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Abstract: We propose a miniaturized quad-band filter (QBF), designed using substrate-integrated
coaxial cavities (SICCs). The employed SICC structure consists of two vertically stacked substrates
with a large circular patch embedded in between. The embedded patch is segmented unevenly into
four pieces, which are shorted to the cavity’s bottom wall through one or two blind vias. This SICC
structure exhibits four independently controlled resonances with frequencies much lower than the
frequency of its conventional SIW cavity counterpart, thus achieving size reduction. A sample quad-
band filter is designed and fabricated for experimental measurement. Reasonably good agreement
between measured and simulated data is observed.

Keywords: quad-band filter (QBF); substrate integrated coaxial cavity (SICC); coaxial cavity mode;
circuit miniaturization

1. Introduction

The immense multiband-operation demand for today’s wireless communication sys-
tems requires multiband-function components. Among them, multiband filters, such as
dual-, tri-, and quad-band, play essential roles in assuring high-quality performance by
confining the system’s operation to allocated bands. In these multiband bandpass filters
(BPFs), quad-band filters (QBFs) are the most difficult to design and have gained more
and more attention in commercial mobile communication systems recently. In the past,
multiple microstrip or ring resonators have been employed to build QBFs [1–3] because
of the advantages of low cost and high circuit diversity. However, they share common
deficiencies, such as low Q characteristics, low power handling capacity and low noise
immunity to the outside environment. In [1], two distinct square rings generate two pairs
of perturbed degenerate modes to build the QBF’s four passbands. The two square rings
are vertically arranged to save circuit space. In [2], the presented QBF is comprised of four
stepped-impedance resonators (SIRs), two of which generate the first and third passbands
and the other two of which produce the second and fourth passbands. The drawback to
this design is that high-quantity planar resonators in a close arrangement might complicate
the design procedure and occupy a large circuit area. In [3], the QBF is built by complex
SIRs loaded with multiple open stubs, resulting in an overwhelmingly complicated design
procedure. This design also needs a considerable circuit area.

Decades ago, the substrate integrated waveguide (SIW), a waveguide-like structure,
was built using printed circuit board (PCB) technology [4] to alleviate the noise immunity
problem and to increase the circuit’s power handling capability and Q value. The SIW’s
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enclosure structure grants itself the advantages of the waveguide and still preserves the
flexibility of PCB-based planar circuitry, such as the microstrip, slot-line, strip-line and
coplanar waveguide. Later, SIW filters were extensively investigated; however, only limited
QBFs were reported [5,6]. In [5], the ingenious QBF designed using an SIW loaded with
four complementary split-rings (CSRs) in various forms successfully meets the quad-
band requirement, and the signal selectivity enhancement is achieved by introducing
transmission zeros (TZs) between adjacent passbands. Nevertheless, the CSRs might incur
radiation losses and hinder high-frequency applications of the filter. In [6,7], the QBFs are
built of multiple SIW cavities. The four bands are formed by splitting the two passbands
caused by the cavity’s first and second resonances into four, where the band splitting is
realized by dual-mode perturbation [6], or by implanting one or two TZs around the center
of each original passband [7]. The drawback to this passband splitting design is lack of
flexibility in passband allocations since the two split bands must be very close to each other
and cannot be randomly deployed. In addition, the usage of many SIW cavities certainly
leads to a considerable circuit area, not to mention that the size compactness of a single
SIW cavity is also incomparable to the aforementioned PCB structures.

Recently, an SIW-cavity-like structure termed the substrate-integrated coaxial cavity
(SICC) was proposed in [8], and later modified in [9], to design single-band BPFs. These
SICC structures can effectively reduce the SIW cavity size and relieve the big-circuit-
size deficiency incurred by the conventional SIW filter. The SICCs reported in [9] were
subsequently reconfigured to design a dual-band BPF in [10] and a triband BPF in [11].
In [10], the embedded circular patch is evenly segmented into four pieces, where two
oppositely deployed quarter-circular patches each shorted to the SICC’s bottom wall
with one blind via are associated with the generation of the lower resonance frequency
and the other two quarter-circular patches, each shorted to the SICC’s bottom wall with
two blind vias, pertain to the generation of the higher resonance frequency. In [11], the
embedded circular patch is evenly segmented into three pieces, each of which, when
connected to the SICC’s bottom wall through one, two, or four blind vias, is associated with
the generation of one specific resonance frequency of the triband BPF. In the two works
mentioned, each segmented patch in conjunction with the connected blind vias can be
regarded as an independently controlled resonator. The reason that these BPF structures
can be miniaturized is that a single cavity houses multiple resonators, instead of just one as
in [8,9].

