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Abstract: In this work, a novel fiber-optic sensor for 2D magnetic sensing is explored based on
nanostructured magnetic fluid. The fiber-optic sensor comprises a ring-shaped fiber structure that is
coated with magnetic fluid. The unique magneto-optical characteristic of the nanostructured magnetic
fluid enables the fiber-optic structure to detect magnetic fields. By utilizing the 3D Monte Carlo
method, the magneto-optical characteristic induced by the nanostructure changes in the magnetic
fluid was analyzed. The sensor can realize 2D vector magnetic sensing by intensity demodulation
and achieves a sensitivity of 2.402 dB/mT. The proposed fiber optic sensor helps in developing a
high-sensitivity 2D vector magnetic field sensor, which has potential applications in the fields of
navigation, electrical power systems, and biological detection.

Keywords: magnetic fluid; magneto-optical characteristic; fiber-optic sensor; 2D vector magnetic sensing

1. Introduction

Magnetic field sensing plays a crucial role in such fields as navigation, electrical power
systems, and biological detection. Owing to the advantages of low cost, remote detecting,
and distributed sensing [1–3] the application of fiber-optic sensors provides a promising
prospect for magnetic sensing. However, optical fibers do not directly respond to changes
in magnetic fields. The emergence of materials such as Terfenol-D [4,5], Al wire [6], Metglas
alloy [7], and magnetic fluid (MF) [8] has propelled the advancement of fiber-optic magnetic
field sensors. Moreover, the development of oscillators [9] and wireless sensors [10] also
holds significant importance in the creation of highly precise quartz sensors, which have
been developed, and which take temperature compensation into account.

By exploring MF as a sensing material, fiber-optic magnetic sensors have aroused con-
siderable interest in recent years [11–14]. Various fiber structures integrated with MF have
been developed, including fiber grating [15,16], microfiber [8], microfiber couplers [17],
photonic crystal fibers (PCFs) [18,19], Fabry–Perot (FP) interferometers [20], Sagnac in-
terferometers [21], and surface plasmons [11]. Most of the current fiber magnetic field
sensors are mainly based on wavelength demodulation methods to demodulate magnetic
field information. Generally, changes in light intensity signals are often preferable, given
their potential contribution to the miniaturization of sensor systems. Although the light
source may cause some deviation in the intensity demodulation, the influence is relatively
small and can be solved by a differential method. Thus, many intensity demodulated
sensors have been investigated. In 2018, Hu Liang et al. [19] investigated a compact fiber-
optic magnetic field sensor by selectively injecting MF into the air core of PCF. MF in
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PCF can induce strong coupling with light mode transmitted in the optical fiber. In 2019,
Zixuan Jia et al. [22] designed a novel temperature self-compensative magnetic field sensor
by cascading a single mode fiber (SMF)-no core fiber (NCF)-SMF structure with two fiber
Bragg gratings (FBGs). Excited multiple modes in NCF formed the multimode interference,
and FBGs were used for temperature compensation. In 2020, Pengfei Li et al. [23] used
tapered FBG and MF as bases in proposing an intensity-modulated magnetic field sensor.
By tapering FBG, the sensor can generate a powerful evanescent field in the sensing region.
In 2021, Yu Tao et al. [24] reported a reflective fiber magnetic field sensor. The fiber sensor
is composed of an SMF-NCF-Few core fiber (FCF)-NCF structure and encapsulated by MF.
The first section of NCF can lead substantial light into the cladding of FCF and the second
NCF is coated with silver as a reflective layer.

As the magnetic field is a vector, it has both intensity and orientation. Most recently,
intensity-demodulated fiber magnetic field sensors have mainly focused on magnetic
intensity information but ignored orientations, thereby limiting their application. To
achieve vector magnetic sensing, in 2018, Weijia Bao et al. [25] inscribed FBG onto multi-
clad fiber (MCF) and developed a vector magnetic field sensor. After integrating with MF,
the sensitivity of fiber-optic sensors reached 1.43 dB/mT. Similarly, based on MCF, Junying
Zhang et al. [26] in 2021 investigated a fiber-optic sensor for vector magnetic sensing and
realized 0.353 dB/mT.

