symmetry) 1 h 52 min [215,628] 42 s [6400]

ZnO trapezoidal 3D
( 1

2 symmetry)
2 h 55 min
[630,752] 4 min 52 s [32,400]

For the quasi-2(3)D model, an additional FEM simulation needs to be performed to
obtain the stack characteristics. However, a 2D simulation of around 100 frequency points
is enough to obtain the dispersive curve and electromechanical coupling.

The computational time is reduced by several orders of magnitude between the FEM
and the TLM. The 2D SMR case shows a higher reduction due to the increase in DoFs in the
FEM simulations. This is mainly due to the discretization along the thickness dimension
with many layers involved. Although the number of unknowns for modeling any arbitrary
electrode shape, like the trapezoidal one, is increased, the time needed to perform the
quasi-3D simulation continues to be much lower than that required for FEM simulations.

Note that, as can be seen in Table 1, the number of unknowns is independent of the
resonator layers, making this method very suitable when working with SMR, since the
same number of nodes are needed as that for the FBARs.

We want to outline that the performance of the quasi-3D method has room to be up-
graded, since 90% of the computational time in Matlab was taken by the assembling
of the Y matrices. In addition, any symmetry was considered when using the TLM
model;meanwhile, in FEM simulations, symmetries where used when possible to reduce
the amount of computational resources needed. The symmetry strategy is also noted in
Table 1.

5. Evaluation of Quasi-3D Simulations and Measurement Results

Four different SMR measurements were provided by the manufacturer of the devices
for validating the model. The resonators have the same stack composition as does the FEM-
simulated SMR. The resonators are made of two different areas (6400 µm2 and 12,900 µm2),
and two different aspect ratios (1 and 2).

The dispersion curve was fitted with f 001 = 2.48 GHz, clamb = 5180, and r = 2.2. However,
the cut-off frequency of each resonator was slightly tuned (in the order of 100 ppm) to
consider the tolerances of each resonator’s layers. The other material constants were
adjusted to e = 1.51, and εr = 9.8.

The propagation constant was set to α = 7800 Np/m, and lateral leakage was modeled
by means of a conductance in the lateral boundaries. Since in a 3D geometry the lateral
boundaries are discretized by Nx and Ny, the conductance connected at each node will
be also divided by Nx or Ny. The conductance value used to fit the four resonators was
0.3/Ni mS.

Figure 9 displays the fitting of the quasi-3D model to four different measurements. The
model exhibits strong agreement with the measurements near the fundamental frequency
but displays slight deviations near the antiresonance. These deviations can likely be
attributed to minor tolerances within each resonator stack, which prevent a single curve
from precisely matching that of all four of the different resonators.

The computational time required for quasi-3D SMR simulations is the same as that for
FBARs (refer to Table 1).
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Figure 9. (a) Magnitude and phase of the impedance of the measured square SMR (A = 6400 µm2)
(blue), and the quasi-3D model (red); (b) magnitude and phase of the Impedance of the measured
square SMR (A = 12,900 µm2) (blue), and the quasi-3D model (red); (c) magnitude and phase of the
impedance of for the measured rectangular SMR (A = 6400 µm2) (blue), and the quasi-3D model (red);
(d) magnitude and phase of the impedance of for the measured rectangular SMR (A = 12,900 µm2).

6. Conclusions

The validity of the TLM method for BAW devices was demonstrated through ex-
haustive comparisons with FEM simulations, including both 2D-FEM simulations and
3D-FEM simulations. These FEM simulations were performed using a commercial software,
COMSOL Multiphysics 6.0, which is a FEM software widely used by stack developers and
designers of electro-acoustic devices.

Our proposed method offers a significantly faster computational time compared with
that of the traditional methods such as FEM. This faster computational time streamlines the
design process for BAW resonators, particularly by enabling the rapid simulation of lateral
modes. The key concept is that by capturing the dispersive propagation constants of Lamb
wave modes, either through 2D-FEM simulations or actual measurements of test resonators
(typically square or rectangular in shape), we can include this dispersive characteristic
(defined by the stack of materials) in transmission lines. The TLM method discretizes these
lines solely in the in-plane direction.

The TLM method has been applied to electromagnetic cavities for many years with the
capability to handle various geometries. Its application in acoustics is promising, providing
designers the ability to run optimizers in search of geometries that minimize the impact of
spurious modes.

Our method is implemented through a nodal Y matrix, creating a system of linear
equations that can be solved using any standard software. The primary limitation is that
the analysis is restricted to only one propagating mode, in this case the TE1 mode of the
resonator, which is the main responsible for the spurious resonances on BAW devices.

When simulating apodized in-plane geometries, other limitations are found at the
boundaries. Since we assume rectangular unit-cells, the boundaries at oblique edges are
defined as step-by-step edges. This implies performing the simulations with a finer mesh
that the one that would be required for rectangular resonators, for example. This could
be improved using adaptive meshes that are finer at the edges and coarser at the central
part of the resonators. This improvement has not been achieved yet, since this article is a
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proof-of-concept of the method. Nevertheless, it outperforms FEM simulations in terms
of computational resources. Ensuring that the application of the TLM method to BAW
resonators is promising and can provide designers the ability to run optimizers to find a
better geometry that reduces the effect of the spurious modes.

The authors are currently in the process of implementing this method for modeling
non-homogenous electrode BAW devices, i.e., resonators with a border ring. The ability to
predict the cancellation of these spurious modes could also help to reduce the iterations of
manufacturing test resonators with optimum in-plane geometries.

We anticipate that this approach could also be explored for simulating other types of
acoustic resonators, including leaky SAW, TC-SAW, X-BAR, and others where lateral reso-
nances are a factor. Naturally, dispersive curves should be calculated, and electroacoustic
coupling should be defined accordingly.
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