A Method for Fast Au-Sn Bonding at Low Temperature Using Thermal Gradient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Microbump and Bonded Chip
2.2. Bonding Temperature Distribution Simulation
3. Results and Discussion
3.1. Bonding Parameter Optimization
3.2. IMC Comparison of Thermal Gradient Bonding and Isothermal Bonding
3.3. Temperature Distribution Simulation during Bonding
3.4. Au-Sn Bonding Interface under High-Temperature Annealing
4. Conclusions
- (1)
- The systematic optimization of Au-Sn bonding parameters, encompassing the bonding temperature, bonding time, and bonding pressure, leads to an optimized shear strength of 23.898 MPa. The corresponding bonding parameters contains gradient temperatures of 150 °C/250 °C and a bonding pressure of 10 MPa for 10 min in a HCOOH environment. IMC observation proves the high bonding strength comes from the thick IMC.
- (2)
- Finite element simulations validated that the Au-Sn TGB bonding was solid-state bonding. It confirms when the bonding temperatures of 150 °C at the bottom and 250 °C at the top was set, the centered bonding region had the temperature around 200 °C. This resulted in a temperature gradient of 2500 °C/cm, significantly exceeding the threshold required for driving Au atoms through metal Sn. Thus, it facilitated low-temperature solid-state Au-Sn bonding.
- (3)
- IMC evolution was explored by changing the annealing time after bonding under the optimized bonding condition. It reveals that the prolonged annealing duration results in the progressive formation of Au5Sn. Once Sn is depleted, Au-Sn and Au atoms combine to generate Au5Sn.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suk, K.L.; Choo, K.; Kim, S.J.; Kim, J.S.; Paik, K.W. Studies on various chip-on-film (COF) packages using ultra fine pitch two-metal layer flexible printed circuits (two-metal layer FPCs). Microelectron. Reliab. 2012, 52, 1182–1188. [Google Scholar] [CrossRef]
- Szostak, K.M.; Keshavarz, M.; Constandinou, T.G. Hermetic chip-scale packaging using Au: Sn eutectic bonding for implantable devices. J. Micromech. Microeng. 2021, 31, 095003. [Google Scholar] [CrossRef]
- Lim, S.P.S.; Rao, V.S.; Hnin, W.Y.; Ching, W.L.; Kripesh, V.; Lee, C.; Lau, J.; Milla, J.; Fenner, A. Process development and reliability of microbumps. IEEE Trans. Compon. Packag. Technol. 2010, 33, 747–753. [Google Scholar] [CrossRef]
- Lee, Y.K.; Ko, Y.H.; Kim, J.K.; Lee, C.W.; Yoo, S. The effect of intermetallic compound evolution on the fracture behavior of Au stud bumps joined with Sn-3.5 Ag solder. Electron. Mater. Lett. 2013, 9, 31–39. [Google Scholar] [CrossRef]
- Ko, C.T.; Hsiao, Z.C.; Chang, Y.J.; Chen, P.S.; Hwang, Y.J.; Fu, H.C.; Huang, J.H.; Chiang, C.W.; Sheu, S.S.; Chen, Y.H.; et al. A wafer-level three-dimensional integration scheme with Cu TSVs based on microbump/adhesive hybrid bonding for three-dimensional memory application. IEEE Trans. Device Mater. Reliab. 2012, 12, 209–216. [Google Scholar] [CrossRef]
- Arabi, F.; Theolier, L.; Martineau, D.; Deletage, J.-Y.; Medina, M.; Woirgard, E. Power electronic assemblies: Thermo-mechanical degradations of gold-tin solder for attaching devices. Microelectron. Reliab. 2016, 64, 409–414. [Google Scholar] [CrossRef]
