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Abstract: The scientific community has been looking for novel approaches to develop nanostructures
inspired by nature. However, due to the complicated processes involved, controlling the height of
these nanostructures is challenging. Nanoscale capillary force lithography (CFL) is one way to use
a photopolymer and alter its properties by exposing it to ultraviolet radiation. Nonetheless, the
working mechanism of CFL is not fully understood due to a lack of enough information and first
principles. One of these obscure behaviors is the sudden jump phenomenon—the sudden change in
the height of the photopolymer depending on the UV exposure time and height of nano-grating (based
on experimental data). This paper uses known physical principles alongside artificial intelligence
to uncover the unknown physical principles responsible for the sudden jump phenomenon. The
results showed promising results in identifying air diffusivity, dynamic viscosity, surface tension, and
electric potential as the previously unknown physical principles that collectively explain the sudden
jump phenomenon.

Keywords: nano capillary lithography; nano-grating; transparent machine learning; Bayesian
evolutionary algorithm; hybrid intelligence

1. Introduction

Nanoscale structures are found commonly in nature and serve various essential
functions. For instance, a chameleon’s skin contains nanoscale crystals, which allows
them to modify their appearance by adjusting their spacing. Learning from nature, modern
progress in nanotechnology is geared towards harnessing the potential of nanotextures
to perform a wide array of functions by manipulating the height of nano pixels [1–5].
Nanoscale capillary force lithography (CFL) is a nanofabrication technique that cures a
photopolymer using UV radiation [6] to create patterns and structures on the nanoscale.
CFL is gaining attention due to its high precision, potential for mass production, and
relatively low cost. However, the physical principles at play are still obscure. One observed
phenomenon in experiments is the sudden jump, where the height of the photopolymer
experiences a rapid change at a specific UV dose (Figure 1c) [6].

Several research studies have been carried out in this sphere to explain the capillary
behavior in nanochannels [7–10]. One intriguing phenomenon investigated is the Klingen-
berg effect [11] and its incorporation in gas flow through porous media [12–14]. One of the
most recent advances involved discovering the hidden rules that explain the sudden jump
phenomenon, with gas diffusivity, dynamic viscosity, and surface tension identified as the
previously obscure physical principles governing this phenomenon [15]. However, it could
not find the relationship between the height of the PDMS mold and its effect on the sudden
jump. This paper has attempted to overcome this drawback and explain the sudden rise
phenomenon for all heights of PDMS mold by combining physical principles alongside
artificial intelligence, known as “hybrid intelligence”. The hybrid intelligence approach is
explained in Figure 1.
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known parameters, which are included as input in our research. Step II consists of the known 

physical principles and their mathematical formulation. Steps I and II together make up human 

intelligence. Step III is the artificial intelligence, which includes a link function to identify the 

unknown physical phenomenon and Bayesian evolutionary algorithm; (e–h) Graphical 

representation of the recognized physical rules regarding surface tension (e), dynamic viscosity (f), 

electric (voltage) potential (g), and diffusivity of air molecules (h). 

Current machine-learning (ML) approaches [16–18] show promising outcomes [19–

21]. However, they are “black-box” models where the inner working of the model is not 

easily understandable or interpretable. Due to the inability of ML to unveil “transparent 

rules”, this paper applies hybrid intelligence, used in [15], to explain the sudden jump 
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and artificial intelligence to reveal the unknown physical rules (Figure 1d). On one hand, 

human intelligence draws upon fundamental physics, scientists’ observation, experience, 

and knowledge. Unknown terms that are beyond current human understanding are 

included in the formulation. On the other hand, artificial intelligence provides the search 

capabilities to identify the most promising expressions for these unknown rules [15]. 

Although this paper has its beginnings in [15], considerable advances have been 

made since. There are significant differences between this paper and [15]. Firstly, this 

paper focuses on nano-grating geometry, while [15] deals with circular nanopillars. This 
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Figure 1. (a) Basic physics terms and geometrical properties of the capillary rising in a nano-grating
and (b) their force equilibrium; (c) Height plots obtained from the rise of the same photopolymer
into nano-grating with varying maximum heights. All cases commonly exhibit the sudden jump
phenomena; (d) Architecture of the proposed hybrid intelligence approach. Step I includes the known
parameters, which are included as input in our research. Step II consists of the known physical
principles and their mathematical formulation. Steps I and II together make up human intelligence.
Step III is the artificial intelligence, which includes a link function to identify the unknown physical
phenomenon and Bayesian evolutionary algorithm; (e–h) Graphical representation of the recognized
physical rules regarding surface tension (e), dynamic viscosity (f), electric (voltage) potential (g), and
diffusivity of air molecules (h).

