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Abstract: An efficient multi-objective optimization method of temperature and stress for a mi-
crosystem based on particle swarm optimization (PSO) was established, which is used to map the
relationship between through-silicon via (TSV) structural design parameters and performance ob-
jectives in the microsystem, and complete optimization temperature, stress and thermal expansion
deformation efficiently. The relationship between the design and performance parameters is obtained
by a finite element method (FEM) simulation model. The neural network is built and trained in
order to understand the mapping relationship. Then, the design parameters are iteratively optimized
using the PSO algorithm, and the FEM results are used to verify the efficiency and reliability of the
optimization methods. When the optimization target of peak temperature, bump temperature, TSV
temperature, maximum stress and maximum thermal deformation are set as 100 ◦C, 55 ◦C, 35 ◦C,
180 Mpa and 12 µm, the optimization results are as follows: the peak temperature is 97.90 ◦C, the
bump temperature is 56.01 ◦C, the TSV temperature is 31.52 ◦C, the maximum stress is 247.4 Mpa
and the maximum expansion deformation is 11.14 µm. The corresponding TSV structure design
parameters are as follows: the radius of TSV is 10.28 µm, the pitch is 65 µm and the thickness of
SiO2 is 0.83 µm. The error between the optimization result and the target temperature is 2.1%, 1.8%,
9.9%, 37.4% and 7.2% respectively. The PSO method has been verified by regression analysis, and the
difference between the temperature and deformation optimization results of the FEM method is not
more than 3%. The stress error has been analyzed, and the reliability of the developed method has
been verified. While ensuring the accuracy of the results, the proposed optimization method reduces
the time consumption of a single simulation from 2 h to 70 s, saves a lot of time and human resources,
greatly improves the efficiency of the optimization design of microsystems, and has great significance
for the development of microsystems.

Keywords: TSV; optimization; particle swarm optimization algorithm; microsystem

1. Introduction

With the continuous shrinking of CMOS process nodes, the continuation of Moore’s
Law is restricted by physical limits. As an extension of Moore’s Law, three-dimensional
integrated circuits have received more and more attention [1]. Three-dimensional mi-
crosystem (3D microsystem) technology has the advantages of miniaturization, integration,
intelligence, low cost, high performance, mass production and so on, and is widely used
in various fields [2–4]. Because of the increasing power density in a smaller area and
the higher thermal resistance, the temperature distribution on the chip increases signifi-
cantly in the stacking of a 3D microsystem, and the thermal problem becomes particularly
serious. On the one hand, high temperature will affect the performance of the devices
in the circuit. On the other hand, the thermal stress caused by the mismatch of thermal
expansion coefficients between different materials will also have a negative influence on
the circuit [5–7]. Excessive thermal stress will bring serious thermal stress problems to the
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complex three-dimensional integrated structure, causing TSV copper pillars to peel off the
contact surface of the substrate, or cracks in the bonding, micro bumps, and sink bottom [8].
Even if there is no destruction to device structure, the reduction of device carrier mobility
caused by thermal stress will also lead to the deterioration of circuit performance [9,10].
Therefore, reducing the thermal stress in the silicon substrate is particularly important
to ensure the reliability of the device. Thermal and stress coupling problems caused by
heat accumulation in microsystems is attracting more and more attention. Therefore, it is
important to investigate the thermal effect on microsystems and develop a fast and efficient
microsystem design method.

In the last decade, the thermal models of TSV and TSV arrays have been systematically
investigated and established. Meanwhile, the thermal models of 3D microsystems have
also been studied. The thermal models in 3D microsystems mainly include 3D networks,
equivalent thermal conductivity (ETC) models, FEM, and so on [11]. Lua J H [12] deduced
an empirical formula for thermal conductivity under different TSV structural parameters
based on modeling simulation. Chen et al. [13] established and verified the equivalent
thermal resistance model of TSV, and rapidly predicted the thermal performance of a 3D
stacked die package based on TSV through the proposed model. Xiao et al. [14] established
a fast and accurate equivalent thermal model for TSV; several parameters, including pitch,
the thickness of SiO2, and the radius of TSV, have been considered, and the accuracy of the
proposed model has been verified by FEM. Chen Z [15] simulated the thermo-mechanical
reliability of TSV-based stacked packaging by means of FEM analysis, and analyze the data
to optimize structural parameters by design of experiment (DOE) method.

