Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antenna Element
2.2. Antenna Array
2.3. Antenna Feeding
3. Results
3.1. Low-Power Test
3.2. High-Power Microwave Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benford, J.; Swegle, J.A.; Schamiloglu, E. High Power Microwaves, 2nd ed.; Taylor & Francis: New York, NY, USA, 2007. [Google Scholar]
- Barker, R.J.; Schamiloglu, E. High-Power Microwave Source and Technologies; IEEE Press: Piscataway, NJ, USA, 2001. [Google Scholar]
- Gold, S.H.; Nusinovich, G.S. Review of high-power microwave source research. Rev. Sci. Instrum. 1997, 68, 3945–3974. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Liu, L.; Peng, S.; Zhang, Q.; Yu, L.; Sun, Y. All-metal beam steering lens antenna for high power microwave applications. IEEE Trans. Antennas Propag. 2017, 65, 7340–7344. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, C.; Liu, L.; Peng, S.; Qiang, Z.; Zhou, H. All-Metal Transmit-Array for Circular Polarization Design Using Rotated Cross-Slot Elements for High Power Microwave Applications. IEEE Trans. Antennas Propag. 2017, 65, 3253–3256. [Google Scholar] [CrossRef]
- Sun, Y.; Dang, F.; Yuan, C.; He, J.; Zhang, Q.; Zhao, X. A Beam-Steerable Lens Antenna for Ku-Band High-Power Microwave Applications. IEEE Trans. Antennas Propag. 2020, 68, 7580–7583. [Google Scholar] [CrossRef]
- Xu, L.; Bi, S.; Liu, J.; Yuan, C.; Zhang, Q.; Sun, Y. A Phase Synthesis Method for Reflectarray in High-Power Microwave Application. IEEE Trans. Plasma Sci. 2022, 50, 2858–2863. [Google Scholar] [CrossRef]
- Mark, H. Beam weapons revolition-directed-energy weapons point the way for battlefield technology. Janes Int. Def. Rev. 2000, 8, 34. [Google Scholar]
- Gaponov, A.V.; Flyagin, V.A.; Fix, A.S.; Gol’denberg, A.L.; Khizhnyak, V.I.; Luchinin, A.G.; Nusinovich, G.S.; Petelin, M.I.; Tsimring, S.Y.; Usov, V.G.; et al. Some perspectives on the use of powerful gyrotrons for the electron-cyclotron plasma heating in large tokmarks. Int. J. Infraed Millmeter Waves 1980, 1, 351–372. [Google Scholar] [CrossRef]
- Clunie, D. The Design, Construction and Testing of an Experimental High Power, Short-Pilse Radar, Strong Microwave in Plasmas; Novgorod University Press: Nizhny Novgorod, Russia, 1997. [Google Scholar]
- Benford, J. Space applications of high power microwave. IEEE Trans. Plasma Sci. 2008, 36, 569–581. [Google Scholar] [CrossRef]
- Huang, J.; Song, T.; Qi, X.; Mao, T.; Zhang, C.; Liang, P.; Wang, W.; Jiao, J.; Yao, N.; Zhang, K.; et al. Experimental Investigations on a Frequency-Tunable Gyrotron With Multiband Radiation. IEEE Trans. Electron Devices 2023, 70, 1318–1322. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, X.; Li, G.; Yang, H.; Zhong, H.; Zhang, J. Experimental Demonstration of a Tunable Load-Limited Magnetically Insulated Transmission Line Oscillator. IEEE Trans. Electron Devices 2016, 63, 1307–1311. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Liu, Y.G.; Yang, H.W.; Shi, D.F. Frequency agile characteristics of a dielectric filled relativistic magnetron with diffraction output. Appl. Phys. Lett. 2012, 101, 248–310. [Google Scholar] [CrossRef]
- Liu, K.; Li, T.; Hao, J. Frequency-agile relativistic magnetron by selecting modes. In Proceedings of the Vacuum Electronics Conference, Beijing, China, 27–29 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–2. [Google Scholar]