Current machine-learning (ML) approaches [16–18] show promising outcomes [19–21].
However, they are “black-box” models where the inner working of the model is not easily
understandable or interpretable. Due to the inability of ML to unveil “transparent rules”,
this paper applies hybrid intelligence, used in [15], to explain the sudden jump phenomenon
and its variation with PDMS height. Hybrid intelligence combines human and artificial
intelligence to reveal the unknown physical rules (Figure 1d). On one hand, human
intelligence draws upon fundamental physics, scientists’ observation, experience, and
knowledge. Unknown terms that are beyond current human understanding are included
in the formulation. On the other hand, artificial intelligence provides the search capabilities
to identify the most promising expressions for these unknown rules [15].

Although this paper has its beginnings in [15], considerable advances have been made
since. There are significant differences between this paper and [15]. Firstly, this paper fo-
cuses on nano-grating geometry, while [15] deals with circular nanopillars. This distinction
necessitates substantial adjustments in the formulation based on human intelligence. Sec-
ondly, this paper includes four different nano-grating heights, and we collectively employ
all four experiments for rule learning. In contrast, ref. [15] conducted rule learning using
just one nano-pillar experiment. Thirdly, this paper has made further advances to [15] by
incorporating electric potential difference as an additional physical process involved in the



Micromachines 2023, 14, 1984 3 of 16

capillary rise in the nano-grating, thus requiring expansion of the previous three physics
processes, i.e., dynamic viscosity, surface tension, and diffusivity [15].

This paper focuses on a few experiments (thus, small data) that commonly exhibit the
complex sudden jump phenomena. The fundamental difficulty stems from the small length
scale, time-varying salient properties (e.g., air pressure, air mass, diffusivity into porous
medium, dynamic viscosity, surface tension, and electric potential-dependent forces), and
the multi-physical phenomenon interactions during the nano capillary rising. Obtaining
large data sets is often difficult and expensive. Sometimes, internal data are intrinsically
inaccessible due to technological limitations such as the inability to monitor the liquid’s
behavior inside the nano-ridge during the capillary rise and to precisely measure the electric
charge inside the nano-ridge.

In our study, we observed four key phenomena that collectively contribute to the
explanation of the sudden jump phenomenon:

• Air diffusivity decreases as the rate of trapped air-mass transfer increases;
• The dynamic viscosity of the liquid increases upon exposure to UV radiation;
• Our results demonstrate that UV exposure leads to a reduction in the surface tension

of the liquid;
• The electric potential between the liquid and the PDMS mold decreases as the distance

between the liquid’s top surface and the bottom surface of the PDMS mold increases.

These observed phenomena collectively contribute to our understanding of the sudden
jump phenomenon, shedding light on the underlying physical principles at play in this
intriguing phenomenon.

2. Materials and Methods
2.1. Data Preparation

We assessed the topography of the printed nano-ridge array using atomic force mi-
croscopy (AFM) in tapping mode, employing highly doped silicon tips (NCHR, NanoWorld,
Neuchâtel, Switzerland). Comprehensive details regarding nanofabrication procedures
and AFM data acquisition are outside the scope of this paper and will be the subject of a
dedicated future publication. It should be noted that the total data points are artificially
increased for smooth training using interpolation when the trend drastically changes, such
as near the sudden jump region. Such regions show infinite slopes, which may cause
mathematical issues and difficulty fitting with smooth LFs (Figure 1c). For instance, in the
1.5 µm case, two points (x, y) = (15,600, 1.35) and (15,600, 0.679) showing the infinite slope
may be refined to five points (non-infinite slope) with additional points at (x, y) = (15,500,
1.35), (15,550, 1.18), (15,600, 1.0155), (15,650, 0.847), and (15,700, 0.679) using interpolation.
Since a simple interpolation generates the increased data points, the overall shape of the
experimental values does not change. All experimental data will be made available upon
request to the author.

2.2. Two Pillars of the Hybrid Intelligence—Human and Artificial Intelligences
2.2.1. Human Intelligence for Providing Basic Formulations with Basic Physics Quantities

The mathematical formulation used in this study is derived mainly from [15]. The
formulation that relates the PDMS mold’s height with sudden jump—the potential (voltage)
difference—is shown in the succeeding section. This section provides a comprehensive
formulation and terminology governing the principles of force equilibrium and mass
balance in the context of nano capillary rise.