The heat generation and heat dissipation performance of each module in the micro
system are the two major factors that determine the temperature characteristics of the 3D
integrated system. Therefore, most researches consider to alleviate the power problem
caused by the heat accumulation of the micro system from the aspects of enhancing the
heat dissipation performance and reducing the heat generation. Kuan H. Lu et al. [16]
studied the thermomechanical reliability of 3D interconnects and found that the thermal
stress in silicon decreases with the increase of the distance from the isolated TSV, and
increases with the increase of the TSV diameter. Hanjie Yang et al. [17] established a multi
-field coupling analysis model to study the influence of the SiO2 insulation layer, structural
parameters and insulating layer materials on the thermal stress of TSV. They proposed
that the SiO2 insulation layer has an important influence on the thermal stress of TSV. The
greater the thickness of the SiO2 insulation layer with low thermal conductivity, the smaller
the maximum equivalent stress value of the SiO2/Cu interface and the equivalent stress
value of Si area, and the smaller the structural parameter q (q = D/P), the smaller the
maximum equivalent stress and maximum deformation are, and BCB and polyethylene
terephthalate can effectively reduce the thermal stress. Yen Yi Germany Hoe [18] analyzed
the influence of TSV spacing, TSV width-to-height ratio, oxide layer thickness, and TSV
material changes on the thermal distribution and maximum value of TSV, and analyzed
the combination of different combination factors on the thermal effect of TSV in integrated
circuits, but there was a certain deviation because no coupling analysis was used. Previous
research shows that the most effective methods proposed at present to optimize thermal
stress include increasing heat sinks to improve heat dissipation, changing TSV size filling
materials, and adopting new structures to reduce thermal stress.

In the past, people mostly used some traditional methods to change TSV size structure
for optimization such as FEM or ETC models. These traditional methods were too compli-
cated and depended on expert experience [19,20]. The thermal stress coupling optimization
problem of 3D microsystems is extremely complex, involving multiple physical fields such
as electricity, heat, force, etc. The coupled multiple physical fields greatly increase the
calculation amount of the FEM model. For example, when FEM simulation software is
used for simulation design, a pair of simple TSV electric thermal multi-field coupling
simulations takes about 20 min. When considering the accuracy, it will take several hours
to select a more refined mesh generation finish simulation. The structural parameters of
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the microsystem are modified repeatedly for iterative optimization, which wastes a lot of
time and greatly reduces the design efficiency of the microsystem. In another example,
human experience judgment, analysis and calculation are inevitably wrong, especially
when the amount of calculation becomes cumbersome and complex, which puts forward
more stringent requirements on the ability of designers. In terms of time resources and
labor costs, it is more and more difficult to design complex microsystems with multi-field
coupling and multi-objective cooperative optimization, so it is necessary to find a fast and
efficient method to improve the efficiency of temperature optimization in microsystems.
In recent years, artificial intelligence (AI) algorithms have gradually emerged. These algo-
rithms learn from human experience include genetic algorithms, ant colony optimization
algorithms, and PSO algorithms, etc., which are widely used in electronics, automation,
management and other industries to improve work efficiency and effect [21,22]. In 2011,
Pervaiz, et al. successfully combined artificial intelligence to apply a particle swarm opti-
mization algorithm to medical disease detection [23]. In 2013, Chen, et al. applied particle
swarm optimization to the field of chemistry, proposed a new hybrid gradient particle
swarm optimization (HGPSO) algorithm, and completed the challenging dynamic opti-
mization problem in chemistry [24]. In 2022, Saini, et al. used an AI algorithm to study and
optimize the availability of biological and chemical units in sewage treatment plants to
achieve the required level of reliability and maintainability [25]. In 2021, Lim, et al. took
an experimental study on the vertical squeezing route Taylor flow for θ = 20, 45, 90, 135,
and 160◦ at different flow rates of helium (He) and ethanol. By employing an extreme θ

