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Abstract: To guarantee the transporting efficiency of microdevices associated with fluid transporta-
tion, mixing, or separation and to promote the heat transfer performance of heat exchangers in
microelectronics, the hydrodynamic behaviors at unsteady and steady states, as well as the thermal
characteristics at the steady state in a pressure-driven electrokinetic slip flow of power-law fluid in a
microannulus are studied. To present a more reliable prediction, the slip phenomenon at walls and
nonlinear rheology of liquid are incorporated. The modified Cauchy momentum equation applicable
to all time scales and energy equations, are analytically solved in the limiting case of a Newtonian
fluid and numerically solved for power-law fluids. The transient velocity profile, time evolution of
flow rate, temperature profile, and heat transfer rate are computed at different flow behavior indices,
electrokinetic width, slip lengths, and Brinkman numbers, thereby, the coupling effect of nonlinear
rheology, slip hydrodynamics, and annular geometry on flow and thermal behaviors is explored. The
unsteady flow takes a longer time to achieve the steady state for shear thinning fluids or greater slip
lengths. The flow behavior index and slip length play a significant role in the flow rate and heat
transfer performance. The relevant discussion can serve as a theoretical guide for the operation and
thermal management of annular geometry-related flow actuation systems.

Keywords: power-law fluids; electrokinetic flow; unsteady velocity; heat transfer; slip length

1. Introduction

In microflows, the surface effect predominates, and the contact between the charged
surface of the channel wall and ionic liquid leads to the redistribution of nearby ions,
inducing the electric double layer (EDL) [1]. The application of an external electric field
tangential to the liquid in the microchannel results in the migration of excess counter ions in
the EDL, finally leading to electroosmotic flow (EOF) under the viscous drag force, which
is generally termed electrokinetic flow. With the development of the micro-electronic-
mechanical system (MEMS), and due to its desirable attributes, electroosmosis is used as a
flow actuation mechanism in chemical and biomedical analysis, membrane separation, soil
remediation, and the thermal management of microelectronic systems [2,3].

To meet the growing demand for electroosmosis actuation systems, a vast majority of
the literature has been reported from different aspects, such as the influence of different
geometries on EOF and theoretical surveys on two-layer electroosmosis systems [4–7].
Among them, the electrokinetic flow in an annular geometry remains an extensive topic
of scientific and technological interest. From a scientific point of view, the cylindrical
(rectangular) annulus model is of more universal significance, and can be treated as a
parallel plate or circular cylinder (rectangular microchannel) in the limiting cases of the ratio
of the inner radius to the outer radius [8,9], and can also serve as a basis for the development
of two-layer fluid systems [9,10]. From a practical point of view, in studying the chemical
remediation of contaminated soil, treating the pores inside the soils as microannulus rather
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than cylinders can provide a more reliable prediction for the flow rate of an electrokinetic
flow [11]. The problem formulation of the EOF through an annulus involves modeling the
electrokinetic motion of a particle in a polymeric porous membrane, thus, it is significant
to the investigation of the electrophoretic separation of proteins [12]. In this context, Tsao
analyzed the hydrodynamical behavior in a steady EOF through a microannulus [13],
which was extended to that under high zeta potentials by Kang et al. [8]. Furthermore, due
to the frequent application of time-periodic electroosmosis in electrokinetic instability and
simulation of human processes, the flow behavior of time-periodic EOF at the steady state
was investigated in [14]. The model above was extended to that applicable to all time scales
and solved by Moghadam using Green’s function method [15] and by Wang et al. by means
of the integral transform method [16], separately, thereby the time-periodic flow behavior
at the unsteady state was examined. In addition, Chang et al. investigated the unsteady
EOF through an annulus under a low zeta potential [17] and arbitrary zeta potential
assumptions [18] by presenting an analytical series solution of velocity distribution.

The literature above made an effort to extend the basic knowledge of hydrodynamical
aspects in Newtonian fluid flow through annular geometry. However, the operation of
biofluids, DNA solution, and colloidal suspensions is common in drug delivery systems and
Lab-on-chip, and those fluids show non-Newtonian rheological behaviors by nature [19].
The power-law model was studied by Das and Chakraborty to analytically investigate
the EOF of blood [20], which was then extended by numerous researchers because of its
concise expression and wide coverage. Annular geometry was also adopted as a novel
microfluidic mode in the blending of chemicals or biofluids [12], which can be viewed as
hollow microneedles and used for the extraction of body fluids (blood and saliva) and the
accurate dispensing of liquids [15]. Unfortunately, the study on the EOF problems of a
non-Newtonian fluid through a microannulus is limited. A theoretical analysis was carried
out for the mass transfer in oscillatory EOF of Maxwell fluids and it turns out that the
velocity and concentration distributions depend notably on the elasticity number of the
Maxwell fluid [21]. The time-periodic EOF of Jeffreys fluids was investigated by using
the Laplace transform method and the velocity for different relaxation times and annular
radius ratios was presented [22].

Microfluidics such as Lab-on-chip deals with thermally liable samples, and thus
temperature variation, might lead to the low column efficiency and reduction in analysis
resolution as well as the loss of injected samples [23]. Therefore, another important category
of the research on the electroosmosis problem is thermal characteristics [24–27]. Due to the
large heat transfer area and high heat transfer coefficient, annular geometry is frequently
encountered in micro heat exchangers and microelectronic cooling [28,29]. Nevertheless,
only some literature reported the exploration of the thermal behaviors of electroosmosis in
an annulus. The thermal effects in a mixed electroosmotic pressure-driven flow of power-
law fluids were numerically investigated in [30]. Yavari et al. numerically analyzed both the
hydrodynamic and thermal characteristics of an electrokinetic flow in the absence of viscous
dissipation [28]. The numerical results show that the annular geometry parameter exerts an
impressive influence on the heat transfer performance. In addition, Moghadam explored
the thermal behaviors of AC EOF for different sorts of constant wall heat fluxes [31].