- Wu, P.; Fan, J.; Teng, Y.; Shi, Y.; Deng, Y.; Sun, J. Tunability over three frequency bands induced by mode transition in relativistic backward wave oscillator with strong end reflections. Phys. Plasmas 2014, 21, 103110. [Google Scholar] [CrossRef]
- Ge, X.; Zhang, J.; Zhong, H.; Qian, B.; Wang, H. The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator. Appl. Phys. Lett. 2014, 105, 183503. [Google Scholar] [CrossRef]
- Gao, X.; Song, L.; He, J.; Ling, J.; Zhang, P.; Dang, F.; Wang, L. A novel dual-band nested transit time oscillator. AIP Adv. 2021, 11, 2158–3226. [Google Scholar] [CrossRef]
- Ju, J.C.; Fan, Y.W.; Shu, T.; Zhong, H.H. Proposal of a gigawatt-class L/Ku dual-band magnetically insulated transmission line oscillator. Phys. Plasmas 2014, 21, 3945. [Google Scholar] [CrossRef]
- Xiao, R.Z.; Sun, J.; Chen, C.H.; Zhang, Y.; Shao, H. High efficiency annular magnetically insulated line oscillator-transit time oscillator with three separate frequencies in three bands. J. Appl. Phys. 2009, 106, 033308. [Google Scholar] [CrossRef]
- Courtney, C.; Baum, C. The coaxial beam-rotating antenna (COBRA): Theory of operation and measured performance. IEEE Trans. Antennas Propag. 2000, 48, 299–309. [Google Scholar] [CrossRef]
- Coburn, W.; Litz, M.; Miletta, J.; Tesny, N.; Dilks, L.; King, B. A Slotted-Waveguide Array for High-Power Microwave Transmission; Army Research Lab: Adelphi, MD, USA, 2001. [Google Scholar]
- Guo, L.; Huang, W.; Chang, C.; Li, J.; Liu, Y.; Meng, R. Studies of a Leaky-Wave Phased Array Antenna for High-Power Microwave Applications. IEEE Trans. Plasma Sci. 2016, 44, 2366–2375. [Google Scholar] [CrossRef]
- Peng, S.; Yuan, C.-W.; Shu, T.; Ju, J.; Zhang, Q. Design of a Concentric Array Radial Line Slot Antenna for High-Power Microwave Application. IEEE Trans. Plasma Sci. 2015, 43, 3527–3529. [Google Scholar] [CrossRef]
- Li, X.-Q.; Liu, Q.-X.; Wu, X.-J.; Zhao, L.; Zhang, J.-Q.; Zhang, Z.-Q. A GW level high-power radial line helical array antenna. IEEE Trans. Antennas Propag. 2008, 56, 2943–2948. [Google Scholar] [CrossRef]
- Yuan, C.-W.; Peng, S.-R.; Shu, T.; Li, Z.-Q.; Wang, H. Designs and experiments of a novel radial line slot antenna for high-power microwave application. IEEE Trans. Antennas Propag. 2013, 61, 4940–4946. [Google Scholar] [CrossRef]
- Milroy, W.W. Continuous Transverse Stub Element Devices and Methods of Making Same. U.S. Patent 5 266 961, 30 November 1993. [Google Scholar]
- Kim, W.; Iskander, M. A new coplanar waveguide continuous transverse stub (CPW-CTS) antenna for wireless communications. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 172–174. [Google Scholar] [CrossRef]
- Isom, R.; Iskander, M.; Yun, Z.; Zhang, Z. Design and Development of Multiband Coaxial Continuous Transverse Stub (CTS) Antenna Arrays. IEEE Trans. Antennas Propag. 2004, 52, 2180–2184. [Google Scholar] [CrossRef]
- Iskander, M.; Yun, Z.; Zhang, Z.; Jensen, R.; Redd, S. Design of a low-cost 2-D beam-steering antenna using ferroelectric material and CTS technology. IEEE Trans. Microw. Theory 2001, 49, 1000–1003. [Google Scholar] [CrossRef]