of 20 and 160◦, an in-depth knowledge of the associated mechanics is gained [26]. Using
machine learning instead of expert experience, artificial intelligence methods have unique
advantages in solving problems with complex computation and huge time consumption.
The neural network model is trained by a large amount of data to establish the mapping
relationship, which is faster and less prone to error than manual judgment. AI methods
have great potential in realizing multi-field coupling and multi-objective co-operative
optimization of complex microsystems.

In this research, a fast and efficient design method based on artificial intelligence is
proposed for the complex thermal problems of microsystems. The optimization process of
thermal problems in microsystems based on the AI method is introduced in Section 2. The
thermal optimization results of the microsystem are obtained in Section 3. In Section 4, the
speediness and coincidence of the optimization results are verified by comparing with the
FEM simulation. Section 5 concludes this paper.

2. Materials and Methods

In order to optimize the structure of TSV to solve the thermal and stress problems
problem, the intelligent optimization method for its structure parameters is developed
based on COMSOL software and AI methods, as shown in Figure 1. Based on the obtained
data, the neural network models are trained to describe the relationship between the
TSV structure parameters and performance parameters of microsystems. According to
the established optimization criteria, the PSO algorithm is used to optimize the design
parameters of TSV.
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Figure 1. Flowchart of the developed intelligent optimization method for the parameters of TSV.

The details of the developed method are as follows:
Step 1 Obtaining data by FEM. FEM is a numerical technique for solving approximate

solutions of boundary value problems of partial differential equations. It uses the variation
method to minimize the error function and produce a stable solution. Compared with
traditional methods such as thermal resistance network and equivalent model, the finite
element method not only has a higher calculation accuracy, but also can adapt to various
complex shapes. Therefore, it has become an effective engineering analysis method and has
been widely used in the research and design of microsystems. In order to obtain the database
required for neural network training, the TSV array model based on FEM needs to be accurately
described. First of all, a 4 × 4 TSV array is simulated and discussed. The establishment and
simulation steps of the finite element model are shown in Figure 2 [3,27]. Figure 3 shows
the structural model between the two TSVs. TSV parameters are R (TSV radius), P (TSV
pitch) and tox (oxide liner thickness). Since this is a simulation, the dimensions here are
taken as representative data. The thermal conductive layer is 20 µm, the BCB layer is
10 µm, and the silicon substrate is 50 µm. After setting up the above parts, the next part is
the core TSV part. The TSV composed of copper and bump provide vertical interconnection
through silicon substrate. Due to the need for subsequent experiments, multiple sets of
values are taken for the dimensional parameters of the TSV. The TSV diameters are taken
as 3–11 µm, pitches as 25–65 µm, and the thickness of SiO2 as 0.1–0.9 µm. The Cu3Sn micro
bumps are simplified as cylinders with a radius of 6 µm and height of 10 µm. The thermal
multi-field coupling of solid heat transfer and thermal expansion is selected as the physical
field. In order to make the heat flow into the model uniformly, a 50 µm × 50 µm heating
chip with a thickness of 10 µm and a heat dissipation rate of 1 W is placed in the center of
the model [28,29], and the thermal conductivity of the thermal conductivity layer between
the chip and the PCB is set to 400 W/mk. The bottom surface of the model is set as a fixed
constraint, the temperature is 293.15 K at room temperature, and the remaining surfaces
except for the above-mentioned top surface and bottom surface is set as thermal insulation.
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After the material of the geometry is defined, the pad and TSV filling material are
set to copper, the substrate material to silicon, the micro bump material to Cu3Sn, and the
insulating layer material of the TSV to silicon dioxide, as shown in the simulation [30,31].
The materials used and their related physical parameters are shown in Table 1 [32]. The
calculation speed and accuracy are both taken into account in the mesh division. The
ultra-fine mesh division is selected at the interface of different materials, and the fine mesh
division is considered at the non-critical parts.