All the aforementioned literature adopted no-slip boundary conditions at walls, how-
ever, which is an empirical model lacking a solid theoretical basis. Recent experiments show
that fluids slip over the surface [32–34], therefore, the velocity is inevitably higher than
that without consideration of the slip condition. The steady mixed electroosmotic pressure-
driven flow of power-law fluids in slit microchannels was investigated with consideration
of the slip condition by presenting semi-analytical and numerical solutions [35]. It is com-
mon in microfluidics that the microchannels through which electrokinetic flow occurs are
fabricated from different materials such as poly-dimeethysiloxane (PDMS) showing hy-
drophobic properties. Therefore, the different electroosmosis actuation systems, including
single layer and two layer, in hydrophobic microchannel considering slip conditions, were
separately studied in [34] and [36].
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To the best of the authors’ knowledge, there is still a lack of comprehensive investi-
gation on the unsteady slippery EOF of power-law fluids through an annulus. However,
the corresponding analysis not only reveals the underlying mechanism that how the fluid
is initiated but is also of practical use in the operation of bio-MEMS and remediation of
contaminated soil. And the search for effective ways to drive various fluids into microchan-
nels of different geometries persists. Bearing this in mind, this paper aims to explore the
slip hydrodynamics at unsteady and steady states, as well as thermal characteristics in the
pressure-driven electrokinetic flow of power-law fluids through a microannulus. The fun-
damental understanding of this phenomenon is crucial for guaranteeing the transporting
efficiency of microdevices associated with fluid transportation, mixing or separation, and
promoting the heat transfer performance of heat exchangers in microelectronics. For the
sake of generality, the flow of the power-law fluid is driven by the pressure gradient and
electric field. In addition, the slip phenomenon at the walls is incorporated in mathematical
formulation to obtain a more realistic microflow model. The novelty of the present work is
the investigation of the flow mechanism for all time scales under the nonlinear coupling of
power-law rheology, slippery interfacial hydrodynamics, and annular geometrical effect,
as well as the evaluation of the heat transfer performance of a slip flow system under the
combined effect of viscous dissipation and Joule heating. The governing equations are
analytically solved in the limiting case of a Newtonian fluid and are numerically solved for
power-law fluids. The velocity and temperature distributions, flow rate, and heat transfer
rate are evaluated at different pertinent parameters.

2. Mathematical Modeling
2.1. Modified Cauchy Momentum Equation

The continuity equation and Cauchy momentum equation for an incompressible
laminar flow are given as [4].

∇ ·V = 0 (1)

ρ[
∂V
∂t

+ (V · ∇)V] = ∇ · τ+ F−∇p∗ (2)

where V is the velocity vector, p* is the pressure, τ is the stress for power-law fluid, F
is the body force acting on liquid, and ρ is the liquid density. Here, the flow is driven
under the combined effect of electroosmotic force arising from the applied electric field,
pressure gradient, and slip hydrodynamics at the walls, as sketched in Figure 1. The
microannulus is characterized by the inner radius r1

* and outer radius r2
* in which the

slip lengths near the inner and outer walls are l*1 and l*2, respectively, and the strength
of the electric field is E0. To facilitate the analysis and capture the primary physics of
slip flow, the following assumptions are applied: Equation (1) the thickness of EDLs at
two walls is far less than ri

*, and thus the EDLs will not overlap, the zeta potentials near
the inner and outer walls ζi

* are constant; Equation (2) in microchannels, the gravity of
fluid is negligible; Equation (3) since the length of the microchannel is far longer than the
characteristic radius of microannulus, the radial velocity can be ignored and only the axial
velocity v* is considered; and Equation (4) the slip phenomenon is represented by Navier’s
slip model [36]. Applying the assumptions above to Equations (1) and (2), one has the
modified Cauchy momentum equation, the slip conditions at the channel walls, and the
initial condition [36,37].

∂v∗

∂t∗
=

1
r∗

∂

∂r∗

(
r∗

η∗

ρ

∂v∗

∂r∗

)
+

1
ρ

ρeE∗0 −
1
ρ
∇p∗ (3)

v∗
∣∣∣∣r∗=r∗1

− l∗1
∂v∗

∂r∗
= 0 , v∗

∣∣∣∣r∗=r∗2
+ l∗2

∂v∗

∂r∗
= 0 , v∗|t∗=0 = 0 (4)
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Figure 1. The schematic of the pressure-driven electrokinetic slip flow in a cylindrical microannulus. 
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Figure 1. The schematic of the pressure-driven electrokinetic slip flow in a cylindrical microannulus.

In Equation (3), η* = mn|∂v*/∂r*|n−1 represents the apparent viscosity of the power-
law fluid where n denotes the flow behavior index of the unit [1], n < 1, n = 0, and
n > 1 physically represent the shear thinning, Newtonian, and shear thickening fluids,
respectively, and mn denotes the flow consistency index of the unit [Nm−2sn] which reduces
to the dynamic viscosity of the Newtonian fluid, namely, m0 of the unit [Nm−2s], when
n = 1. In Equation (3), the local net charge density is subject to Boltzmann distribution based
on the assumption of a local thermodynamic equilibrium ρe = −2ezn0 sinh[(ezψ*)/(kBTa)].
The electric potential distribution ψ* for a symmetric electrolyte due to the presence of the
EDL is determined by the well-known Poisson–Boltzmann (P–B) equation [1,4].

