Electrically Doped PNPN Tunnel Field-Effect Transistor Using Dual-Material Polarity Gate with Improved DC and Analog/RF Performance
Abstract
:1. Introduction
2. Device Structure and Simulation Model
3. Simulation Results and Discussion
3.1. DC Characteristics
3.2. Device Optimizations
3.3. Analog/RF Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ionescu, A.M.; Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nat. Nanotechnol. 2011, 479, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Tura, A.; Woo, J.C.S. Performance comparison of silicon steep subthreshold FETs. IEEE Trans. Electron Devices 2010, 57, 1362–1368. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wei, S.F.; Shan, C. In-Built N+ Pocket Electrically Doped Tunnel FET With Improved DC and Analog/RF Performance. Micromachines 2020, 11, 960. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Yang, L.; Liu, Y.; Liu, Z.-M.; Zheng, H. Controlling Drain Side Tunneling Barrier Width in Electrically Doped PNPN Tunnel FET. Micromachines 2023, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Yao, C.J.; Jiao, G.F.; Huang, D.; Yu, H.Y.; Li, M.F. Improvement in reliability of tunneling field-effect transistor with pnin structure. IEEE Trans. Electron Devices 2011, 58, 2122–2126. [Google Scholar] [CrossRef]
- Verreck, D.; Verhulst, A.S.; Kao, K.H.; Vandenberghe, W.G.; De Meyer, K.; Groeseneken, G. Quantum mechanical performance predictions of pnin versus pocketed line tunnel field-effect transistors. IEEE Trans. Electron Devices 2013, 60, 2128–2134. [Google Scholar] [CrossRef]
- De Marchi, M.; Zhang, J.; Frache, S.; Sacchetto, D.; Gaillardon, P.E.; Leblebici, Y.; De Micheli, G. Configurable logic gates using polarity-controlled silicon nanowire gate-all-around FETs. IEEE Electron Device Lett. 2014, 35, 880–882. [Google Scholar] [CrossRef]
- De Marchi, M.; Sacchetto, D.; Frache, S.; Zhang, J.; Gaillardon, P.E.; Leblebici, Y.; De Micheli, G. Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012. [Google Scholar]
- Lahgere, A.; Sahu, C.; Singh, J. PVT-aware design of dopingless dynamically configurable tunnel FET. IEEE Trans. Electron Devices 2015, 62, 2404–2409. [Google Scholar] [CrossRef]
- Saurabh, S.; Kumar, M.J. Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 2011, 58, 404–410. [Google Scholar] [CrossRef]
- Jain, P.; Prabhat, V.; Ghosh, B. Dual metal-double gate tunnel field effect transistor with mono/hetro dielectric gate material. J. Comput. Electron 2015, 14, 537–542. [Google Scholar] [CrossRef]
- Rashid, S.; Bashir, F.; Khanday, F.A.; Beigh, M.R.; Hussin, F.A. 2-D design of double gate Schottky tunnel MOSFET for high-performance use in analog/RF applications. IEEE Access 2021, 9, 80158–80169. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, K.S.; Nigam, K.; Tikkiwal, V.A.; Chandan, B.V. Dual-material dual-oxide double-gate TFET for improvement in DC characteristics, analog/RF and linearity performance. Appl. Phys. A 2019, 125, 353. [Google Scholar] [CrossRef]
- Jain, G.; Sawhney, R.S.; Kumar, R.; Wadhwa, G. Analytical modeling analysis and simulation study of dual material gate underlap dopingless TFET. Superlattices Microstruct. 2021, 153, 106866. [Google Scholar] [CrossRef]
- Vadizadeh, M. Digital performance assessment of the dual-material gate GaAs/InAs/Ge junctionless TFET. IEEE Trans. Electron Devices 2021, 68, 1986–1991. [Google Scholar] [CrossRef]
- Singh, K.S.; Kumar, S.; Nigam, K. Design and investigation of dielectrically modulated dual-material gate-oxide-stack double-gate TFET for label-free detection of biomolecules. IEEE Trans. Electron Devices 2021, 68, 5784–5791. [Google Scholar] [CrossRef]
- ATLAS Device Simulation Software, version 5.19.20.R.; Silvaco: Santa Clara, CA, USA, 2018.
- Boucart, K.; Ionescu, A.M. Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Devices 2007, 54, 1725–1733. [Google Scholar] [CrossRef]
- Kumar, M.J.; Janardhanan, S. Doping-less tunnel field effect transistor: Design and investigation. IEEE Trans. Electron Devices 2013, 60, 3285–3290. [Google Scholar] [CrossRef]
- Musalgaonkar, G.; Sahay, S.; Saxena, R.S.; Kumar, M.J. A line tunneling field-effect transistor based on misaligned Core–Shell gate architecture in emerging nanotube FETs. IEEE Trans. Electron Devices 2019, 66, 2809–2816. [Google Scholar] [CrossRef]
Parameter | Conventional SMPG ED-TFET [3] | Proposed DMPG ED-TFET |
---|---|---|
Source Doping | 4 × 1019 cm−3 (N+) | 4 × 1019 cm−3 (N+) |
Channel Doping | 1 × 1017 cm−3 (P−) | 1 × 1017 cm−3 (P−) |
Drain Doping | 5 × 1018 cm−3 (N+) | 5 × 1018 cm−3 (N+) |
CG Work function | 4.74 eV | 4.74 eV |
PG Work function | 4.33 eV | - |
PG1 Work function | - | 4.97 eV |
PG2 Work function | - | 4.5 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, C.; Liu, Y.; Wang, Y.; Cai, R.; Su, L. Electrically Doped PNPN Tunnel Field-Effect Transistor Using Dual-Material Polarity Gate with Improved DC and Analog/RF Performance. Micromachines 2023, 14, 2149. https://doi.org/10.3390/mi14122149
Shan C, Liu Y, Wang Y, Cai R, Su L. Electrically Doped PNPN Tunnel Field-Effect Transistor Using Dual-Material Polarity Gate with Improved DC and Analog/RF Performance. Micromachines. 2023; 14(12):2149. https://doi.org/10.3390/mi14122149
Chicago/Turabian StyleShan, Chan, Ying Liu, Yuan Wang, Rongsheng Cai, and Lehui Su. 2023. "Electrically Doped PNPN Tunnel Field-Effect Transistor Using Dual-Material Polarity Gate with Improved DC and Analog/RF Performance" Micromachines 14, no. 12: 2149. https://doi.org/10.3390/mi14122149
APA StyleShan, C., Liu, Y., Wang, Y., Cai, R., & Su, L. (2023). Electrically Doped PNPN Tunnel Field-Effect Transistor Using Dual-Material Polarity Gate with Improved DC and Analog/RF Performance. Micromachines, 14(12), 2149. https://doi.org/10.3390/mi14122149