In this paper, based on a ring-shaped structure, an intensity demodulation fiber-optic
sensor is explored and experimental verified. The structure is simple to fabricate and can
excite strong fiber surface evanescent waves on the fiber surface. The MF nanostructure
changes under the magnetic field were simulated by the 3D Monte Carlo method to explain
the magneto-tropic anisotropy optical property. Combing the ring-shaped fiber structure
with MF, the fiber-optic sensor is able to detect both intensity and orientation changes with
a high sensitivity by intensity demodulation.

2. Materials and Methods

The structure of the ring-shaped fiber is illustrated in Figure 1a, which is fabricated
by bending SMF. The stress-optic effects caused by the ring shape induce changes in the
refractive index distribution across the fiber cross-section [27]. As shown in Figure 1b, the
effective index of guided light mode, denoted as nmode, is slightly bigger than the cladding
nclad but smaller than core ncore, which is the requirement for light transmission along the
optical fiber. However, the ring shape of the fiber will lead to a decrease in the refractive
index in the inner part [28,29], while that of the outer part of the bending fiber is increased,
as shown in Figure 1c.
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Figure 1. (a) The ring shape-sensing structure. Refractive index of (b) straight optical fiber; (c) bending
optical fiber. (d) Light distribution simulated in straight and bending optical fibers.

As the size of the ring-shaped structure decreases, the nmode gradually falls below the
nclad. When nmode falls below the nclad, the light passing through the ring-shaped region
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tends to leak into the cladding, generating a fiber-optic surface evanescent field. It is
evident that a smaller size induces greater light leakage. To further analyze the effect of the
ring shape on light transmission, the ring-shaped optical fiber was equated to a straight
optical fiber, and then the Beam Propagation Method (BPM) was used to simulate light
transmission, as depicted in Figure 1d. In the simulation, the optical fiber model has a
cladding diameter of 125 µm and a core diameter of 8.2 µm. The refractive indices of the
fiber cladding and core are 1.4447 and 1.4504, respectively, and the simulated bend radius
parameter is set at 4 mm. It can be seen that, owing to changes in the refractive index,
input light leaks into the fiber cladding, resulting in a strong fiber-optic evanescent wave
propagating along the fiber surface.

After passing the ring-shaped region, light will recouple into the fiber core and in-
terfere with the light guided into the fiber core, which is similar to a Mach–Zehnder
interferometer [30]. Consequently, interference light intensity can be approximately written
as follows [27,31]:

Iout = Ico + Icl + 2
√

Ico Icl cos
(

2πL
λ
× ∆ne f f

)
(1)

where Ico and Icl represent the intensities of light propagated in the fiber core and cladding, L
stands for the inference length, and ∆neff represents the effective refractive index difference
for the light guided into the fiber core and cladding.

MF, known as one kind of functional material, is composed of 10 nm magnetic nanopar-
ticles dispersed in the fluid. The fluid has both the magnetic properties of magnetic materi-
als and the liquidity of liquids, which results in many interesting magneto-optic properties.
These unique physical optical characteristics are closely related to its nanostructures. In
MF, the behavior and properties of the nanoparticles are influenced by various micro-
interactions. These interactions play a crucial role in determining the overall behavior of
the MF. The primary interactions involve a van der Waals interaction, surfactant repulsive
interaction, magnetic dipole–dipole interaction, and magnetic dipole–field interaction [32].
The van der Waals potential energy is mathematically expressed as:

EVDW = −A
6

[
2

L2
V + 4LV

+
2

(LV + 4)2 + ln
L2

V + 4LV

(LV + 4)2

]
(2)

LV =
rij

d
− 2 (3)

Here, A represents the Hamaker constant, rij signifies the distance between particles i
and j, and d denotes the diameter of the particles.