∇2ψ∗ =
2ezn0

ε
sinh(

ezψ∗

kBTa
) (5)

where e denotes the elementary charge, z denotes the ion valence, n0 is the ion concentration
in liquid, kB is the Boltzmann number, and Ta is the absolute temperature. In Equation (4),
l*1 and l*2 are the property parameters of the solid wall and working liquid, representing
the constant slip lengths near the inner and outer walls, respectively. Physically, l*i indicates
the thickness beyond the solid-liquid interface where the velocity extrapolates to zero, as
shown in Figure 1. According to the Debye–Hückel linear approximation [1], the hyperbolic
term sinh[(ezψ*)/(kBTa)] can be linearized as [(ezψ*)/(kBTa)] by expanding the hyperbolic
function up to first order, and it can work well when [(ezψ*)/(kBTa)] < 1, physically for
small zeta potentials, as compared to the thermal energy of ions, kBTa/e < 25.7 mV [4].
Consequently, the electric potential distribution is governed by the following linearized
P–B equation [15].

1
r∗

d
dr∗

(
r∗

dψ∗

dr∗

)
=

2zen0

ε

zeψ∗

kBTa
(6)

which is subject to the boundary conditions [15]

ψ∗|r∗=r∗1
= ζ∗1 , ψ∗|r∗=r∗2

= ζ∗2 (7)

Introducing the dimensionless variables r = r*/R, ψ* = zeψ*/(kBTa), v = v*/Vhs, and
t = t*m0/(ρR2) to Equations (3), (4), (6) and (7) produces the dimensionless governing
equations [36,37].

∂v
∂t

= α
1
r

∂

∂r

(
r
∣∣∣∣∂v

∂r

∣∣∣∣n−1 ∂v
∂r

)
−W2ψ−∇p (8)

(
v− l1

∂v
∂r

)∣∣∣∣r=r1 = 0 ,
(

v + l2
∂v
∂r

)∣∣∣∣r=r2
= 0 , v|t=0 = 0 (9)
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d2ψ

dr2 +
1
r

(
dψ

dr

)
−W2ψ = 0 (10)

ψ|r=r1
= ζ1, ψ|r=r2

= ζ2 (11)

in which α = mn(Vhs/R)n−1/m0, ∇p = ∇p*Vhsm0/(ρR2), and ri = r*
i/R with i = 1,2, and

Vhs = εkBTaE0/(ezm0) means the Helmholtz–Smoluchowski electroosmotic velocity. W = κR
is the electrokinetic width with 1/κ = [2e2z2n0/(εkBTa)]−1/2, denoting the thickness of EDLs,
and R is the reference radius, where li = l*i/R represents the dimensionless slip length, and
ζi represents the dimensionless zeta potential where the subscripts i = 1 and i = 2 stand for
the inner and outer walls, respectively.

Using Equations (8) and (9), one has the dimensionless unsteady flow rate

Q(t) = 2π
∫ r2

r1

vrdr (12)

2.2. Energy Equation

The temperature distribution T* for the thermally fully developed steady flow is
governed by the energy equation [26]

(ρcp)v∗s
∂T∗

∂z∗
= k

1
r∗

∂

∂r∗

(
r∗

∂T∗

∂r∗

)
+ σE2

0 + η

(
dv∗s
dr∗

)2
(13)

qs = k
∂T∗

∂r∗

∣∣∣∣
r∗=r∗1

(
T∗
∣∣∣r∗=r∗1

= T∗w ) , qs = k
∂T∗

∂r∗

∣∣∣∣
r∗=r∗2

(
T∗
∣∣∣r∗=r∗2

= T∗w
)

(14)

where cp denotes the specific heat at constant pressure, k is the thermal conductivity, σ is the
electric conductivity of the liquid, vs

* is the velocity distribution of steady flow, qs denotes the
constant wall heat flux, and T*

w denotes the wall temperature. Further, since the constant
heat flux boundary condition qs = const is adopted, one has ∂[(T*

w − T*)/(T*
w − T*

m)]/∂r* = 0,
thereby, ∂T*/∂r* = dT*

w/dr* = dT*
m/dr*≡const in which T*

m denotes the mean temperature.
Imposing the overall energy balance condition over an elemental control volume yields [26]

dT∗m
dr∗

=

[
2πr∗1qs + 2πr∗2qs + σE0

2π(r∗22 − r∗21 ) + η
∫ r∗2

r∗1

(
∂v∗s1
∂r∗

)2
2πr∗dr∗

]
(ρcp)v∗smπ(r∗22 − r∗21 )

(15)

where v*
sm indicates the mean temperature of steady flow. Introducing the dimensionless

group T = k(T* − T*
w)/(qsR), vs = vs

*/Vhs, F1 =
∫ r2

r1
vsrdr, F2 =

∫ r2
r1
|∂vs/∂r|n−1(∂vs/∂r)2rdr,

S = σE2
0R/qs and Br = mnV2

hs/(qsR)(Vhs/R)n−1 into Equations (13) and (14), and combin-
ing with Equation (15), one has the dimensionless energy equations

1
r

d
dr

(
r

dT
dr

)
−

r2 + r1 + S(r2
2 − r2

1)/2 + BrF2

F1
vs + S + Br

∣∣∣∣dvs
dr

∣∣∣∣n−1(dvs
dr

)2
= 0 (16)

T
∣∣∣r=r1

= 0 , T
∣∣∣r=r2

= 0 (17)

where the first term in the left-hand side (LHS) of Equation (16) denotes the heat generation
caused by heat diffusion, and the remaining terms in LHS denote the heat generations
arising from axial conduction, Joule heating, and viscous dissipation, respectively. To note,
S is the Joule heating parameter and Br is the Brinkman number, representing the viscous
dissipation effect. To provide an in-depth insight into the heat transfer performance of elec-
trokinetic slip flow, the first law analysis is conducted, i.e., the Nusselt number implying the
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heat transfer efficiency is deduced [26,38]. According to Nu = 2qs(r*
2 − r*

