E-Spin: A Stochastic Ising Spin Based on Electrically-Controlled MTJ for Constructing Large-Scale Ising Annealing Systems
Abstract
:1. Introduction
2. Spin-Transfer Torque Magnetic Tunnel Junctions and E-Spin
2.1. Mechanism of the Spin-Transfer Torque Magnetic Tunnel Junctions
2.2. Schematic Diagram, Operation Paradigm, and Simulation of the E-Spin
2.3. Advantages of the E-Spin
2.4. Endurance of the E-Spin
3. Large-Scale Ising Annealing System for Solving CO Problems Using E-Spins
3.1. Steps of Ising Annealing System Solving CO Problems
3.2. Mapping Integer Factorization Problem to Ising Annealing System
3.3. Stochastic Ising Annealing Algorithm Based on E-Spin
- Map and to the corresponding spin and using Equations (7) and (8).
- If the calculated or equals value “1”, the MUX outputs to the corresponding . Then, the E-spin provides a strong likelihood of an output value “1”. The is the parameter that can be adjusted. In this experiment, we set to be around 0.95 V and to be 0.55 V. The random flips of E-spin do not frequently occur, so the gradient descent procedure is dominant in most cases.
- Accordingly, if or equals ‘0’, the MUX outputs to the corresponding E-spin . Then the E-spin provides a high probability of output value “0”.
3.4. The Overall Diagram of the Proposed Ising Annealing System
4. Results
4.1. Integer Factorization Results
4.1.1. Examples of Factoring Integers
4.1.2. Comparations for Simulated Annealing, Trial Division, and Ising Annealing Algorithm
4.2. Analysis Results of the E-Spin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Britt, K.A.; McCaskey, A.J.; Humble, T.S.; Kais, S. Quantum Annealing for Prime Factorization. Sci. Rep. 2018, 8, 17667. [Google Scholar] [CrossRef] [Green Version]
- Takata, K.; Marandi, A.; Hamerly, R.; Haribara, Y.; Maruo, D.; Tamate, S.; Sakaguchi, H.; Utsunomiya, S.; Yamamoto, Y. A 16-bit Coherent Ising Machine for One-Dimensional Ring and Cubic Graph Problems. Sci. Rep. 2016, 6, 34089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böhm, F.; Verschaffelt, G.; Van Der Sande, G. A poor man’s coherent Ising machine based on opto-electronic feedback systems for solving optimization problems. Nat. Commun. 2019, 10, 3538. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.; Bramhavar, S.; Ghosh, S.; Herzog, W. Analog Coupled Oscillator Based Weighted Ising Machine. Sci. Rep. 2019, 9, 14786. [Google Scholar] [CrossRef] [Green Version]
- Böhm, F.; Verschaffelt, G.; Sande, G.V. Solving MAXCUT Optimization Problems with a Coherent Ising Machine Based on Opto-Electronic Oscillators. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019; p. 1. [Google Scholar]
- Ayanzadeh, R.; Halem, M.; Finin, T. Reinforcement Quantum Annealing: A Hybrid Quantum Learning Automata. Sci. Rep. 2020, 10, 7592. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Inaba, K.; Hamerly, R.; Inoue, K.; Yamamoto, R.H.Y.; Takesue, T.I.K.I.H. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photon. 2016, 10, 415–419. [Google Scholar] [CrossRef]
- Inagaki, T.; Haribara, Y.; Igarashi, K.; Sonobe, T.; Tamate, S.; Honjo, T.; Marandi, A.; McMahon, P.L.; Umeki, T.; Enbutsu, K.; et al. A coherent Ising machine for 2000-node optimization problems. Science 2016, 354, 603. [Google Scholar] [CrossRef] [Green Version]
- McMahon, P.L.; Marandi, A.; Haribara, Y.; Hamerly, R.; Langrock, C.; Tamate, S.; Inagaki, T.; Takesue, H.; Utsunomiya, S.; Aihara, K.; et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 2016, 354, 614. [Google Scholar] [CrossRef] [Green Version]