And, the surfactant repulsive interaction between particles can be formulated as:

ESTERIC =
πd2ζkT

2

(
2−

rij

δ
ln

(
δ

rij

)
−

rij − d
δ

)
(4)

Here, ζ stands for the surface density of surfactant molecules and δ denotes the
thickness of the surfactant molecules.

The potential energy associated with the dipole–dipole interaction between particles
can be defined as:

EDIPOLE =
µ0m
4πd3

(
dp

rij

)[(
ni · nj

)
− 3
(
ni − tij

)(
ni − tij

)]
(5)

Here, µ0 represents the magnetic permeability of free space; m signifies the magnetic
moment of ferromagnetic particles; tij denotes the unit position vector between particles i
and j; while ni and nj represent the magnetic moment directions of i and j, respectively.
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When an external magnetic field is applied, the energies associated with magnetic
dipole–field interactions are expressed as:

EMAGNETIC = µ0mH (6)

Here, H represents the external magnetic field intensity.
To better understand the nanostructure changes, a 3D Monte Carlo program based on

Equations (2)–(6) was developed to simulate in MATLAB 2020b. As shown in Figure 2a,
without an externally applied magnetic field, these nanoparticles are distributed in a
disorderly manner. The MF presents isotropic optical properties, i.e., as light in different
directions passes the MF, the transmission loss of light is the same. Thus, the whole MF can
be treated as an isotropic material. In addition, because of the disorderly distribution of
these nanoparticles, the magnetic torque between particles can offset itself, so the overall
MF shows no magnetism. However, as illustrated in Figure 2b,c, with the emergence of the
magnetic torque, the MF presents a different optical property, i.e., magnetic nanoparticle
chains are formed along the magnetic field direction, which will change the light absorption,
scattering coefficients, and refractive index [32–35]. The appearance of nanoparticle chains
changes the magnetic fluid into an anisotropic material, i.e., the transmission loss of light
in different directions is different. When the light propagates along the magnetic field,
the transmission loss of light is decreased. While light propagates perpendicular to the
magnetic field, the transmission loss of light is increased. Based on the optical property
difference in the vertical and parallel magnetic field directions, the 2D Vector Magnetic
sensing can be achieved by combining the fiber-optic sensors and the MF.

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 11 
 

 

Here, µ0 represents the magnetic permeability of free space; m signifies the magnetic 
moment of ferromagnetic particles; tij denotes the unit position vector between particles i 
and j; while ni and nj represent the magnetic moment directions of i and j, respectively. 

When an external magnetic field is applied, the energies associated with magnetic 
dipole–field interactions are expressed as: 

0MAGNETICE mHμ=   (6)

Here, H represents the external magnetic field intensity. 
To better understand the nanostructure changes, a 3D Monte Carlo program based 

on Equations (2)–(6) was developed to simulate in MATLAB 2020b. As shown in Figure 
2a, without an externally applied magnetic field, these nanoparticles are distributed in a 
disorderly manner. The MF presents isotropic optical properties, i.e., as light in different 
directions passes the MF, the transmission loss of light is the same. Thus, the whole MF 
can be treated as an isotropic material. In addition, because of the disorderly distribution 
of these nanoparticles, the magnetic torque between particles can offset itself, so the over-
all MF shows no magnetism. However, as illustrated in Figure 2b,c, with the emergence 
of the magnetic torque, the MF presents a different optical property, i.e., magnetic nano-
particle chains are formed along the magnetic field direction, which will change the light 
absorption, scattering coefficients, and refractive index [32–35]. The appearance of nano-
particle chains changes the magnetic fluid into an anisotropic material, i.e., the transmis-
sion loss of light in different directions is different. When the light propagates along the 
magnetic field, the transmission loss of light is decreased. While light propagates perpen-
dicular to the magnetic field, the transmission loss of light is increased. Based on the op-
tical property difference in the vertical and parallel magnetic field directions, the 2D Vec-
tor Magnetic sensing can be achieved by combining the fiber-optic sensors and the MF. 