1)/(T*
w − T*

m)/k
and the mean temperature

Tm = k(T∗m − T∗w)/(qsR) =
∫ r2

r1

Tvsrdr/
∫ r2

r1

vsrdr (18)

one has the Nusselt number for the slip flow in a microannulus

Nu = −2(r2 − r1)

Tm
(19)

3. Solution Method and Validation

First, P–B Equations (10) and (11) are solved

ψ(r) = AI0(Wr) + BK0(Wr) (20)

where I0 and K0 imply the 0-th order modified Bessel functions of the first kind and second
kind, respectively, and the coefficients are given as A = ζ2K0(Wr1)−ζ1K0(Wr2)

K0(Wr1)I0(Wr2)−K0(Wr2)I0(Wr1)
and

B = ζ2 I0(Wr1)−ζ1 I0(Wr2)
K0(Wr2)I0(Wr1)−K0(Wr1)I0(Wr2)

.

3.1. For Newtonian Fluid (n = 1) and without Consideration of Viscous Dissipation (Br = 0)

In the limiting case of a Newtonian fluid, Equations (8) and (9) reduce to

∂vN

∂t
=

∂2vN

∂r2 +
1
r

∂vN

∂r
−W2ψ−∇p (21)

(
vN − l1

∂vN

∂r

)∣∣∣∣r=r1 = 0 ,
(

vN + l2
∂vN

∂r

)∣∣∣∣r=r2
= 0 , vN

∣∣∣t=0 = 0 (22)

where vN is the velocity of a Newtonian fluid. Since it is inhomogeneous, Equation (21) is
homogenized as

∂ṽN

∂t̃
=

∂2ṽN

∂r2 +
1
r

∂ṽN

∂r
(23)(

ṽN − l1
∂ṽN

∂r

)∣∣∣∣r=r1 = 0 ,
(

ṽN + l2
∂ṽN

∂r

)∣∣∣∣r=r2
= 0 , ṽN

∣∣∣t̃=t−τ=0 = −W2ψ−∇p (24)

Using the method of variable separation, Equations (23) and (24) are solved to

ṽN(r, t̃; τ) =
∞

∑
m=1

Cm M0(λmr)e−λ2
m t̃ (25)

The coefficient Cm and the basis function M0(λmr) are presented in the Appendix A for
conciseness and readability. Applying Duhamel’s principle and combining Equation (25),
the solution to Equations (21) and (22) is obtained as

vN =
∫ t

0
ṽN(r, t̃; τ)dτ =

∞

∑
m=1

Cm

λ2
m

M0(λmr)−
∞

∑
m=1

Cm

λ2
m

M0(λmr)e−λ2
mt (26)

As the slip flow evolves to the steady state, the temporal term in Equation (21) vanishes
and the steady velocity is solved from Equations (21) and (22) as

vN
s = ψ +

1
4
∇pr2 + D ln r + E (27)

where the coefficients D and E are provided in the Appendix A. The first and second
terms in the RHS of Equation (26) represent the steady velocity and the transient one,
respectively. When t→∞, the second term in Equation (26) vanishes and thus, vN→vs

N.
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Therefore, in evaluating the unsteady velocity, to eliminate the oscillation caused by a
truncated error in series solution (26), the first term in Equation (26) is replaced with vs

N,
given by Equation (27), and the final version of velocity for unsteady slip flow reads

vN =

(
ψ +

1
4
∇pr2 + D ln r + E

)
−

∞

∑
m=1

Cm

λ2
m

M0(λmr)e−λ2
mt (28)

Similarly, as t→∞, vN automatically becomes vs
N. With vs

N obtained, for the New-
tonian fluid, Equations (16) and (17) are analytically solved in the absence of viscous
dissipation (Br = 0)

TN =
F

W2 ψ +
F∇p

64
r4 +

1
4
(EF− S− DF)r2 +

DF
4

r2 ln r + [C0 −Q0(r1)] ln r + T0 (29)

where the coefficients F, C0, T0, and the intermediate function Q0(r) are presented in the
Appendix A. The symbolic simplification of several coefficients is carried out with the help
of Maple, and the computation and graphical presentation of Equations (28) and (29) are
carried out using Matlab.

3.2. For Power-Law Fluids (n 6= 1) and with Consideration of Viscous Dissipation (Br 6= 0)

For power-law fluids and when considering the viscous dissipation effect, the mo-
mentum Equations (8) and (9) and the energy Equations (16) and (17) are solved using the
finite difference method. Let tl = l∆t, rj = j∆r, vl

s,j = vs(j∆r,l∆t), vl
j = v(j∆r,l∆t), ψj = ψ(j∆r),

and Tl
j = T(j∆r,l∆t), l = 1,2, . . . ,L and j = 1,2, . . . ,J. The explicit finite difference scheme

is used for time and the central difference scheme is adopted for space. According to
Equation (9), the numerical velocity at the boundaries is vl

1 = l1(4vl
2 – vl

3)/(2∆r + 3l1) and
vl

J = l2(4vl
J−1 – vl

J−2)/(2∆r + 3l2). The bulk liquid velocity is computed by following the
numerical algorithm

vl+1
j = vl

j + ∆t[Πl
j −W2ψj −∇p] (30)

Πl
j = α(gl

j)
n−1
(

vl
j+1−vl

j−1
2rj∆r +

vl
j+1−2vl

j+vl
j−1

∆r2

)
+ α(n − 1)(gl

j)
n−2 gl

j+1−gl
j−1

2∆r
vl

j+1−vl
j−1

2∆r .