1. Force equilibrium formulation

The ascent of a fluid within a vertical nano-ridge is determined using an interplay of
multiple force components, which can be expressed as follows: Fs − Fv − FP − Fg + Fe = 0.
Here, Fs denotes the capillary force driven by the liquid’s surface tension, Fv is the viscous
force that counteracts the liquid’s rise, FP is the force due to air pressure confined within the
nano-ridge [15], and Fg is the gravitational force. A new force term is introduced into the
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formulation by [15], Fe, which characterizes the electric potential-dependent force. Figure 2
illustrates the liquid’s height x(t) at time t. The individual force components are defined as
Fs = 2lσscos(θ), Fv = −12lx(t) µ

d
δx
δt [22], and Fp = d·l(P(t)− P(0)). For force due to electric

potential, we considered the pressure caused by the electric force, denoted as pe, which

is described in [23]. The exact formulation is given by: pe =
1
2 ε0

(
1
ε1
− 1

ε2

)[
ε1ε2U

ε1h+ε2(d−h)

]2
.

Here, ε0 is the permittivity of a vacuum, ε1 is the dielectric constant of air, ε2 is the dielectric
constant of the liquid, and U represents the applied potential difference. From this equation,
it is evident that the pressure is directly proportional to the square of potential difference
(pe ∝ U2) and inversely proportional to the square of (d− h) (pe ∝ 1

(d−h)2 ). However,

U, ε0, ε1, and ε2 are unknown quantities. As a result, we introduce a term, U(h), which
collectively accounts for the influence of these four variables. This leads to the establishment
of the simplified expression for pe as pe=

U(h)
(d−h)2 . So, Fe is the area on which the pressure

exerts times the pressure force. Therefore, Fe = d·l·U(h)
(h−x(t))2 , where all the unknown terms

are contained in U(h), which will be learned by machine learning later. While we did not
consider curvature for electric forces in this study, we agree that it is an important factor.
We plan to include it in our future research to increase accuracy. Here, l is the length of
the nano-ridge, σ(Uv) [N/m] is the surface tension of the liquid (initial value = 0.04 N/m)
which depends on the total UV dose (Uv) [ J

m2 ], θ [deg] is the contact angle between the
liquid and the nano-ridge (75 degrees), µ(Uv) [ Ns

m2 ] is the Uv-dependent dynamic viscosity
of the liquid (initial value = 0.4 Ns

m2 ), dx
dt is the average velocity of the rise of the liquid, d is the

distance between two walls of the nano-ridge (1500 nm), P(t) [ N
m2 ] is the pressure at time t

of the confined air, P(0), the initial air pressure, is assumed to be the atmospheric pressure
(101,325 Pa), and g is the acceleration due to gravity. It is worth noting that the gravitational
force is substantially smaller in magnitude compared to the other terms, rendering it
negligible in the subsequent consideration. We arrive at the following expression upon
incorporating all these force components into the equilibrium equation. It needs to be noted
that while the formulation method is similar to [15], the following formulation differs in
the geometry and inclusion of the electric force.
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Figure 2. 3D view of a single nano-ridge with pressure boundary conditions and geometry.

2lσscos(θ)− 12lx(t)
µ

d
δx
δt
− d·l·(P(t)− P(0)) +

d·l·U(h)

(h− x(t))2 = 0. (1)

Applying the ideal gas law to the air confined within the pressure term can be ex-
pressed in the following manner: P(t) = m(t)

Mdl(h−x(t))RT and P(0) = m(0)
Mdlh RT, where m(t)

[kg] is the mass of confined air at time t, R is the universal gas constant (8.3144 J/mol/K),
T [K] is the absolute temperature (78 K), and M [kg/mol] is the molar mass of the confined
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air (0.02897 kg/mol). Substituting the pressure expressions into the equilibrium equation,
we can derive the equation governing the velocity of the liquid’s ascent as follows:

δx
δt

=
σ(Uv)dcos(θ)
6µ(Uv)x(t)

− RTd
12µ(Uv)lMx(t)

(
m(t)

h− x(t)
− m(0)

h

)
+

d2U(h)
12µ(Uv)x(t)(h− x(t))2 (2)

where m(t) is the mass of trapped gas at time t, h is the total height of the capillary
(1090 nm, 1500 nm, 2000 nm, and 2500 nm), m(0) is the initial mass of the trapped gas,
and U(h) is a link function to account for the voltage (potential) difference and dielectric
constants, which will be learned by the proposed machine-learning method.