- Zeng, G.; McDonald, S.; Nogita, K. Development of high-temperature solders. Microelectron. Reliab. 2012, 52, 1306–1322. [Google Scholar] [CrossRef]
- Xu, H.; Suni, T.; Vuorinen, V.; Li, J.; Heikkinen, H.; Monnoyer, P.; Paulasto-Kröckel, M. Wafer-level SLID bonding for MEMS encapsulation. Adv. Manuf. 2013, 1, 226–235. [Google Scholar] [CrossRef]
- Rautiainen, A.; Vuorinen, V.; Heikkinen, H.; Paulasto-Krockel, M. Wafer-level Au-Sn/Pt solid–liquid interdiffusion bonding. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 169–176. [Google Scholar] [CrossRef]
- Sood, S.; Hergert, R.; Treichel, O. Metal Inter-Diffusion and Eutectic Wafer Bonding Processes for Advanced Mems Packaging. In Proceedings of the IWLPC (Wafer-Level Packaging) Conference, San Jose, CA, USA, 6–7 November 2013. [Google Scholar]
- Li, D.; Shang, Z.; She, Y.; Wen, Z. Investigation of Au/Si eutectic wafer bonding for MEMS accelerometers. Micromachines 2017, 8, 158. [Google Scholar] [CrossRef]
- Chu, K.; Park, S.; Lee, C.; Sohn, Y. Effect of multiple flip-chip assembly on the mechanical reliability of eutectic Au–Sn solder joint. J. Mater. Sci. Mater. Electron. 2016, 27, 9941–9946. [Google Scholar] [CrossRef]
- Garnier, A.; Baillin, X.; Hodaj, F. Solidification and interfacial interactions in gold–tin system during eutectic or thermo-compression bonding for 200 mm MEMS wafer level hermetic packaging. J. Mater. Sci. Mater. Electron. 2013, 24, 5000–5013. [Google Scholar] [CrossRef]
- Tez, S.; Torunbalci, M.M.; Akin, T. A novel method for fabricating MEMS three-axis accelerometers using low temperature Au-Sn eutectic bonding. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3. [Google Scholar]
- Temel, O.; Kalay, Y.E.; Akin, T. Wafer-Level Low-Temperature Solid-Liquid Inter-Diffusion Bonding with Thin Au-Sn Layers for MEMS Encapsulation. J. Microelectromech. Syst. 2020, 30, 64–71. [Google Scholar] [CrossRef]
- Kim, S.K.; Oh, T.S. Microstructure and Contact Resistance of the Au-Sn Flip-Chip Joints Processed by Electrodeposition. J. Microelectron. Packag. Soc. 2008, 15, 9–15. [Google Scholar]
- Duan, A.; Luu, T.-T.; Wang, K.; Aasmundtveit, K.; Hoivik, N. Wafer-level Cu–Sn micro-joints with high mechanical strength and low Sn overflow. J. Micromech. Microeng. 2015, 25, 097001. [Google Scholar] [CrossRef]
- Fang, Z.; Mao, X.; Yang, J.; Yang, F. A wafer-level Sn-rich Au–Sn intermediate bonding technique with high strength. J. Micromech. Microeng. 2013, 23, 095008. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Li, C.C.; Liao, L.L.; Liu, C.K.; Kao, C.R. Au–Sn bonding material for the assembly of power integrated circuit module. J. Alloys Compd. 2016, 671, 340–345. [Google Scholar] [CrossRef]
- Yang, C.Y.; Laksono, A.D.; Yen, Y.W.; Guo, Y.Z.; Wang, C.H.; Li, J.L.; Chiang, T.Y. Investigation of phase equilibria of the Au–Ni–Sn ternary system and interfacial reactions in the Au/Sn/Ni/Cu multilayer couple. Mater. Chem. Phys. 2022, 289, 126494. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Nishida, K.; Hutter, M.; Kimura, T.; Suga, T. Low-temperature process of fine-pitch Au–Sn bump bonding in ambient air. Jpn. J. Appl. Phys. 2007, 46, 1961. [Google Scholar] [CrossRef]
- Yang, T.L.; Aoki, T.; Matsumoto, K.; Toriyama, K.; Horibe, A.; Mori, H.; Orii, Y.; Wu, J.Y.; Kao, C.R. Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Mater. 2016, 113, 90–97. [Google Scholar] [CrossRef]