gl
j =

∣∣∣∣ vl
j+1−vl

j−1
2∆r

∣∣∣∣, j = 2,3, . . . ,J – 1. When t→∞, the transient velocity approaches steady

velocity vl
s, i.e.,

∣∣∣vl − vl+1
∣∣∣< err with err being a specified criterion. Consequently, the flow

rates can be computed from Equation (12) by the composite trapezoidal integration method.
The temporal term ∂T/∂t has been introduced in the RHS of Equation (16), which

vanishes when t→∞, and T becomes the fully developed temperature. The numerical

velocity and temperature are given as vectors Vl =
[
vl

s,j

]T

1×J
and Tl =

[
Tl

j

]T

1×J
. The Crank–

Nicolson scheme is used for time and the central difference scheme is adopted for space.
Combining with the boundary conditions (17), the numerical algorithm is

Tl+1= Λ−1ΓTl+Λ−1Ψ× ∆t (31)

Here, Λ = tridiag(I,A,I) + sparse(2,1,−a + b,J,J) + sparse(J − 1,J,−a − b,J,J),
Γ= tridiag(Z,B,Z) − sparse(2,1,−a + b,J,J)−sparse(J − 1,J,−a − b,J,J), A, B, I, Z are block ma-
trices, expressed as A = tridiag(−a + b,1 + 2a,−a− b), B = tridiag(a − b,1 − 2a,a + b), where A
and B are matrices with (J − 1)×(J − 1) elements, I = [1]1×1, Z = [0]1×1,
a = c/2, b = ∆t/(4rj∆r), c = ∆t/(∆r2) with j = 1,2, . . . J − 1, sparse(p,q,u,J,J) = [xi,j]J×J means a
sparse matrix denoting that, except for xp,q = u, the remaining elements equal zero. The
inhomogeneous term in Equation (13) is discretized as

Ψ =

{
−(r2 + r1 + S(r2

2 − r2
1)/2 + BrF2)

[
vs,j

]
1×J

/F1 + S + Br
(∣∣∣gs,j

∣∣∣
1×J

)n−1[(
gs,j

)
1×J

]2
}T

(32)
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The coefficients F1 =
∫ r2

r1
vs,jrdr and F2 =

∫ r2
r1

(∣∣gs,j
∣∣
1×J

)n−1[(
gs,j
)

1×J

]2
rdr are computed

by using the composite trapezoidal integration method, gs,1 = (−vs,3 + 4vs,2 − 3vs,1)/(2∆r),
gs,j = (vs,j+1 − vs,j−1)/(2∆r), gs,J = (vs,J−2 − 4vs,J−1 + 3vs,J)/(2∆r), with j = 2,3, . . . ,J − 1.
With the numerical temperature T1 obtained, the mean temperature and Nusselt num-
ber can be computed from Equations (15) and (16) by using the composite trapezoidal
integration method.

In Figure 2a, in the limiting case of a Newtonian fluid, the numerical velocity computed
based on Equation (30) is compared with the analytical velocity obtained from Equation (28)
and the existing data presented in the study [28] by Yavari et al. and [13] by Tsao. In
Figure 2b, for power-law fluids, the numerical velocities computed from Equation (30) are
compared with the existing data from [30] by Shamshiri et al. In Figure 2c, the average
temperature Tm is numerically computed for different flow behavior indices n and grid
numbers in terms of space J. Irrespective of the value of n, when c = 0.016 and J ≥ 151, the
curve of Tm with J shows little change, meaning that J ≥ 151 is enough to obtain steady
numerical solutions. To be economical, the grid number J is chosen as 201. Figure 2a,b
shows when J = 201, the numerical velocities agree well with the analytical velocity or the
existing data, meaning that the numerical algorithm is feasible.

Micromachines 2023, 14, x FOR PEER REVIEW 9 of 19 
 

 

 

 

 

Figure 2. (a) The comparison among the analytical velocity, numerical velocity, and existing data 

from the studies [13,28] without consideration of slip velocity at the channel walls, (b) the compar-

ison between numerical velocity and existing data in [30] different n, and (c) the grid independence 

study of the mean temperature for shear thinning fluid and shear thickening fluid when Br = 0.005, 

S = 2, and ζ1 = ζ2 = −1. 

4. Results 

The unsteady hydrodynamics and heat transfer in the electrokinetic slip flow of 

power-law fluids in a microannulus are investigated by evaluating the unsteady velocity 

field, flow rate, fully developed temperature field, and Nusselt number at different pa-

rameters. The physical parameters take the given values in Nomenclature based on prac-

tical uses [4–6,39]. To note, ζi* = −0.025V with i = 1,2, and the reason for assuming a small 

zeta potential is to use the Debye–Hückel linearization and the fact that the small zeta 

potential is physically acceptable [1]. To obtain more realistic predictions, it is essential to 

present the permissible ranges of governing parameters. Based on the well-established 

electroosmosis theory of power-law fluid, the flow behavior index n ranges from 0.6 to 1.4 

[23] and the electrokinetic width W ranges from 10 to 100 [4,23]. The order of the Brinkman 

number Br can be of O(10−2) since the orders of reference velocity, apparent viscosity, and 

Figure 2. (a) The comparison among the analytical velocity, numerical velocity, and existing data
from the studies [13,28] without consideration of slip velocity at the channel walls, (b) the comparison
between numerical velocity and existing data in [30] different n, and (c) the grid independence study
of the mean temperature for shear thinning fluid and shear thickening fluid when Br = 0.005, S = 2,
and ζ1 = ζ2 = −1.
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4. Results

The unsteady hydrodynamics and heat transfer in the electrokinetic slip flow of power-
law fluids in a microannulus are investigated by evaluating the unsteady velocity field, flow
rate, fully developed temperature field, and Nusselt number at different parameters. The
physical parameters take the given values in Nomenclature based on practical uses [4–6,39].
To note, ζi

* = −0.025V with i = 1,2, and the reason for assuming a small zeta potential is to
use the Debye–Hückel linearization and the fact that the small zeta potential is physically
acceptable [1]. To obtain more realistic predictions, it is essential to present the permissible
ranges of governing parameters. Based on the well-established electroosmosis theory of
power-law fluid, the flow behavior index n ranges from 0.6 to 1.4 [23] and the electrokinetic
width W ranges from 10 to 100 [4,23]. The order of the Brinkman number Br can be of
O(10−2) since the orders of reference velocity, apparent viscosity, and reference radius are
identical to that from the studies [7,39]. According to the study [36], the slip lengths li range
from 0 to 0.1 and the dimensionless pressure gradient ∇p is of the order O(1), which is
chosen as 5.