- Ettorre, M.; Manzillo, F.F.; Casaletti, M.; Sauleau, R. Continuous Transverse Stub Array for Ka-Band Applications. IEEE Trans. Antennas Propag. 2015, 63, 4792–4800. [Google Scholar] [CrossRef]
- Iskander, M.F.; Zhang, Z.J.; Yun, Z.Q.; Losm, R. Coaxial continuous transverse stub (CTS) array. IEEE Microw. Wirel. Compon. Lett. 2001, 11, 489–491. [Google Scholar] [CrossRef]
- Kim, W.; Iskander, M.F.; Palmer, W.D. An Integrated Phased Array Antenna Design Using Ferroelectric Materials and the Continuous Transverse Stub Technology. IEEE Trans. Antennas Propag. 2006, 54, 3095–3105. [Google Scholar] [CrossRef]
- Rahmati, B.; Hassani, H.R. Low-profile slot transmit array antenna. IEEE Trans. Antennas Propag. 2015, 63, 174–181. [Google Scholar] [CrossRef]
- Qiu, H.; Yang, X.-X.; Yu, Y.; Lou, T.; Yin, Z.; Gao, S. Compact Beam-Scanning Flat Array Based on Substrate-Integrated Waveguide. IEEE Trans. Antennas Propag. 2020, 68, 882–890. [Google Scholar] [CrossRef]
- You, Q.; Lu, Y.; Wang, Y.; Xu, J.; Huang, J.; Hong, W. Hollow-Waveguide Tri-Band Shared-Aperture Full-Corporate-Feed Continuous Transverse Stub Antenna. IEEE Trans. Antennas Propag. 2022, 70, 6635–6645. [Google Scholar] [CrossRef]
- Elliott, R. An improved design procedure for small arrays of shunt slots. IEEE Trans. Antennas Propag. 1983, 31, 48–53. [Google Scholar] [CrossRef]
- Chang, C.; Liu, G.; Tang, C.; Chen, C.; Fang, J. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds. Phys. Plasmas 2011, 18, 055702. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, M.; Verboncoeur, J.; Li, S.; Xie, J.; Yan, K.; Luo, T.; Zhu, X. Enhanced window breakdown dynamics in a nanosecond microwave tail pulse. Appl. Phys. Lett. 2014, 104, 253504. [Google Scholar] [CrossRef]
Parameters | h1 | h2 | h3 | h4 | h5 | s2 | s3 | s4 | s | t | d |
---|---|---|---|---|---|---|---|---|---|---|---|
Values/mm | 8.1 | 4.4 | 1.5 | 9.2 | 4 | 4 | 1.8 | 2.6 | 5.4 | 2.7 | 25 |
Gain (dB) | SLL (dB) | 3 dB Width (Deg) | ||||
---|---|---|---|---|---|---|
f (GHz) | Sim. | Mea. | Sim. | f (GHz) | Sim. | Mea. |
8.4 | 28.5 | 28.2 | −18.4 | −20.7 | 2.5 | 2.5 |
8.8 | 28.7 | 28.8 | −19.4 | −19.7 | 2.4 | 2.4 |
9.2 | 29.2 | 29.2 | −19.1 | −18.2 | 2.3 | 2.3 |
9.6 | 29.6 | 29.4 | −19 | −18.3 | 2.2 | 2.2 |
10.0 | 30.1 | 30.2 | −19.5 | −20.4 | 2 | 2 |
10.4 | 30.6 | 30.5 | −19.4 | −18.8 | 1.9 | 1.9 |
10.8 | 31 | 31 | −20 | −19.9 | 1.8 | 1.8 |
11.2 | 31.3 | 31.1 | −21 | −20 | 1.7 | 1.8 |
11.6 | 31.3 | 30.8 | −21.2 | −16.8 | 1.8 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhou, K.; He, J.; Yang, Z.; Yuan, C.; Zhang, Q. Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications. Micromachines 2023, 14, 2127. https://doi.org/10.3390/mi14112127
Sun Y, Zhou K, He J, Yang Z, Yuan C, Zhang Q. Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications. Micromachines. 2023; 14(11):2127. https://doi.org/10.3390/mi14112127
Chicago/Turabian StyleSun, Yunfei, Kelin Zhou, Juntao He, Zihan Yang, Chengwei Yuan, and Qiang Zhang. 2023. "Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications" Micromachines 14, no. 11: 2127. https://doi.org/10.3390/mi14112127
APA StyleSun, Y., Zhou, K., He, J., Yang, Z., Yuan, C., & Zhang, Q. (2023). Broadband Continuous Transverse Stub (CTS) Array Antenna for High-Power Applications. Micromachines, 14(11), 2127. https://doi.org/10.3390/mi14112127