 
Figure 2. The 3D Monte Carlo simulation of magnetic nanoparticles (a) without external applied 
magnetic field; (b) in the parallel magnetic field (5 mT); (c) in the vertical magnetic field (5 mT). 

3. Results and Discussion 
To verify the performance of the fiber sensor, the experiment setup was built as de-

picted in Figure 3a, which includes a magnetic field generator, DC power supply, broad 
light source, and a spectrometer. To generate a 2D magnetic field, the generator is fixed 
on a rotatable stage that can be rotated from 0° to 360°. In the calibration tests, a Tesla 
meter with a resolution of 0.01 mT was used to monitor the real-time magnetic field 
changes. The ring-shaped fiber sensor was placed in a cylindrical container, which was 
filled with MF (EMG605) as illustrated in Figure 3b. In addition, for simplification of the 
analysis, the orientation of the magnetic field vertical to the fiber-optic sensor was defined 
as 0°/180°, while the parallel direction was defined as 90°/270°. 
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3. Results and Discussion

To verify the performance of the fiber sensor, the experiment setup was built as
depicted in Figure 3a, which includes a magnetic field generator, DC power supply, broad
light source, and a spectrometer. To generate a 2D magnetic field, the generator is fixed on
a rotatable stage that can be rotated from 0◦ to 360◦. In the calibration tests, a Tesla meter
with a resolution of 0.01 mT was used to monitor the real-time magnetic field changes. The
ring-shaped fiber sensor was placed in a cylindrical container, which was filled with MF
(EMG605) as illustrated in Figure 3b. In addition, for simplification of the analysis, the
orientation of the magnetic field vertical to the fiber-optic sensor was defined as 0◦/180◦,
while the parallel direction was defined as 90◦/270◦.
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3.1. Response to Dual-Directions Magnetic Field Intensity

As discussed before, the ring structure will excite the fiber evanescent wave propagat-
ing along the fiber surface. With the decrease in ring shape size, more light will be excited
from the fiber core to the evanescent wave, which can enhance the sensitivity. As the MF
will change into an anisotropic material under external magnetic field, by inserting the
fiber structure into the MF, the magnetic field can be detected by monitoring the output
light transmission loss.

From Equation (1), the maximal intensity will appear when the accumulated optical
phase equals 2nπ (n is an integer). And thus, the peak intensity can be expressed as:

Ipe =
(√

Ico +
√

Icl

)2
(7)

Owing to these magnetic nanoparticles increasing the absorption and scattering coeffi-
cients, spectrum intensity will be decreased after the fiber probe is inserted into the MF.
Peak intensity of output light can be written as follows [32]:

IM
po = Ipo exp(−αrL) (8)

where α is the absorption coefficients of MF and r represents the ratio of the fiber-optic
evanescent field intensity to all propagated.

Thus, the peak intensity changes can be adopted to demonstrate the external magnetic
field changes. As shown in Figure 4, after the fiber structure was placed instead into the MF
with air as the medium, the peak intensity output spectrum intensity is decreased, which
is due to the optical properties difference between air and MF, and part of the light was
absorbed by MF.
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(a) 12 mm, (b) 10 mm, and (c) 8 mm.