Figure 3 presents the unsteady velocity distribution over a cross-sectioned area of a
microannulus at t = 0.006, t = 0.06, and t = 0.6 for the shear thinning, Newtonian, and shear
thickening fluids. From Figure 3a,d,g, irrespective of the fluid type, at first the fluid at
and near the channel walls is set in motion under the electroosmotic force and slippery
effect, which then drags the bulk fluid in the central area forward under the shear stress
and pressure gradient, forming the pressure driven electrokinetic slip flow. Figure 3a–c
shows that for the shear thinning fluid, as time evolves from 0.006 to 0.6, the velocity grows
obviously, and the magnitude of velocity eventually goes beyond 3. In contrast, Figure 3g–i
shows that for the shear thickening fluid, from t = 0.006 to t = 0.06, the velocity distribution
evolves, however, it changes little when time lapses from t = 0.06 to t = 0.6. The comparison
among Figure 3a–c,d–f,g–i indicates that as time evolves, the shear thinning fluid attains
the greatest velocity which is two times more than that of Newtonian and shear thickening
fluids. Moreover, as time goes beyond 0.06, the change in velocity becomes smaller when
the fluid changes from a shear thinning to a shear thickening fluid, meaning that the shear
thickening fluid achieves the steady state earlier than the shear thinning and Newtonian
fluids. In addition, since li = 0.01 (i = 1, 2), the fluid at the channel walls is not static and
slips over the solid walls.

As shown in Figure 4, the variation of the velocity profile with slip length ratio lr (l2/l1)
at different times is presented for the shear thinning, Newtonian, and shear thickening
fluids. In terms of the influence of the slip length ratio, from Figure 4a,d,g,j,m, no matter
what type of fluid is considered, since the slip flow is initiated close to the channel walls
at first and l1 is fixed, the flow near the channel walls is accelerated with the increase in
lr. As time evolves, with the bulk liquid set in motion, the influence of the change in the
slip length ratio extends from the outer channel wall to the bulk liquid. When lr = 1, the
velocity shows a nearly symmetric profile, while the asymmetric velocity profile is observed
when lr 6= 1. To note, when lr = 0, the fluid at the outer channel wall is static all the time,
corresponding to the no-slip boundary condition. In addition, different from that under the
no-slip condition, the fluid under the slip condition is not subject to resistance at the walls
and slips over the solid walls, leading to a higher velocity for the bulk liquid. In terms of
the influence of fluid type, namely, n, as shown in Figure 4a,d,g,j,m and Figure 4b,e,h,k,n,
compared to the shear thinning and Newtonian fluids, the shear thickening fluid in the
central area achieves the greatest velocity faster when driven by the surrounding fluid
layers, therefore, the flow of shear thickening fluid reaches the steady state earlier, as
witnessed in Figure 4k,l,n,o. Furthermore, the comparison among Figure 4c,f,i,l,o shows
that the flow of shear thinning fluids tends to exhibit plug-like profiles and that of shear
thickening fluids exhibits parabolic profiles.
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Figure 3. The time evolution of the velocity distribution over a cross-sectioned area of microannulus
(a) n = 0.8, t = 0.006, (b) n = 0.8, t = 0.06, (c) n = 0.8, t = 0.6, (d) n = 1, t = 0.006, (e) n = 1, t = 0.06,
(f) n = 1, t = 0.6, (g) n = 1.2, t = 0.006, (h) n = 1.2, t = 0.06, and (i) n = 1.2, t = 0.6 when l1 = l2 = 0.01 and
W = 30.
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Figure 4. The variation of the velocity profile with a ratio of slip length lr at different time and flow
behavior indices (a) n = 0.8, t = 0.006, (b) n = 0.8, t = 0.06, (c) n = 0.8, t = 0.6, (d) n = 0.9, t = 0.006,
(e) n = 0.9, t = 0.06, (f) n = 0.9, t = 0.6, (g) n = 1, t = 0.006, (h) n = 1, t = 0.06, (i) n = 1, t = 0.6, (j) n = 1.1,
t = 0.006, (k) n = 1.1, t = 0.06, (l) n = 1.1, t = 0.6, (m) n = 1.2, t = 0.006, (n) n = 1.2, t = 0.06, and (o) n = 1.2,
t = 0.6, when W = 30, l1 = 0.05.