- Böhm, F.; Inagaki, T.; Inaba, K.; Honjo, T.; Enbutsu, K.; Umeki, T.; Kasahara, R.; Takesue, H. Understanding dynamics of coherent Ising machines through simulation of large-scale 2D Ising models. Nat. Commun. 2018, 9, 5020. [Google Scholar] [CrossRef]
- Takemoto, T.; Hayashi, M.; Yoshimura, C.; Yamaoka, M. A 2 × 30k-Spin Multi-Chip Scalable CMOS Annealing Processor Based on a Processing-in-Memory Approach for Solving Large-Scale Combinatorial Optimization Problems. IEEE J. Solid-State Circuits 2019, 55, 145–156. (In English) [Google Scholar] [CrossRef]
- Yamaoka, M.; Yoshimura, C.; Hayashi, M.; Okuyama, T.; Aoki, H.; Mizuno, H. A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems with CMOS Annealing. IEEE J. Solid-State Circuits 2015, 51, 303–309. [Google Scholar] [CrossRef]
- Takemoto, T.; Yamamoto, K.; Yoshimura, C.; Hayashi, M.; Tada, M.; Saito, H.; Mashimo, M.; Yamaoka, M. 4.6 A 144Kb Annealing System Composed of 9×16Kb Annealing Processor Chips with Scalable Chip-to-Chip Connections for Large-Scale Combinatorial Optimization Problems. In Proceedings of the 2021 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021. [Google Scholar]
- Dutta, S.; Khanna, A.; Gomez, J.; Ni, K.; Toroczkai, Z.; Datta, S. Experimental Demonstration of Phase Transition Nano-Oscillator Based Ising Machine. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 37.8.1–37.8.4. [Google Scholar]
- Borders, W.A.; Pervaiz, A.Z.; Fukami, S.; Camsari, K.Y.; Ohno, H.; Datta, S. Integer factorization using stochastic magnetic tunnel junctions. Nature 2019, 573, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Alfke, P. Efficient Shift RegistersLFSR Counters and Long Pesudo-Random Sequence Generators. Xlilinx Appl. Note XAPP 052 1996, 1–6. [Google Scholar]
- Vincent, A.F.; Larroque, J.; Locatelli, N.; Ben Romdhane, N.; Bichler, O.; Gamrat, C.; Zhao, W.S.; Klein, J.-O.; Galdin-Retailleau, S.; Querlioz, D. Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Diao, Z.; Li, Z.; Wang, S.; Ding, Y.; Panchula, A.; Chen, E.; Wang, L.-C.; Huai, Y. Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. J. Phys. Condens. Matter 2007, 19, 165209. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Prenat, G.; Devolder, T.; Klein, J.-O.; Chappert, C.; Dieny, B.; Ravelosona, D. Electrical Modeling of Stochastic Spin Transfer Torque Writing in Magnetic Tunnel Junctions for Memory and Logic Applications. IEEE Trans. Magn. 2013, 49, 4375–4378. [Google Scholar] [CrossRef]
- Jan, G.; Thomas, L.; Le, S.; Lee, Y.-J.; Liu, H.; Zhu, J.; Iwata-Harms, J.; Patel, S.; Tong, R.-Y.; Sundar, V.; et al. Demonstration of Ultra-Low Voltage and Ultra Low Power STT-MRAM designed for compatibility with 0x node embedded LLC applications. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp. 65–66. [Google Scholar] [CrossRef]
- Thomas, L.; Jan, G.; Serrano-Guisan, S.; Liu, H.; Zhu, J.; Lee, Y.-J.; Le, S.; Iwata-Harms, J.; Tong, R.-Y.; Patel, S.; et al. STT-MRAM devices with low damping and moment optimized for LLC applications at Ox nodes. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 27.3.1–27.3.4. [Google Scholar] [CrossRef]