In this paper, the structures reported in [10,11] are further improved to realize a
QBF. In comparison, the structure presented here is more advantageous in design than
those in [10,11] in the following respects. First, in terms of the equivalent LC resonance
circuit, the two different resonators in [10] and the three resonators in [11] have the same
capacitance but different inductances, since the segmented patches have the same area
but are shorted to the ground with a different number of blind vias. The distinction of
the resonance frequencies is controlled only through the inductance, a design method
that may be regarded as lacking flexibility. If the same procedures reported in [10,11]
are extended to construct a QBF, the fourth quarter-circular patch may need five or six
blind vias to produce the needed fourth resonance frequency, causing the design process
to become complicated. Here, by unevenly segmenting the circular patch into four fan-
shaped patches, we can easily design a QBF with only one or two blind vias under the
four fan-shaped patches. By changing the radius and subtended angle of the fan-shaped
patch, we can control the capacitance; by changing the number and positions of the blind
vias, we can control the inductance. Second, the four fan-shaped patches can be tuned to
have different radii. As a result, the proposed design here is much more flexible than those
presented in [10,11]. Third, control of the inductance for more than two blind vias is much
more difficult than that for only one or two blind vias. This is because mutual magnetic
coupling among multiple blind vias complicates the resultant effective inductance. The
simulation in obtaining an appropriate effective inductance becomes progressively more
time-consuming if more blind vias are added. Fourth, adjacent fan-shaped patches are
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separated by fan-shaped slits, a strategy that is easier for tuning structural dimensions
in simulation as compared with straight slits employed in [10,11]. In short, the proposed
design here is more robust than those presented in [10,11]. Reasonably good agreement
between the measured and simulated data can be observed for the designed QBF.

2. Filter Design and Sample Results

In Figure 1a–d, we show the proposed SICC QBF circuit structure and layouts of the
three metal layers. For distinction, the top, middle, and bottom metal layers are denoted
by M1, M2, and M3, respectively, as indicated in Figure 1a. In between the three metal
layers of each SICC are the two substrates with the same dielectric constant εr and loss
tangent tanδ. The thickness is h1 for the top substrate and h2 for the bottom. Note that
metal layers M1 and M3 are the top and bottom walls of the cavity, respectively. Note also
that the layout extent of metal layer M2 is smaller than the area of the rectangular SICC’s
top/bottom wall, and hence metal layer M2 is called an embedded metal for convenience.
The QBF is composed of two identical SICCs, each with four possibly distinct fan-shaped
patches in metal layer M2. These fan-shaped patches are shorted to the cavity’s bottom wall
(i.e., metal layer M3) through one or two blind vias (for convenience, denoted by shorting
vias). An SMA is used to feed the SICC from the SICC’s bottom wall, where the SMA’s
signal probe penetrates the cavity and reaches the top wall (i.e., metal layer M1). The two
SICCs in a top-wall facing top-wall fashion are vertically bound, with metal layer M1 as
their common top wall. Four distinct slots, also designed to be of fan shape, are etched on
this common wall for coupling energy between the two stacked SICCs. Each fan-shaped
patch together with its shorting via (or vias) can generate a rather independently controlled
resonance for the corresponding passband and hence can be regarded as a resonator. Since
four resonators are confined in the same rectangular cavity, miniaturization can then be
effectively achieved in our proposed QBF design.
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In the full-mode cavity of [9] and the half-mode cavity of [12], each cavity contains
only a resonator and an empirical expression for the resonance frequency can be derived
from an equivalent transmission-line model. In our design, although the four resonators
are housed in the same cavity, each resonator can still be associated with one equivalent
transmission-line model. Alternatively, based on the approximation that both substrates
are very thin, each resonator can be regarded as a parallel LC resonant circuit between the
fan-shaped patch and the ground and the resonance frequency is fr = 1/(2π

√
LC). The

capacitance is then C = εrε0 Ap(1/h1 + 1/h2), where Ap is the area of the fan-shaped patch
and ε0 is the permittivity of vacuum. Unfortunately, unlike the cases where an analytic
expression for the inductance L is available for a symmetric-via-loaded full circular patch
in a cylindrical SICC [13] and where an empirical expression can be easily established for a
symmetric-via-loaded full circular patch in a rectangular SICC [9], neither analytical nor
empirical expressions for the asymmetric-via-loaded fan-shaped patch in the rectangular
SICC in this paper can be found. Nevertheless, the empirical inductance expression
L = µ0h2 ln(1.079W/R)/(2π) that can be established for [11] can still be used to estimate
the position of the shorting via below a fan-shaped patch in the initial step of the design,
where W is the width of the square cross-section of the rectangular cavity and R is the
distance between the via and the center of the cavity’s square cross-section. This position
can be fine-tuned in the subsequent simulations. In this paper, RT/Duroid substrates
(εr = 2.2 and tanδ = 0.0009) having the thicknesses of h1 = 0.254 and h2 = 1.58 mm are
chosen to design the QBF. The structural dimensions of the QBF, simulated with the help of
the software tool High-Frequency Structure Simulator (HFSS), are given in Figure 1. For
distinction, the four patches with P1, P2, P3, and P4 denoted nearby in Figure 1c signify that
their corresponding resonance frequencies are in ascending order. The P1 and P2 patches,
having the same area but with a different number of shorting vias, are associated with the
first and second resonances, respectively. They are oppositely deployed to minimize the
mutual coupling in between.