Then, to verify the sensor’s performance, the response to the dual-direction (0◦ and
90◦) magnetic field was investigated. Figure 5 shows the variation of the output spectrum
of sensors in dual directions, respectively. The peak intensity decreases with the magnetic
field intensity increasing at 0◦, while those at 90◦ are slightly increasing. As depicted
in Figure 5c,f,i, by linear fitting, the sensors with different ring-shaped structures show
sensitivities of 0.550, 1.361, and 2.402 dB/mT at 0◦, and 0.009, 0.027, and 0.048 dB/mT
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at a 90◦ direction, respectively. Apparently, the smaller ring-shaped structure size has a
higher sensitivity, which is because the smaller ring-shaped structure excites the stronger
evanescent wave. It is worth noting that at 0◦, the intensity does not change linearly. This
behavior occurs because the MF initially magnetizes slowly and eventually saturates at
higher magnetic field intensities.
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The difference in the sensor’s response to the dual-direction magnetic field can be
explained by Figure 6. At 0◦, the formed chain structures in MF are vertically distributed
relative to the fiber structure. As the fiber optic evanescent wave propagates along the
fiber surface, these chain structures act as obstacles, blocking the light and increasing the
absorption and scattering coefficients within the magnetic fluid, while at 90◦, the chains
in the magnetic fluid align parallel to the fiber structure, which are also parallel to the
direction of the fiber optic evanescent wave propagation. As a result, the absorption and
scattering coefficients of the magnetic fluid are slightly reduced compared to the 0◦ angle
case. The response difference observed in the sensor’s output for different magnetic field
angles can be attributed to the arrangement of chain structures in the magnetic fluid. These
nanostructures distributed in MF affect the absorption and scattering coefficients of the
magnetic fluid and influence the sensor’s response.
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Figure 6. Schematic diagram of the nanostructures in MF with the fiber-optic structure at the
directions of (a) 0◦ and (b) 90◦.

3.2. Response to Magnetic Field Directions

Due to the nanostructures in MF shifting with the external magnetic field, the fiber-
optic sensor’s response to dual directions is opposite. To further characterize the response
to the continual direction changes in the 2D magnetic field, the intensity was maintained at
9 mT, and then the magnetic field generator was rotated. With the rotating of the generator,
the magnetic orientation changed from 0◦ to 360◦. The output spectrum was recorded every
10◦ to show the difference. Figure 7a–d shows spectrum changes with different directions.
The peak intensity decreases in the ranges of 0–90◦ and 180–270◦, which correspond to the
chain structure’s direction changing from a parallel direction to a vertical direction. And
in the range of 90–180◦ and 270–360◦, the peak intensity increases. To better understand
the peak intensity changes in the whole 2D magnetic field, the resonance dip wavelength
variations in the polar and Cartesian coordinate systems are plotted in Figures 7e and 7f,
respectively. However, the patterns are not perfectly symmetrically in the 2D magnetic
field, which may be caused by the fiber-optic sensor not being fabricated symmetrically.
As the sensor’s response to different magnetic directions are different, the fiber sensor
has the potential to realize the 2D vector magnetic sensing by intensity demodulation. To
determine the magnetic field’s direction, a rotation of the fiber-optic sensor is necessary
to identify the positions of two minimum peak intensities (just working like a Rader) [36].
These positions align parallel to the orientation of the magnetic field. It also should be
pointed out that the sensor’s orientation detection is subject to an uncertainty of 180◦,
meaning it cannot discern the sign of the magnetic field direction [36–38]. Once this is done,
the magnitude of the peak intensity establishes a direct correlation with the magnetic field
direction, providing a one-to-one relationship.
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Figure 7. (a–d): The output spectrum in the magnetic direction range of 0–360◦. The variations of
peak intensities plotted in the (e) polar coordinate system, and (f) Cartesian coordinate system.

To assess the directional accuracy of the ring-shaped fiber-optic sensor, data spanning
from 0◦ to 180◦ were extracted, as depicted in Figure 8, and data of the direction ranging
from 0◦ to 180◦ were extracted, as shown in Figure 8. Peak intensity changes are not linear
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with the magnetic direction over the entire range. However, there are linear relationships
in the ranges of 10–50◦, 50–90◦, 90–130◦, and 130–170◦. By applying linear fitting, the
magnetic field direction sensitivities of 0.210 nm/◦ and 0.080 nm/◦ were reached in the
direction ranges of 10–50◦and 50–90◦, respectively. The corresponding measurement
errors are 1.4% and 0.6% respectively. In the 90–130◦ and 130–170◦ ranges, magnetic field
direction sensitivities are 0.089 nm/◦ and 0.201 nm/◦, respectively. And the corresponding
measurement errors are 0.7% and 3.2%, respectively.
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3.3. Response to Temperature