Table 1. Materials and related physical parameters.

Material SiO2 BCB Cu Si

Thermal Conductivity (W/m·k) 1.4 0.3 401 130
Density (Kg/m3) 2200 1050 8960 2329

Heat capacity (J/(Kg·K)) 730 2128 384 700
Dielectric constant (F/m) 4.2 2.65 1.0 11.7
Young’s modulus (Gpa) 72 3 220 130

Poisson’s ratio 0.16 0.34 0.35 0.28
Thermal expansion coefficient (ppm/◦C) 0.6 40 18 2.3

The purpose of this experiment is to reduce the temperature and stress by optimizing
the structural parameters of the TSV to ensure the normal operation of the system. In the
microsystem, the peak temperature caused by thermal problems cannot be higher than the
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limit temperature. The bonding layer between different layers of the system may break and
peel under high temperature; the key connections between different chip layers, such as
bump and TSV, are also significantly affected by temperature. Therefore, in this study, while
the peak temperature Tp, maximum stress St, and thermal expansion Ds are optimized, the
bump temperature Tc and TSV temperature Tt are also selected as the optimization goal.
The three factors selected in this section that affect the temperature of the TSV array are:
TSV radius R, TSV spacing P and insulating layer thickness tox. Refer to the TSV structure
manufacturing process to select three different values for the above three factors as their
factor levels, as shown in Table 2. According to the determined three test factors and their
nine levels, the orthogonal table L81(93) is used to arrange the test, and 81 different TSV
array structure parameter combinations are obtained.

Table 2. The parameter combination factor level.

Level 1 2 3 4 5 6 7 8 9

Radius (µm) 3 4 5 6 7 8 9 10 11
Pitch (µm) 25 30 35 40 45 50 55 60 65
Thickness of SiO2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

There are many factors affecting deformation in finite element modeling and simu-
lation. Temperature and strain rate are two important factors that affect the stress–strain
curve. For most materials, the higher the temperature, the softer the material, that is,
the smoother the stress–strain curve. In this paper, in order to build a neural network
model database, a finite element model for thermal stress analysis is established, and uses
steady-state simulation under ideal conditions.

TSV array model and temperature simulation result are shown in the Figure 4.
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As shown in Figure 5, the change of temperature and stress is obviously affected
by those parameters. With the changes of various parameters, the changes of dependent
variables are irregular, it is difficult to summarize their laws through simple mathematical
models. Therefore, the optimization method combined with AI proposed in this paper has
a certain prospect.



Micromachines 2023, 14, 411 7 of 15Micromachines 2023, 14, x FOR PEER REVIEW 7 of 15 
 

 

  

(a) (b) 

Figure 5. Diagram of performance variation with structural parameters: (a) Effect of parameters on 

peak temperature of TSV; (b) Effect of parameters on stress of TSV. 

Step 2 Establishing Neural Network Models for TSV optimal design BP network is 

the core part of the feedforward neural network, but there are some defects, such as slow 

learning convergence, no guarantee of convergence to the global minimum point, and un-

certain network structure. In this paper, a genetic algorithm is used to optimize the BP 

neural network to find the most appropriate initialization weight and deviation value, so 

that it can easily converge to the global optimal solution. The main steps include coding, 

fitness calculation, selection, genetic operation, etc. The database is divided based on or-

thogonal experiment, and 70% of data in the database are taken as training data, 15% as 

verification data, and the remaining 15% as test data. Means square error (MSE) is used to 

represent the performance. The GA genetic algorithm is used to optimize the BP neural 

network. The main ideas to realize the BP-GA neural network are: BP neural network 

determination, GA optimization of weight threshold and BP training prediction. 

The neural networks are trained by the obtained data. The inputs of neural network 

are 𝑅, 𝑃 and 𝑡𝑜𝑥, while the outputs are 𝑇𝑝, 𝑇𝑐 , 𝑇𝑡, 𝐷𝑠 and 𝑆𝑡 . Based on the database, the 

models about TSV design parameters and optimization target-mapping relationship are 

established. 