The time required for the liquid to rise to height (h) when the nano-ridge is open-ended

(i.e., no cap) can derived by trise=
∫ h

0

(
dx
dt

)−1
ds = 3µh2

σdcos(θ) [15].

2. Mass balance formulation

As air is trapped within the nano-ridge, it will gradually decrease due to diffusion into
nanopores within the PDMS mold. To establish the rate of change of mass of the trapped
gas, we can derive it from the mass balance equation as follows [15]:

δm
δt

=
−DdKH A(t)

lcr

RT
d·l

(
m(t)

h− x(t)
− m(0)

h

)
(3)

where Dd is the coefficient of diffusion, KH is Henry’s constant, A(t) = d·l + 2l(h− x(t))
is the area through which diffusion takes place, and the distance at which the air pressure
diffuses is taken as lcr. Here , lcr is the nanopore pressure critical length [m] measured from
the nano-ridge’s wall. At lcr, the internal pore pressure becomes p0 = P(0) (Figure 2). In
this work lcr is assumed to be constant at 10h. DK

(
dm
dt

)
≡ DdKH is a function of the air

mass flux rate whose initial value is 1× 10−12 mol·s/kg. Dd is the diffusion coefficient
of the air into PDMS pores. This study posits that a sudden surge in airflow into PDMS
nanopores can impede air diffusion within these nanopores, much like a traffic jam can be
caused by a sudden increase in traffic volume at a fixed intersection. Figure 1h illustrates
this physical rationale schematically. Obtaining accurate time-varying models for Dd and
KH separately can be challenging. Therefore, this study employs a glass-box approach to
identify the combined effect of Dd and KH , represented as DK. The rise in height, mass,
and time are normalized as

x
(
t
)
=

x(t)
h

; m
(
t
)
=

m (t)
m(0)

; t =
t

trise
. (4)

Thus, normalized force equilibrium and mass balance equations are given as

δx
δt

=
1

2x
(
t
) − α

2

(
m
(
t
)
− 1 + x

(
t
)

x
(
t
)(

1− x
(
t
)) )+

γ

x
(
t
)(

1− x
(
t
))2 (5)

and
δm
δt

= −β

(
1 +

2h
d
(
1− x

(
t
)))( m

(
t
)
− 1 + x

(
t
)(

1− x
(
t
)) )

. (6)

To simplify and condense the equations above, we introduce additional coefficients
α, β, and γ. Here, α = P(0)d

2σcos(θ) , β = 3µDdKH RTh
dσcos(θ)lcr

, γ = U(h)d
4σh2cos(θ) , and DdKH is a function

of δm
δt .

To this point, human intelligence mathematically formulates the liquid rise velocity
and the mass rate in the presence of physics quantities. But they are not complete. Those
physics-driven formulations inevitably contain several unknown terms, of which rules need
to be tackled by artificial intelligence, as described in the following section. The physical
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phenomena under consideration and the corresponding link functions are summarized
in Table 1.

Table 1. Summary of physical phenomena and the LF used to identify them.

Unknown
Physics Term

Function
Argument Physical Meaning Best Identified LF

DdKH
dm
dt

Diffusivity of trapped air into PDMS pores 2-parameter exponential function
(exp (c1xc2 ))

µ UV Dynamic viscosity of the liquid 2-parameter exponential function
(exp (c1xc2 ))

σ UV Surface tension of the liquid 2-parameter exponential function
(exp (c1xc2 ))

U h

Potential (voltage) difference between the
lower surface of PDMS and the upper

surface of the liquid and dielectric constants
of the materials

3-parameter 2nd-order polynomial
function

(
c1x2 + c2x + c3

)

2.2.2. Artificial Intelligence for Exploring and Searching Hidden Rules

1. Flexible link functions

The search for transparent link functions (LFs) is conducted using the Bayesian evolu-
tionary algorithm. For the effective utilization of LF (L), the input arguments have been
normalized to the range [0, 1]. As in [15], the relationship between the UV dose and the
terms σ and µ is related as σ(Uv) = σ0Lσ

(
Uv;θσ

)
and µ(Uv) = µ0Lµ

(
Uv;θµ

)
, where σ0

and µ0 are the surface tension and the dynamic viscosity of the liquid in the absence of UV
exposure, respectively. The UV dose is normalized as Uv = Uv/36, 000

[
J/m2] ∈ R[0, 1).