To analyze the temperature cross-sensitivity, another fiber-optic magnetic field sensor
with a short axis of 6 mm was fabricated. Figure 9a,b depicts the output spectrum variation
of the sensor at directions 0◦ and 90◦, respectively. In the 0◦ direction, the peak intensities
of the output spectrum decrease with the rise in magnetic field intensities, while at the 90◦

direction, the peak intensities exhibit a slight increase, consistent with other fiber magnetic
field sensors. As illustrated in Figure 9c, the sensitivity reaches 3.92 dB/mT in the range of
4–8 mT, while at the direction of 0◦, the fiber sensor has a sensitivity of 0.23 dB/mT.
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magnetic field in the directions of (a) 0◦ and (b) 90◦. (c) The peak intensity varies with external
magnetic field in two directions.

Then, the fiber-optic magnetic field sensor was placed in a vacuum drying oven
(DZF-6024, Shanghai bluepard instruments Co., Ltd., Shanghai, China). In the vacuum
drying oven, no vacuum was applied, and the pressure inside was consistent with the
ambient pressure. The recorded transmission spectra from 30 ◦C to 50 ◦C are presented in
Figure 10a. The peak intensity gradually increases with temperature variations. Figure 10b
illustrates that the peak intensity changes are relatively small throughout the temperature
measurement range. Employing a linear regression to the peak intensity across various
temperatures, a temperature sensitivity of 0.04 dB/◦C is attained within the 30 ◦C to 50 ◦C
span. It is worth noting that compensating for the crosstalk between temperature and
magnetic field can be achieved by monitoring the operational temperature [18,22,39].
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3.4. Comparison and Discussion

The performance of the fiber-optic sensor was compared to other intensity-demodulated
magnetic sensors in recent years, as shown in Table 1. The proposed sensor exhibits higher
sensitivity compared to the others. Additionally, the sensor offers the advantage of a simple
fabrication method when compared to alternative sensors. The unique fiber-optic structure
enables the sensor to detect both intensity and orientation changes with a high sensitivity
by intensity demodulation.

Table 1. Performance comparison of fiber-optic sensors for vector magnetic sensing.

Structures Fabrication Method Vector Sensitivity Ref.

Dual S-tapered multimode fiber Spicing and tapering fibers No 0.11 dB/mT [35]

SMF-PCF-SMF Fill the air core of PCF with MF No 0.19 dB/mT [19]

SMF-no core fiber (NCF)-SMF Spicing NCF between two SMF No 1.28 dB/mT [22]

Tapered fiber Bragg grating Using the heating-pull method with H2 flame No 1.933 dB/mT [23]

SMF-NCF-FCF-NCF structure Spicing fibers No 1.20993 dB/mT [24]

FBG Inscribe FBG on fiber Yes 1.43 dB/mT [25]

FBG Inscribe FBG on fiber Yes 0.353 dB/mT [26]

Ring-shaped structure Bending fiber Yes 2.402 dB/mT -

4. Conclusions

In summary, a novel intensity-demodulated fiber-optic sensor that functionalizes with
MF is presented. The sensor was fabricated using a simple method just by bending SMF.
By using the 3D Monte Carlo method, the magneto-tropic property of MF was explained.
By taking advantage of the strong evanescent field generated by the structure and the
magneto-tropic property of MF, the peak intensities of the output spectrum were found
to change in response to the intensity and orientation of an external magnetic field. The
intensity and orientation information can be demodulated from the changes in the output
spectrum. The sensor exhibited a high sensitivity of 2.402 dB/mT, indicating its potential
for various applications.
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