In Figure 5, the variation of the velocity profile with electrokinetic width W at a
different time is presented for the shear thinning, Newtonian, and shear thickening fluids.
When t = 0.006, from Figure 5a,d,g,j,m, since li 6= 0, the fluid at and near the channel walls
attains velocity first, increasing with W and decreasing with n. When the time increases
to 0.06, as shown in Figure 5b,e,h,k,n, the fluid near the channel walls drives the fluid in
the central area to move forward. The velocity profile of the shear thinning fluid is still
developing and the shear thickening fluid flow approaches the developed state. This is
especially evident with the greater value of electrokinetic width W. From Figure 5c,f,i,l,o,
the velocity profile becomes steady, which shows a plug-like pattern when the electrokinetic
width changes from 10 to 100 or when the fluid changes from shear thickening to shear
thinning. Compared to the Newtonian and shear thickening fluids, the slip flow of a shear
thinning fluid is much more sensitive to the change in electrokinetic width W.
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Figure 5. The variation of the velocity distribution with electrokinetic width W at a different time and
flow behavior indices (a) n = 0.8, t = 0.006, (b) n = 0.8, t = 0.06, (c) n = 0.8, t = 0.6, (d) n = 0.9, t = 0.006,
(e) n = 0.9, t = 0.06, (f) n = 0.9, t = 0.6, (g) n = 1, t = 0.006, (h) n = 1, t = 0.06, (i) n = 1, t = 0.6, (j) n = 1.1,
t = 0.006, (k) n = 1.1, t = 0.06, (l) n = 1.1, t = 0.6, (m) n = 1.2, t = 0.006, (n) n = 1.2, t = 0.06, and (o) n = 1.2,
t = 0.6, when l1 = l2 = 0.05.

Figure 6 illustrates the time evolution of the unsteady flow rate ratio for different flow
behavior indices n at (a) l1 = l2 = 0.01 and (b) l1 = l2 = 0.05. The unsteady flow rate ratio is
taken as the ratio of the unsteady flow rate to the respective steady flow rate to capture the
temporal physical picture of the unsteady slip flow for different types of fluids. As shown
in Figure 6a, when n ranges from 0.6 to 1.4, the fluid changes from shear thinning to shear
thickening, and the slip flow achieves the steady state earlier and earlier. This is due to the
fact that the higher apparent viscosity of the shear thickening fluid results in a stronger
resistance to the flow and enables the unsteady motion to arrive at the steady state faster.
Compared to Figure 6a,b shows that the increase in slip lengths li intensifies the driving
force near the channel walls; as a result, the unsteady flow needs a longer time to arrive at
the steady state.
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Figure 6. The time evolution of the flow rate at different flow behavior indices n when (a) W = 30,
l1 = l2 = 0.01, and (b) W = 30, l1 = l2 = 0.05.

Figure 7 shows the variation of the temperature profile with slip length ratio lr for
the shear thinning fluid, Newtonian fluid, and shear thickening fluid. Figure 7 shows that
no matter what type of fluid is considered, with the increase in the slip length ratio lr, the
left side of the temperature profile augments, and the right side of the temperature profile
shows a slight decrement, in the meantime, the minimum value of temperature shifts from
left to right. In addition, in the limiting case of the no-slip condition at one channel wall
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(lr = 0), the temperature difference between the bulk liquid and channel walls is the widest,
decreasing when the slip length ratio is enhanced, meaning that the presence of slip velocity
at solid walls promotes the heat transfer of the electrokinetic slip flow. Furthermore, the
influence of n and that of lr will not interact with each other.
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Figure 8 shows the variation of the temperature profile with the slip length ratio lr
for the shear thinning fluid, Newtonian fluid, and shear thickening fluid. It is obvious
that the temperature profile decreases; namely, the temperature difference is widened with
the increase in Brinkman number Br. The greater Brinkman number implies a stronger
viscous dissipation effect which inevitably hinders the heat transfer of the electrokinetic
flow; as a result, the widened temperature difference is observed. When the fluid changes
from shear thinning to shear thickening, the influence of the Brinkman number Br on the
temperature profile is reduced, since the corresponding velocity gradient of electrokinetic
flow becomes smaller.
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The variation in the Nusselt number Nu with the flow behavior index n is presented
in Figure 9 for different slip lengths li. When considering the shear thinning fluid (n < 1),
the Nusselt number Nu augments with the flow behavior index n, and the increasing rate
is enhanced with slip lengths li. When considering the shear thickening fluid (n > 1), the
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Nusselt number Nu shows little change with n, though it still increases with li, meaning that
the influence of n on the Nusselt number Nu becomes smaller; in other words, Nu is not as
susceptible as that of the shear thinning fluid to the change in the flow behavior index n.
The curve of Nu with n increases as a whole with the slip lengths li. Although the flows of
both shear thinning and shear thickening fluids are accelerated by the greater slip lengths,
the velocity distribution becomes more uniform for shear thickening fluids; in contrast, a
wider velocity difference between the channel walls and central region occurs for shear
thinning fluids, which partly suppresses the heat transfer of the bulk liquid. Therefore,
the increase in Nu with slip lengths is especially significant for shear thickening fluids.
Consequently, in engineering practice, when driving the shear thickening fluids in the
microannulus, the heat transfer performance can be promoted by adjusting the slip length.
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5. Conclusions

The temporal physical picture of the unsteady pressure-driven electrokinetic slip flow
for power-law fluids in a microannulus is provided, based on which, the heat transfer of a
steady flow is analyzed for different governing parameters including the flow behavior
index (n), slip lengths (li), electrokinetic width (W), and Brinkman number (Br). In terms of
the temporal hydrodynamical behavior of power-law fluids, the flow is accelerated with
the increase in slip lengths and electrokinetic width and the flow of shear thinning fluids
is greater and much more sensitive to the change of the above parameters than that of
Newtonian and shear thickening fluids. When the fluid changes from shear thinning to
shear thickening or the slip lengths are reduced, the flow reaches the steady state earlier. In
terms of the thermal behavior of the steady flow, the temperature profile increases with
the slip length ratio and flow behavior index, which decreases with the Brinkman number,
meaning that the more uniform the velocity distribution, the narrower the temperature
difference between the channel walls and bulk liquid, and the more intense the heat transfer
performance. Therefore, in practical uses, the slip surface can be reliably engineered to
achieve a higher flow rate and promote heat transfer. The analysis above can serve as a
theoretical guidance for the design and optimum operation of relevant microfluidic devices.
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Nomenclature