θ is the free parameter vector, which is learned using the Bayesian algorithm. The initial
values of σ0 = 0.04 N/m and µ0 = 0.4 N·s/m2 is assumed for the study. The function

DK

(
dm
dt

)
= DK0LDK

(
max
∀t

[
dm
dt

]
;θDK

)
is used to describe the maximum flux rate over time,

where DK0 is the initial value of DdKH , and this study assumed DdKH = 1× 10−12.
A relationship between the normalized height of grating (h) and the physics term U

will be related by function as U
(

h
)
= U0LU

(
h; θU

)
, where h is normalized as h

10−6 . In this

study, the initial value of U0 is assumed 2× 10−8. LU is a link function used to account for
the potential (voltage) difference and dielectric constants.

A general two-parameter exponential LF [24–28], i.e., two-parameter exponential LF
with the form L(x) = exp(c1xc2), was chosen (Figure 3) for surface tension, dynamic
viscosity, and diffusivity of air. To include the effect of electric force based on [23], a second-
order polynomial LF of the form L(x) = c1x2 + c2x + c3 was chosen among a few choices.
The rationale for this selection of the LF is presented in the discussion section later.

2. Bayesian evolutionary algorithm

This paper has employed a fusion of the genetic algorithm’s fitness-proportionate
probability (FPP) rule and the Bayesian update scheme to ensure seamless rule learning.
Following the FPP rule, the likelihood of an organism (denoted as “o”) from the present
generation being chosen for the subsequent generation is directly related to its fitness score
(F ) where organism “o” is a distinct manifestation of free parameters

(
Θ =

{
θ1, . . . , θnrule

})
within all concealed rules. The fitness score (F ) is given by F (s) = (1 + Err(s))−1 where

Err(s) = n−1∑n
i

(
x(i)real−x(i)pred

)2

(
x(i)real

)2 . A reduced error corresponds to increased fitness. The fitness

score of the previous best generation and the collection of all the free parameter sets Θ

from the same generation are represented as F ∗(o) and O∗(Θ), respectively. Since each
Θ can be uniquely represented by an organism, the interchangeability of organism and
Θ is established: p(o) ∝ F (o), equivalently p(Θ) ∝ F (o). Subsequently, the Bayesian
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fitness score of a novel individual organism (denoted as FB(o)) is formulated as FB(o) =
1
κ
F (o; O∗(Θ))F ∗(o)

∑∀o F ∗(o)
where κ = ∑∀o

F (o; O∗(Θ))F ∗(o)
∑∀o F ∗(o)

is a normalization term. The probability of
parent selection for the upcoming generation is denoted as p(parenti | o) ∝ FB(o), (i = 1, 2).
Consequently, all the identified LFs can seamlessly evolve with new experimental data.
Within the Bayesian evolutionary framework, a cumulative count of 100,000 organisms
and 10 generations are employed, encompassing four alleles for every gene. The mutation
mechanism operates per-variable, with a mutation rate of 0.005.
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Figure 3. Example plots of the two-parameter exponential link function: general nonlinear increasing
relations (a,b) and decreasing relations (c,d) where L(x) = exp(c1xc2 ).

We can anticipate whether L(x) will rise or fall using human intelligence. Figure 3
provides us with cues to deduce the signs of c1 and c2. Subsequently, we initiated our
exploration within a broad interval. In our specific case, the initial ranges for c1, c2, and c3
were set to a wide search range (ranging from −10 to +10). During the training process, we
progressively narrowed down our search ranges using a technique known as the shrinking
search range method, ultimately establishing our final search ranges. Therefore, hybrid
intelligence found the best-performing search ranges c1 ∈ [−8,−6] and c2 ∈ [0, 10] for
LFs of diffusivity, c1 ∈ [8, 10] and c2 ∈ [0, 10] for LFs of dynamic viscosity, c1 ∈ [−6,−4]
and c2 ∈ [0, 10] for LFs of surface tension, and for LF of potential (voltage) difference,
c1 ∈ [0, 0.15], c2 ∈ [−0.4, 0], and c3 ∈ [0, 1.3].