Taking the peak temperature as an example, the neural network optimization process 

is shown in Figure 6. In neural network training, the change of fitness with genetic algebra 

and the distribution of predicted output and expected output in test samples are shown 

in Figure 7. With the increase of genetic algebra, the optimal value of fitness gradually 

approaches the ideal value. Among the 61 groups of results obtained, the predicted range 

of peak temperature is 92.10–180.20 °C, and the actual range obtained is 92.57–180.18 °C. 

The predicted output in the figure is highly consistent with the expected output, and the 

error between each group of predicted and actual output is not more than 0.5%, reflecting 

the good computational performance of the neural network model. 

Figure 5. Diagram of performance variation with structural parameters: (a) Effect of parameters on
peak temperature of TSV; (b) Effect of parameters on stress of TSV.

Step 2 Establishing Neural Network Models for TSV optimal design BP network is
the core part of the feedforward neural network, but there are some defects, such as slow
learning convergence, no guarantee of convergence to the global minimum point, and
uncertain network structure. In this paper, a genetic algorithm is used to optimize the BP
neural network to find the most appropriate initialization weight and deviation value, so
that it can easily converge to the global optimal solution. The main steps include coding,
fitness calculation, selection, genetic operation, etc. The database is divided based on
orthogonal experiment, and 70% of data in the database are taken as training data, 15% as
verification data, and the remaining 15% as test data. Means square error (MSE) is used to
represent the performance. The GA genetic algorithm is used to optimize the BP neural
network. The main ideas to realize the BP-GA neural network are: BP neural network
determination, GA optimization of weight threshold and BP training prediction.

The neural networks are trained by the obtained data. The inputs of neural network
are R, P and tox, while the outputs are Tp, Tc , Tt, Ds and St. Based on the database,
the models about TSV design parameters and optimization target-mapping relationship
are established.

Taking the peak temperature as an example, the neural network optimization process
is shown in Figure 6. In neural network training, the change of fitness with genetic algebra
and the distribution of predicted output and expected output in test samples are shown
in Figure 7. With the increase of genetic algebra, the optimal value of fitness gradually
approaches the ideal value. Among the 61 groups of results obtained, the predicted range
of peak temperature is 92.10–180.20 ◦C, and the actual range obtained is 92.57–180.18 ◦C.
The predicted output in the figure is highly consistent with the expected output, and the
error between each group of predicted and actual output is not more than 0.5%, reflecting
the good computational performance of the neural network model.
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Step 3 Establishing Optimization Criteria. The optimization criteria are established
based on the performance parameters, including peak temperature Tp, bump temperature
Tc, TSV temperature Tt, thermal stress St and expansion deformation DS. The optimiza-
tion criteria J can be mathematically expressed as

J = α(Tp − Tpdes)
2 + β(Tc − Tcdes)

2 + γ(Tt − Ttdes)
2 + λ(St − Stdes)

2 + η(Ds − Dsdes)
2 (1)

where des is the abbreviation of designed, different optimization target values are selected
based on the actual process and working conditions of the microsystem, and the values of
the optimization goals are as follows, the values of Tpdes, Tcdes, Ttdes, Stdes and Dsdes are
95, 55, 35,180 and 12. The size of these values can also be modified according to the actual
situation. α, β, γ, λ and η are weight coefficients of Tp, Tc, Tt, St and Ds. The size of
these weight coefficients is determined manually based on the priority of each optimization
objective. In microsystems, in order to solve the thermal mismatch problem caused by
heat accumulation due to high power density, the distribution of peak temperature, TSV
temperature and bump temperature in the system, as well as the deformation and thermal
stress problems caused by thermal expansion and thermal mismatch, are focused in opti-
mization. In the compromise consideration of collaborative optimization of multi-objective
problems, the priority of peak temperature is the highest, and its weight coefficient is set to
0.35. The bump temperature, TSV temperature and thermal expansion deformation weight
coefficient are set to 0.2, and the thermal stress weight coefficient is set to 0.05.
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Step 4 Optimizing the structure parameters by PSO Algorithm Because the PSO
algorithm with linear decreasing inertial weight has excellent global and local searching
ability, it is adopted in the developed method, and it can be expressed as