- Liu, X.; He, S.; Nishikawa, H. Low temperature solid-state bonding using Sn-coated Cu particles for high temperature die attach. J. Alloys Compd. 2017, 695, 2165–2172. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Z.; Zhu, Z.; Chen, L.; Sun, Q. Low Temperature Au/Sn Solid-Liquid Diffusion Chip-to-Chip Bonding for MEMS Encapsulation. In Proceedings of the 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China, 10–13 August 2022; pp. 1–5. [Google Scholar]
- Wang, J.; Wang, Q.; Wu, Z.; Wang, D.; Cai, J. Solid-state-diffusion bonding for wafer-level fine-pitch Cu/Sn/Cu interconnect in 3-D integration. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 7, 19–26. [Google Scholar] [CrossRef]
- Shi, H.; Che, F.; Tian, C.; Zhang, R.; Park, J.T.; Ueda, T. Analysis of edge and corner bonded PSvfBGA reliability under thermal cycling conditions by experimental and finite element methods. Microelectron. Reliab. 2012, 52, 1870–1875. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Guo, Y.; Wu, T.; Dou, L.; Tian, W.; Xiao, J.; Li, J. Research on Flip-Chip Bonding Process and Thermal Cycle Reliability Simulation of 3-D Stacked Structure. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 12, 51–58. [Google Scholar] [CrossRef]
- Lu, T.; Jin, J.M. Coupled electrical–thermal–mechanical simulation for the reliability analysis of large-scale 3-D interconnects. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 229–237. [Google Scholar] [CrossRef]
- Huang, C.; Tang, W.; Zhang, L. The bonding forming simulation and reliability research of the flip-chip stacked gold stud bump. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 7, 153–161. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.; Loula, A.F.D.; Bevilacqua, L. Mixed variational formulation and numerical analysis of thermally coupled nonlinear Darcy flows. SIAM J. Numer. Anal. 2013, 51, 2746–2772. [Google Scholar] [CrossRef]
- Cannarozzi, A.A.; Momanyi, F.X.; Ubertini, F. A hybrid flux model for heat conduction problems. Int. J. Numer. Methods Eng. 2000, 47, 1731–1749. [Google Scholar] [CrossRef]
Properties | Symbols | Au | Sn | Si | Ti |
---|---|---|---|---|---|
Young’s modulus | E (GPa) | 79 | 54 | 150 | 116 |
Poisson’s ratio | v | 0.44 | 0.33 | 0.28 | 0.32 |
Thermal conductivity | W/m·K | 315 | 64 | 180 | 21 |
Density | g/cm3 (kg/m3) | 19.32 | 7.29 | 2.33 | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Liu, Z.; Qiu, D.; Zhu, Z.; Yan, N.; Ding, S.; Zhang, D.W. A Method for Fast Au-Sn Bonding at Low Temperature Using Thermal Gradient. Micromachines 2023, 14, 2242. https://doi.org/10.3390/mi14122242
Wang W, Liu Z, Qiu D, Zhu Z, Yan N, Ding S, Zhang DW. A Method for Fast Au-Sn Bonding at Low Temperature Using Thermal Gradient. Micromachines. 2023; 14(12):2242. https://doi.org/10.3390/mi14122242
Chicago/Turabian StyleWang, Wenchao, Ziyu Liu, Delong Qiu, Zhiyuan Zhu, Na Yan, Shijin Ding, and David Wei Zhang. 2023. "A Method for Fast Au-Sn Bonding at Low Temperature Using Thermal Gradient" Micromachines 14, no. 12: 2242. https://doi.org/10.3390/mi14122242
APA StyleWang, W., Liu, Z., Qiu, D., Zhu, Z., Yan, N., Ding, S., & Zhang, D. W. (2023). A Method for Fast Au-Sn Bonding at Low Temperature Using Thermal Gradient. Micromachines, 14(12), 2242. https://doi.org/10.3390/mi14122242