The model was trained using the Bayesian update, which updates free parameters (Θ)
with each experimental case, subsequently following the order presented in Figure 4. In our
model, we set ntest = 4 and nepoch = 10. An epoch concluded after processing the 2.5 case, at
which point the 1.09 case experimental data was reintroduced for further training. This
process is iterated for up to 10 epochs. The model’s accuracy increases with more training
epochs (Figure 5), but after the fifth epoch, accuracy appears to reach a plateau. Thus, this
paper presents the best-so-far rules obtained after the fifth epoch of Bayesian evolutions.
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2.3. Feasibility Test Result

The experiment consisted of four cases depending on the height of the grating. The
heights were 1.09 µm, 1.5 µm, 2.0 µm, and 2.5 µm. The corresponding experiments are
named the 1.09 case, 1.5 case, 2.0 case, and 2.5 case, respectively. Figure 6a–d compare
experimental results of the nano capillary rising heights and reproductions with the best-
so-far rules identified by the proposed hybrid intelligence approach. At the sudden change
in the height near the total UV dose (15,000–17,000 J/m2), we conducted AFM analyses on
the samples right above and below the sudden jump for more quantitative comparisons.
Applying the glass-box ML-identified rules, the final heights above and below the sudden
jump were well reproduced (Figure 6a–d). Figure 6a–d reproduce the normalized height
with increasing UV dose. The normalized height is the final height of liquid scaled down
to a range of [0, 1] by x(t)

h . For instance, in the 1.09 case, normalized height = 1 means that
the liquid has reached the final height of 1.09 µm.

Figure 7a–d show the mean and one-standard range of the reproduction of the liquid
rise using the top 10 best-so-far rules for the four cases, respectively. This plot shows the
uncertainty levels of the best-so-far rules’ prediction.

The transparent ML sought to learn four hidden rules (Figure 8)—i.e., two rules about
the dynamic viscosity (Figure 8b) and surface tension (Figure 8c) of the photopolymer
(NOA73) as nonlinear functions of the total UV doses; a rule about the air diffusivity
(Figure 8a) as a nonlinear function of air mass flux rate into the nanopores in the mold
made of PDMS; and a rule about the electric potential difference (Figure 8d).
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Figure 6. Comparison between experimental results and reproduction (prediction) of final height of
nano capillary rising using UV-cured NOA73 with the best-so-far ML-identified rules for: (a) 1.09 case;
(b) 1.5 case; (c) 2.0 case; and (d) 2.5 case. In all cases, the sudden jumps experimentally observed near
15, 000 ∼ 17, 000 J/m2 are well captured by the transparent ML-identified rules.
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Figure 7. The mean and one standard deviation (Stdev) range of the reproductions using the top 10
ML-identified rules for the: (a) 1.09 case; (b) 1.5 case; (c) 2.0 case; and (d) 2.5 case.
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Figure 8. (a) Identified link function (LF) of diffusivity of air molecules into the PDMS nanopores,
LDK ( dm

dt ;θDK ) a function of the normalized air mass flux rate (dm/dt); (b) LF of the dynamic viscosity
of NOA73 (pre-cured by UV), Lµ(Uv;θµ) a function of the normalized UV dose (Uv); (c) LF of the
surface tension of NOA73, pre-cured by U.UV Lσ (Uv;θσ); (d) LF of the potential (voltage) difference
between the top surface of NOA73 and the lower surface of the PDMS template, LU(h;θU) a function
of the normalized height of the grating (h). The dashed lines show a one-standard deviation range
(i.e., ±σ) of the top 10 best-so-far rules.

3. Discussion
3.1. Parametric Study

We conducted parametric studies to understand the impact of the salient physics terms’
initial values—i.e., the initial values of the air diffusivity DdKH (Figure 9), the dynamic
viscosity µ (Figure 10), the surface tension σ (Figure 11), and the initial potential (voltage)
difference U (Figure 12). As anticipated, the larger diffusivity results in the rapid rise of
the liquid height, but the path is highly nonlinear (Figure 9). A similar trend is found for
the higher dynamic viscosity (Figure 10). The initial electric potential appears to accelerate
the liquid rise, but the trend is nonlinear (Figure 12). The normalized height ( x) is the
representation of the liquid rise scaled between the range [0, 1] given by x(t)

h , where x = 1
means the liquid has attained its maximum height. Similarly, normalized mass (m) is the
mass of trapped air scaled between the range [0, 1] given by m(t)

m(0) . m = 1 signifies that no
trapped air has escaped the capillary, and conversely, m = 0 signifies that all the trapped air
has escaped through the PDMS pores. And normalized pressure (p) = 1 signifies the actual
pressure of the trapped air is equal to the atmospheric pressure.
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Figure 9. Parametric study of the impact of air diffusivity DdKH [mol·s/kg]: (a) Normalized liquid
height; (b) Normalized air mass; (c) Normalized air pressure. Other parameters are fixed, the dynamic
viscosity µ = 0.4 N·s/m2, the surface tension σ = 0.04 N