vi(t + 1) = w(iter)vi(t) + c1r1(pi − xi(t)) + c2r2(pg − xi(t)) (2)

xi(t + 1) = xi(t) + vi(t + 1) (3)

w(iter) = (
itermax − iter

itermax
wmax − wmin) + wmin (4)

where w is the criteria weight; pi and pg are best previous positions of it particles and global
particles. r1 and r2 are random numbers between [0, 1]; c1 and c2 are weights of pi and pg;
iter and itermax are the number and the maximum number of iterations; wmin and wmax are
the minimum and maximum of the inertia weight. The process of using the PSO algorithm
with linearly decreasing inertia weight to optimize the design parameters of the TSV array
in the three-dimensional microsystem is shown in Table 3.

Table 3. Intelligent optimization and COMSOL optimization results.

Constant
Parameters

Inertia Weight
Range

Maximum
Iterations Population Size Position Range Velocity Range

c1 = 2,
c2 = 2 W ∈ [0.4, 0.9] itermax = 50 N = 30

x1 ∈ [3, 11]
x2 ∈ [25, 65]
x3 ∈ [0.1, 0.9]

v1 ∈ [−1, 1]
v2 ∈ [−5, 5]
v3 ∈ [−0.1, 0.1]

3. Results

This paper implements PSO based on the Matlab software platform. First, the struc-
tural design parameters are initialized, then the trained neural network and the calculation
results of the neural network model are loaded. The next step is to initialize the PSO algo-
rithm parameters and realize the algorithm optimization. Finally, the optimal solution after
completing the cycle iteration is outputted. According to the TSV array design parameters,
the constructed neural network model is used to predict the optimization target. According
to the constructed TSV array peak temperature multi-objective optimization function, the
PSO algorithm is used to optimize the TSV array design parameters. Determine whether to
obtain the optimal TSV array design parameters: if yes, the intelligent optimization of the
peak temperature is completed; otherwise, go back and repeat the above steps. In order to
reduce the random error of the PSO algorithm, the optimized design strategy developed has
been run independently, 30 times. It takes 70 s to complete the intelligent iteration using the
PSO algorithm, while it takes at least 2 h to calculate the target performance corresponding
to a group of structural parameters using traditional FEM simulation. When the TSV array
model becomes more complex, the consumption of time resources will further increase. As
shown in Figure 8, in the final optimization design, the radius of TSV is 10.28 µm, the pitch
of TSV is 65.00 µm, the thickness of SiO2 is 0.83 µm. The final optimization results are as
follows: the global maximum temperature is 97.90 ◦C, and the error is 2.1% compared with
the target 100 ◦C. The temperature of bump is 56.01 ◦C and the error is 1.8% compared
with the target 55 ◦C. The temperature of TSV is 31.52 ◦C, and the error is 9.9% compared
with the target 35 ◦C. The maximum thermal stress is 247.4 Mpa, and the error is 37.4%
compared with the target 180 Mpa. The maximum thermal deformation is 11.14 µm, and
the error is 7.2% compared with the target 12 µm. It can be seen from the optimization
results that there is a large error between the optimization results of thermal stress and
the preset target, and the other optimization results are good. The error analysis will be
discussed below.
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Figure 8. Optimization results: (a–c) design parameters; (d–h) optimized goal.