In Figure 2a,b, we show the resonance frequency vs. the fan-shaped patch’s arc angle
(θ) for several different values of the patch’s side dimension (l), with the inner radius of the
patch fixed at 2 mm. For the patch with one shorting via, Figure 2a reveals that a larger
patch leads to a lower resonance frequency because of the larger capacitance. When the
fan-shaped patch is loaded with two shorting vias, the two corresponding inductances in
parallel connection provide a smaller total inductance, causing the resonance frequency to
increase, as shown in Figure 2b. The final structural dimensions for the four resonators,
with the help of HFSS, are given in Figure 1. The unloaded Q-factors (Qu) of the resonators
pertaining to the P1, P2, P3 and P4 patches in the SICC without the coupling slots are
calculated to be 165, 184, 314 and 406, respectively. These Qu values are calculated using an
in-house computer program developed according to the algorithm presented in [14]. Note
that this algorithm is very accurate in estimating the Qu values, especially for narrow-band
resonators.

Figures 3a–d and 4a–d give the electric- and magnetic-field strengths on the top and
bottom surfaces of metal layer M2, respectively, at the four passband frequencies. As
shown in the figures, each resonance is dominated by only one corresponding patch. The
patch and its shorting via(s) together with the cavity resonate at a quasi-coaxial-cavity
mode. In Figure 4, the magnetic field circulates each of the two shorting vias in the same
manner, which indicates that the vias’ currents are in the same direction. A fan-shaped slot
of adequate size is embedded in the common wall of the two SICCs to provide the needed
coupling in between.
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(b) second, (c) third, and (d) fourth passband resonance frequencies.

In Figure 5a–b, we present the measured and simulated frequency responses for the
proposed QBF given in Figure 1. Two transmission zeros (TZs) are generated between
adjacent passbands. The TZs are due to the cancellation of the magnetic and electric
couplings, a phenomenon that can also be found in [11]. The measured (simulated) mid-
band frequencies of the passbands are 1.9 (1.86), 2.62 (2.6), 3.63 (3.64) and 4.63 (4.61) GHz
with the corresponding fractional bandwidths (FBW) of 3.2% (3.2%), 2.8% (3.07%), 1.4%
(1.37%) and 1.7% (2.1%), respectively. The measured and simulated minimum in-band
insertion losses (from the low band to the high band) are 1.9 (1.86), 1.7 (1.6), 2.1 (2.3), and
2.2 (1.8) dB. Although independent control of the four passband center frequencies has been
achieved, our design has not devised that of the four passband FBWs. To independently
control the four FBWs, we need to control their corresponding external quality factors. For
that purpose, we might be able to modify the shape of the annular-ring slot surrounding
the SMA probe in the bottom wall. One possible way is to unevenly divide the annular-ring
slot into four fan-shaped portions according to the ratios of the subtended angles of the four
embedded patches. Then, the outer radii of the four fan-shaped portions are subsequently
changed to obtain the desired external quality factors.

For circuit performance comparison, the circuit parameters of our work and some
other SIW-related QBFs, all PCB based, are listed in Table 1. Note that λd in Table 1 is
the intrinsic wavelength in the dielectric medium at the first passband’s center frequency.
In our design, if the thickness of the SICC’s top substrate is reduced to one-quarter of its
original value, the occupied circuit area can be greatly reduced from 0.35 λd × 0.35 λd in
Table 1 to approximately 0.18 λd × 0.18 λd. However, handling such a thin PCB in the SICC
QBF fabrication process becomes quite challenging. As can be seen from this table, our
proposed QBF possesses the widest relative upper stopband, which is very important for
practical applications. In Figure 6a–b, we give photos of the SICC’s top wall (with coupling
slots) and the bottom (furnished with an SMA).
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Table 1. Circuit performance between our design and PCB-based SIW-related QBF references.

f 1/f 2/f 3/f 4
(GHz)

FBW
(%)

IL
(dB) Order Size

(λd × λd)

USBW
|S21|

<−20 dB

[5]
3.82/5.02/ 7.2/1.58/ 1.77/3.61/

2 0.26 × 0.22 NA6.12/9.07 1.78/1.34 3.47/4.47

[6]
3.36/3.95/ 6.9/8.6/ 1.39/1.25/

2 0.31 × 0.71 ~0.77 f 16.18/7.06 5.9/2.4 1.53/2.45

[7]
11.5/12.5/ 1.43/1.42/ 1.33/1.22/

2 2.15 × 1.27 ~0.065 f 114.7/15.2 1.14/1.0 1.43/1.53
This
work

1.9/2.62/ 3.2/2.8/ 1.9/1.7/
2 0.35 × 0.35 1.23 f 13.63/4.63 1.4/1.7 2.1/2.2

USBW: abbreviation for upper stopband BW.
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layer (attached by an SMA).

3. Conclusions

In this paper, we present the design of a size-reduced SICC QBF. The desired four
resonance frequencies can be obtained from one single size-reduced SICC, and hence, the
proposed QBF consisting of two vertically stacked SICCs has led to excellent circuit-area
efficiency. The overall circuit occupies an area of only 0.35 λd × 0.35 λd. The proposed
SICC QBF with such an excellent size reduction and such a wide relative upper stopband is
believed very suitable for commercial mobile communication applications.
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