m , and U0 = 1× 10−8.
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Figure 10. Parametric study of the impact of the dynamic viscosity µ [N · s/m2]: (a) Normalized
liquid height; (b) Normalized air mass; (c) Normalized air pressure. Other parameters are fixed, the
diffusivity DdKH = 2× 10−8 [mol·s/kg], surface tension σ = 0.04 N/m, and U0 = 1× 10−8.
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Figure 11. Parametric study of the impact of the surface tension σ [N/m]: (a) Normalized liquid
height; (b) Normalized air mass; (c) Normalized air pressure. Other parameters are fixed, the
diffusivity DdKH = 2× 10−8 [mol·s/kg], dynamic viscosity µ = 0.4 N/m, and U0 = 1× 10−8.
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Figure 12. Parametric study of the impact of the initial potential (voltage) difference U0: (a) Normal-
ized liquid rise height; (b) Speed of normalized air mass reduction; (c) Normalized air pressure. Other
parameters are fixed, the dynamic viscosity µ = 0.4 N·s/m2, the surface tension σ = 0.04 N/m, and
the diffusivity DdKH = 2× 10−8 [mol·s/kg].

As the diffusivity of the trapped air into the PDMS pores decreases, the time required
for the liquid to hit the top appears to increase (Figure 9a). This is aligned with basic
physics, i.e., the higher the diffusivity, the faster the trapped air escapes. Similarly, with
higher diffusivity, the normalized mass (m) decreases rapidly (Figure 9b) and trapped air
pressure increases rapidly (Figure 9c).

Figure 10 shows the complex relationship between the rate of liquid rise and dynamic
viscosity (µ). Equation (6) shows that δm

δt ∝ −β where β = 3µDdKH RTh
dσcos(θ)lcr

. This leads to δm
δt

∝ −µ. The second term of Equation (5) shows that δx
δt ∝ −m

(
t
)
. So, we can conclude dx

dt ∝ µ,
which can be found in Figure 10a.

Figure 11 depicts a complex relationship between the rate of liquid rise and surface
tension (σ). In the section discussing the formulation of mass balance, we introduced α, β,
and γ as follows: α = P(0)d

2σcos(θ) , β = 3µDdKH RTh
dσcos(θ)lcr

, γ = U(h)d
4σh2cos(θ) . Consequently, it becomes

evident that α is inversely proportional to σ (α ∝ 1
σ ), β is also inversely proportional to

σ ( β ∝ 1
σ

)
, and γ follows the same trend, being inversely proportional to σ (γ ∝ 1

σ ). Fur-

thermore, Equation (5) indicates that as γ increases, δx
δt also increases, while it decreases

with increase in α. On the other hand, Equation (6) establishes that as β increases, δm
δt also
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increases. The second term of Equation (5) also shows that δx
δt ∝ −m

(
t
)
. Consequently,

surface tension exerts both positive and negative influence on the rate of liquid rise. Specif-
ically, as surface tension increases, the time required for the liquid to attain its maximum
height increases.

Figure 12 gives another complex relationship between the rate of liquid rise and
potential (voltage) difference (U). A potential difference existing between the lower surface
of the PDMS and the upper surface of the liquid generates an attractive force between them.
Consequently, U actively contributes to the rate of liquid rise. Following Equation (5), it
becomes evident that δx

δt ∝ γ, where γ = U(h)d
4σh2cos(θ) . As the value of U(h) increases, the rate

of liquid rise experiences a corresponding increase, leading to a faster attainment of the
liquid’s maximum height.

The link functions for diffusivity, surface tension, dynamic viscosity, and their im-
pact on the rate of liquid rise and trapped-air mass reduction rate are derived from prior
work [15]. These relationships, including the impact of potential (voltage) difference,
are expressed through Equations (5) and (6), where α, β, and γ play key roles. The

rate of liquid rise,
(

δx
δt

)
, is given by δx

δt = 1
2x(t)

− α
2

(
m(t)−1+x(t)
x(t)(1−x(t))

)
+ γ

x(t)(1−x(t))
2 , and

the trapped-air mass reduction rate, δm
δt = −β

(
1 + 2h

d
(
1− x

(
t
)))( m(t)−1+x(t)

(1−x(t))

)
where,

α = P(0)d
2σ0Lσcos(θ) , β =

3µ0Lµ(DdKH)0 LDK RTh
dσ0Lσ(x)cos(θ) lcr

, and γ = U0LUd
4σ0Lσ(x)h2cos(θ) . Notably, these link func-

tions are interrelated, as evidenced by Equations (5) and (6). They collectively influence the
height of liquid rise, demonstrating the intricate connection between diffusivity, surface
tension, dynamic viscosity, and their effects on liquid behavior.