4. Discussion

As a mature commercial finite element simulation software, COMSOL’s reliability has
been recognized by the industry and widely used in various fields. As an example, in 2021,
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Lim, et al. studied the hysteresis effect of solutions containing different ionic species and
significant pH differences on the system through experiments and finite element simula-
tion [33]. The effectiveness of the developed method is verified by COMSOL software. The
TSV array model is built by COMSOL software, and the optimization results are shown
in the Table 4. Experiment is an important method to check whether the conclusion of
simulation is accurate. However, due to some conditions constraints, multiple regression is
used instead of experiment to test the optimization results in this paper. We imported 81
sets of orthogonal data into MATLAB software for regression analysis, and the parameter
model obtained is as follows:

Tp = 247.611− 28.431R− 0.280P− 1.119tox + 1.394R2 − 0.011RP + 0.005P2 (5)

Tc = 204.286− 24.675R− 0.492P− 1.246tox + 1.212R2 − 0.009RP + 0.004P2 (6)

Tt = 55.034− 0.063R− 0.597P− 0.200tox − 0.013R2 + 0.004P2 (7)

Ds = 39.755− 3.503R− 0.295P− 0.152tox + 0.167R2 + 0.001RP + 0.002P2 (8)

St = 792.619− 5.200R− 3.380P− 1053.5tox + 1103.9tox
2 − 29.534Rtox

+2.296Ptox
(9)

Table 4. Comparison of results of various methods.

Result Peak Temperature (◦C) Bump Temperature (◦C) TSV Temperature (◦C) Stress (Mpa) Deformation
(mm)

Optimization 97.90 56.01 31.52 247.40 11.14
Comsol 97.98 57.22 31.49 275.13 11.10

Regression 97.30 56.60 30.94 256.07 11.21

Regression analysis results are also shown in Table 4. The optimization results based
on the AI method are compared with the results of finite element simulation and multi-
ple regression analysis, and their error conditions are analyzed and compared, and the
significance of the proposed AI method is discussed. The structural parameters in the
optimization results based on the AI method, namely the TSV radius R is 10.28 µm, the
TSV spacing P is 65 µm, and the oxide layer SiO2 thickness tox is 0.83 µm, are respectively
substituted into the established TSV array finite element model and multiple regression
analysis equation based on COMSOL software, and the performance target results are
shown in Table 4. If the result of finite element simulation is taken as the reference value,
the peak temperature is 97.98 ◦C, the peak temperature obtained by the AI method is
97.90 ◦C, the error is about 0.08%, and the peak temperature obtained by the multiple
regression method is 97.30 ◦C, the error is about 0.69%. The bulge temperature of the finite
element simulation results is 57.22 ◦C, and the bulge temperature obtained based on the
AI method is 56.01 ◦C, with an error of about 2.11%. The bulge temperature obtained by
multiple regression is 57.22 ◦C, with an error of about 1.08%. The temperature of the copper
column in the finite element simulation results is 31.49 ◦C, the temperature of the copper
column based on the AI method is 31.52 ◦C, the error is about 0.10%, and the temperature
of the copper column obtained by multiple regression is 30.94 ◦C, and the error is about
1.75%. When taking the maximum thermal expansion deformation as the optimization
target, the maximum thermal expansion deformation obtained by finite element simulation
is 11.10 nm, the maximum thermal expansion deformation obtained by the AI method is
11.14 nm, with an error of about 0.36%, and the maximum thermal expansion deformation
obtained by multiple regression is 11.21 nm, with an error of about 1.00%. The maximum
thermal stress obtained by the AI method is 247.4 Mpa, with an error of about 10.08%. The
maximum thermal stress obtained by multiple regression is 256.07 Mpa, with an error of
about 6.93%.
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From the above comparison, it can be seen that the optimization of the power problem
of the microsystem is completed based on the artificial intelligence method proposed in
this paper. The overall results obtained by the optimization method are a good fit with
the finite element simulation results. Compared with the data prediction obtained by
the regression analysis mathematical method, it is closer to the finite element simulation
results in terms of peak temperature, copper column temperature and maximum thermal
expansion deformation.

In this research, the developed optimization method is based on AI methods. The
neural network models play the key roles in the developed method, which is based on
the data obtained by COMSOL software. So, the accuracy of the simulation data is very
important for the optimization of parameters.