Br Brinkman number
e Elementary charge, 1.6 × 10−19 C
E0 Strength of applied electric field, 1 × 104 V·m−1

h Convective heat transfer coefficient (W·m−2·K−1)
k Thermal conductivity, 0.618 W·m−1·K−1

kB Boltzmann constant, 1.38 × 10−23 J·K−1

li Dimensionless slip length
m0 Dynamic viscosity of Newtonian fluid, 9 × 10−4 N·m−2·s
mn Flow consistency index, 9 × 10−4 N·m−2·sn

n Flow behavior index
n0 Ion concentration (m−3)
Nu Nusselt number
p Dimensionless pressure
qs Heat flux (W·m−2)
Q Dimensionless flow rate
r Dimensionless radial coordinate
ri r1 for dimensionless inner radius, r2 for dimensionless outer radius
R Reference radius, 1 × 10−4 m
S Joule heating parameter
t Dimensionless time
Ta Absolute temperature, 293 K
T Dimensionless temperature
v Dimensionless velocity
Vhs Helmholtz–Smoluchowski electroosmotic velocity (m·s−1)
W Electrokinetic width of EDL
z Valence of ions, 1
Greek Symbols
α Dimensionless flow consistency index
ψ Dimensionless electric potential
ρe Net charge density (C·m−3)
ρ Density of fluid (kg·m−3)
σ Electrical conductivity (W·m−1·K−1)
ζi Dimensionless zeta potential
ε Fluid permittivity (F·m−1)
η Dimensionless power-law nanofluid viscosity
κ Debye–Hückel parameter (m−1)
τ Shear stress of power-law fluid (N·m−2)
ρCp Heat capacity per unit volume (J·m−3·K−1)
Subscripts
i i = 1 for inner wall, i = 2 for outer wall
m Mean value
s Steady flow
w Walls
ν Order of Bessel function
r Ratio of the outer wall to the inner wall
Superscripts
N Newtonian fluid
* Dimensional version
’ First order derivative
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Appendix A

In Equation (25),

Cm =
∫ r2

r1
(−W2ψ−∇p)rM0(λmr)dr/G0(λm)

= ∇p[r2L(λm ,r2)−r1L(λm ,r1)]
−λmG0(λm)

+ W2[r2G(λm ,r2)−r1G(λm ,r1)]

−(W2+λ2
m)G0(λm)

(A1)

G0(λmr) = Zm J0(λmr)−WmY0(λmr) (A2)

M̃0(λm) = Z2
m[NZ(λm, r2)− NZ(λm, r1)] + W2

m[NW(λm, r2)− NW(λm, r1)]
−2ZmWm[N(λm, r2)− N(λm, r1)]

(A3)

L(λm, r) = Zm J1(λmr)−WmY1(λmr) (A4)

G(λm, r) = Zm
[
λm J1(λmr)ψ + J0(λmr)ψ′

]
−Wm

[
λmY1(λmr)ψ + Y0(λmr)ψ′

]
(A5)

NZ(λm, r) = r2[J2
0 (λmr) + J2

1 (λmr)]/2 (A6)

NW(λm, r) = r2[Y2
0 (λmr) + Y2

1 (λmr)]/2 (A7)

N(λm, r) = r2[J0(λmr)Y0(λmr) + J1(λmr)Y1(λmr)]/2 (A8)

ψ′ = AWI1(Wr)− BWK1(Wr) (A9)

I1 and K1 mean the 1-th order Bessel functions of the first kind and second kind,
respectively, and the relevant coefficients are

Zm = Y0(λmr1)− l1λmY1(λmr1) + Y0(λmr2) + l2λmY1(λmr2) (A10)

Wm = J0(λmr1)− l1λm J1(λmr1) + J0(λmr2) + l2λm J1(λmr2) (A11)

where λm, (m = 1,2, . . . ) are the roots of following transcendental equation

[J0(λmr2) + l2λm J1(λmr2)][Y0(λmr1)− l1λmY1(λmr1)]
−[J0(λmr1)− l1λm J1(λmr1)][Y0(λmr2) + l2λmY1(λmr2)] = 0

(A12)

with Jν and Yν (i = 0,1) denoting the ν-th order Bessel functions of the first kind and
second kind.

The coefficients in Equation (27) are given as

D =
ζ2 +∇pr2

2/4 + l1[ψ′(r1) +∇pr2/2]− ζ1 −∇pr2
1/4 + l2[ψ′(r2) +∇pr2/2]

ln r1 − l2/r2 − ln r2 − l1/r1
(A13)

E = l1[ψ′(r1) +∇pr1/2 + D/r1]− (ζ1 +∇pr2
1/4 + D ln r1) (A14)

The coefficients and intermediate functions P(r) and Q0(r) in Equation (29) are

T0 = −P(r2)− [C0 −Q0(r1)] ln r2 (A15)

C0 =
P(r2)− P(r1) + Q0(r1)(ln r1 − ln r2)

ln r1 + ln r2
(A16)

F =
r1 + r2 + S(r2

2 − r2
1)

P0(r2)− P0(r1)
(A17)

P(r) =
F

W2 ψ +
F∇p

64
r4 +

1
4
(EF− S− DF)r2 +

DF
4

r2 ln r (A18)

Q0(r) =
F
W

rψ′ +
F∇p

16
r4 +

1
4
(2EF− 2S− DF)r2 +

DF
2

r2 ln r (A19)

in which
P0(r) =

1
W

rψ′ +
∇p
16

r4 +
1
4
(2E− D)r2 +

D
2

r2 ln r (A20)
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