3.2. Comparisons among Different LFs for Electric Potential-Dependent LF

For diffusivity, surface tension, and dynamic viscosity, [15] explored various link
functions, including constant, linear, simple nonlinear, complex nonlinear, and exponential
forms. Upon examining the final height vs. UV dose graph, it was evident that the best fit
was achieved with the expression L(x) = exp(c1xc2) [15].

To explain the impact of the different types of LFs, two types of LFs were considered
to account for the effects of potential (voltage) difference and dielectric constants. The
first was an exponential function of the form LU(x) = exp(c1xc2) and the second was a
second-order polynomial function of the form LU(x) = c1x2 + c2x + c3.

Two different approaches were taken for the polynomial LF; in the first, the free
parameters for all four link functions were found using the Bayesian evolution, and in
the second, the free parameters for LU were kept constant, and parameters for the other
three link functions were found. Using this method, we obtained four predictions for each
experimental case after training the model for five epochs. The Mean Absolute Percentage
Error (MAE) for each case was obtained (Figure 13), which showed that the polynomial
LF where all the free parameters were found using the Bayesian evolution was the most
accurate in predicting the sudden jump phenomenon.

The two best prediction results were from two cases of the polynomial LF with 26.39%
and 13.10% MAE after training the model for five epochs. Therefore, the prediction result
of the two was compared (Figure 14a,b). Figure 14b depicts the prediction results with
the second-order polynomial LF with an increasing trend, which shows the sudden jump
occurred at the same UV dose, which contradicts the experimental data. Conversely,
Figure 14a (the decreasing trend of LU) clearly captures the trend followed by the sudden
jump. Based on the result of Figure 14, the best prediction was obtained using a second-
order polynomial LF with decreasing trend of LU .
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Figure 13. MAE of four cases of LF considered: No LF to account for voltage and dielectric constant,
considering an exponential LF, and second-order polynomial LF with increasing and reducing trend.
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Figure 14. Comparison between (a) decreasing and (b) increasing trends of the electric potential link
function LU .

3.3. Remarks on the Difference from Statistical Learning

The proposed hybrid intelligence approach is more general than the statistical ap-
proach. As shown in Figure 15, the hybrid intelligence systematically explores the diverse
candidates of input-parameter pairs x → y where x ∈ {UV dose, mass flux rate, maximum
height of nano-gratings} and y ∈ {diffusivity, viscosity, surface tension, electric potential} in
pursuit of the most plausible rule shapes. Due to observational and technological limits,
y are scarce, rendering direct statistical fitting infeasible. To some extent, the internal
parameters (y) can be regarded as latent variables in the “encoder” ML methods [19–21]
(Figure 15). Figure 15f–h show preliminary investigations about how bad-performing rule
shapes are rejected during the learning.
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Figure 15. Illustration of the three global stages of the rule learning with diverse candidates for the
hidden rules regarding important parameters (y ∈ {Dk, µ, σ, U}) in terms of descriptive variables

(x ∈
{

dm
dt , Uv, h

}
): (a) Overall learning framework (glass-box)—this step represents the entire process

starting with input (experimental data and an assumed link function), moving to internal parameters,
and ultimately resulting in an output (i.e., the final height attained by the liquid). The red dotted lines
show a black-box approach that takes input (x) and produces output (z), without any understanding
of underlying principles; (b) Constant model-based rule; (c) Linear model-based rule; (d) Complex
nonlinear curve-based rule that can be learned by the cubic regression splines (CRS); (e) 2nd-order
polynomial model-based rule; (f–i) Examples of the best-so-far predictions that use the constant
model-based rules (f), linear model-based rules (g), CRS model-based rules (h) exhibiting poor
performance, and the best-so-far prediction using 2nd-order polynomial model-based rules (i).

4. Conclusions

This paper combines human insights with the searching power of machine learning
to uncover hidden rules, collectively known as hybrid intelligence. This approach helped
us understand the rules that explain the physical phenomenon of a sudden jump in nano-
grating. Dynamic viscosity, diffusivity, and surface tension were previously recognized as
the underlying physical phenomena explaining this occurrence. However, experimental
data revealed the existence of a phenomenon that required an explanation for the correlation
between the height of the PDMS mold and the final liquid height, which was unaddressed in
prior research. Our hybrid intelligence approach allowed us to identify a potential (voltage)
difference-dependent force that could fully elucidate the relationship between the mold’s
height and the final height reached, thereby explaining the phenomenon, irrespective of
the PDMS mold’s height.
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