The main sources of errors are model errors and data measurement errors. FEM
regards the solution domain as composed of many small interconnected subdomains called
finite elements, and assumes an appropriate approximate solution for each element, and
then deduces the total satisfaction conditions for solving this domain, so as to obtain the
solution of the problem. This solution is not an exact solution, but an approximate solution
When using the finite element simulation, it is often necessary to compromise the accuracy
and speed. In order to improve the calculation speed, reduce the mesh refinement to a
certain extent, which will affect the accuracy of the simulation results. In contrast, the
AI method has both efficiency and accuracy, which is its main advantage. On the one
hand, in FEM simulation, lots of time and memory will be wasted because of too-fine mesh
division in finite element simulation. In order to improve the calculation speed, part of
the mesh is ultra-refined, which reduces the accuracy of the results. In order to reduce
its error, the accuracy of the data should be taken as the primary condition, and a more
precise mesh division should be considered while reasonably improving the FEM model.
On the other hand, the data obtained by simulation calculation usually retain two decimal
places, and the resulting error is inevitable. By the way, the optimal design of the TSV array
is a complex multi-objective collaborative optimization, and it needs to consider various
performance parameters. The weight coefficients of different goals are set according to the
priority of different optimization goals; it will also affect the optimization results. In this
research, the weight coefficient of thermal stress is low, resulting in a large error of thermal
stress. To improve the accuracy of stress optimization results, its weight coefficient should
be improved.

In this study, the AI method is used to optimize the microsystem, realize the multi-
objective collaborative optimization under the multi-field coupling, and find the optimal
structural design parameters to optimize the heat and stress, which is much faster than
the traditional FEM method. In actual microsystems, more and more complex perfor-
mance parameter tradeoffs often need to be considered. Compared with the set goal and
FEM simulation results, the optimal value of thermal stress in the optimization results
of this study still has some errors, which may require other algorithms to improve the
stress optimization.

5. Conclusions

An intelligent optimization method based on AI is proposed to quickly adjust the
structural design parameters of TSV in microsystems and optimize the thermal mechanical
coupling problem The main conclusions can be summarized as follows:

(1) Based on the data simulated by COMSOL software, the neural network models
are established to characterize the relationship between the design parameters and
performance parameters.

(2) The PSO algorithm is used to optimize the radius of TSV, the pitch of TSV, and
the thickness of the insulating layer, and the optimized parameters are outputted.
Calculated by neural network models, the optimized structure parameters and the
calculated performance parameters are outputted as the optimization results. The
optimization results obtained are as follows: the radius of TSV is 10.28 µm, the pitch



Micromachines 2023, 14, 411 13 of 15

of TSV is 65.00 µm, the thickness of SiO2 is 0.83 µm, the peak temperature is 97.90 ◦C,
the temperatures of bump and TSV are 56.01 ◦C, and 31.52 ◦C. The maximum thermal
stress is 247.40 Mpa, the maximum thermal expansion deformation is 11.14 µm. The
difference between them and the preset goal are 2.1%,1.8%,9.9%,37.4% and 7.2%.

(3) The PSO method is verified by regression analysis, and the difference between the
optimization results and FEM method is about 3%. The maximum error of stress
shall not exceed 10.07%. The time required for a single simulation has changed
from 2 h to 70 s, and the overall efficiency has increased thousands of times. There-
fore, the method proposed in this paper is an efficient and accurate TSV array
optimization method.

Nowadays, with the development of multi-functional microsystems, the structure is
increasingly complex, and the problem of heat accumulation is increasingly prominent. At
the same time, the multi-field coupling calculation involved has become huge. Compared
with the traditional manual method, the intelligent optimization method proposed in this
paper has greatly saved manpower and time, and optimized the heat and stress problems.
At the same time, this method is applied to the multi-field coupling and multi-objective
collaborative optimization of microsystems. The establishment of appropriate neural
network model and the setting of optimization criteria can further solve the collaborative
optimization problem between thermal and electrical signals, which is of great significance
to the research and development of microsystems.
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