- Jan, G.; Thomas, L.; Le, S.; Lee, Y.-J.; Liu, H.; Zhu, J.; Iwata-Harms, J.; Patel, S.; Tong, R.-Y.; Serrano-Guisan, S.; et al. Achieving Sub-ns switching of STT-MRAM for future embedded LLC applications through improvement of nucleation and propagation switching mechanisms. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Kar, G.S.; Kim, W.; Tahmasebi, T.; Swerts, J.; Mertens, S.; Heylen, N.; Min, T. Co/Ni based p-MTJ stack for sub-20nm high density stand alone and high performance embedded memory application. In Proceedings of the 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 15–17 December 2014; pp. 19.1.1–19.1.4. [Google Scholar] [CrossRef]
- Miura, S.; Nishioka, K.; Naganuma, H.; Nguyen, T.V.A.; Honjo, H.; Ikeda, S.; Watanabe, T.; Inoue, H.; Niwa, M.; Tanigawa, T.; et al. Scalability of Quad Interface p-MTJ for 1X nm STT-MRAM With 10-ns Low Power Write Operation, 10 Years Retention and Endurance > 10¹¹. IEEE Trans. Electron Devices 2020, 67, 5368–5373. [Google Scholar] [CrossRef]
- Fukushima, A.; Seki, T.; Yakushiji, K.; Kubota, H.; Imamura, H.; Yuasa, S.; Ando, K. Spin dice: A scalable truly random number generator based on spintronics. Appl. Phys. Express 2014, 7, 083001. [Google Scholar] [CrossRef]
- Endoh, T.; Honjo, H.; Nishioka, K.; Ikeda, S. Recent Progresses in STT-MRAM and SOT-MRAM for Next Generation MRAM. In Proceedings of the 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 16–19 June 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Peng, X.; Liao, Z.; Xu, N.; Qin, G.; Zhou, X.; Suter, D.; Du, J. Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation. Phys. Rev. Lett. 2008, 101, 220405. [Google Scholar] [CrossRef]
- SAHIN, M. Generalized Trial Division. Int. J. Contemp. Math. Sci. 2011, 6, 59–64. [Google Scholar]
Indicators | Spin Dice [26] | p-bit [16] | E-Spin (This Work) |
---|---|---|---|
probability | Fixed | adjustable | adjustable |
randomness | TRNG | TRNG | TRNG |
operation mode | electric | thermal | electric |
reliability | good | poor | good |
large-scale integration | easy | hard | easy |
Voltage Drop (mV) 1 | Switching Probability |
---|---|
[0,144) | 0% |
[144,171) | 7% |
[171,212) | 20% |
[212,275) | 32% |
[275,342) | 48% |
[342,428) | 66% |
[428,584) | 81% |
[584,718) | 93% |
[718,731) | 98% |
[731,1100] | 100% |
Indicators | CMOS-Based Stochastic Ising Spin | Thermal Disturbance MTJ-Based Spin (p-bit) [16] | E-Spin (This Work) |
---|---|---|---|
Area (μm2) | 1600 | NA | 280 |
Speed (MHz) | 333 | <1 | 50 |
Power (μW) | 142.6 | 20 | 139.7 |
Technology node | 40 nm | NA (discrete) | 40 nm |
Randomness | PRNG | TRNG | TRNG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Tang, H.; Wang, Y.; Hu, X.; Lin, Y.; Min, T.; Xie, Y. E-Spin: A Stochastic Ising Spin Based on Electrically-Controlled MTJ for Constructing Large-Scale Ising Annealing Systems. Micromachines 2023, 14, 258. https://doi.org/10.3390/mi14020258
Chen W, Tang H, Wang Y, Hu X, Lin Y, Min T, Xie Y. E-Spin: A Stochastic Ising Spin Based on Electrically-Controlled MTJ for Constructing Large-Scale Ising Annealing Systems. Micromachines. 2023; 14(2):258. https://doi.org/10.3390/mi14020258
Chicago/Turabian StyleChen, Wenhan, Haodi Tang, Yu Wang, Xianwu Hu, Yuming Lin, Tai Min, and Yufeng Xie. 2023. "E-Spin: A Stochastic Ising Spin Based on Electrically-Controlled MTJ for Constructing Large-Scale Ising Annealing Systems" Micromachines 14, no. 2: 258. https://doi.org/10.3390/mi14020258
APA StyleChen, W., Tang, H., Wang, Y., Hu, X., Lin, Y., Min, T., & Xie, Y. (2023). E-Spin: A Stochastic Ising Spin Based on Electrically-Controlled MTJ for Constructing Large-Scale Ising Annealing Systems. Micromachines, 14(2), 258. https://doi.org/10.3390/mi14020258