Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil
Abstract
:1. Introduction
2. Examination of Bridging and Conduction Morphology
3. Direct Observation of Microparticle Chain Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kua, C.H.; Lam, Y.C.; Rodriguez, I.; Yang, C.; Youcef-Toumi, K. Dynamic cell fractionation and transportation using moving dielectrophoresis. Anal. Chem. 2007, 79, 6975–6987. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Wu, M.; Ren, W.; Jensen, M.A.; Davis, R.W.; Hesselink, L. Controlled transport of individual microparticles using dielectrophoresis. Langmuir 2023, 39, 101–110. [Google Scholar] [CrossRef]
- Gierhart, B.C.; Howitt, D.G.; Chen, S.J.; Smith, R.L.; Collins, S.D. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir 2007, 23, 12450–12456. [Google Scholar] [CrossRef]
- Bernard, L.; Calame, M.; Van Der Molen, S.J.; Liao, J.; Schönenberger, C. Controlled formation of metallic nanowires via Au nanoparticle Ac trapping. Nanotechnology 2007, 18, 235202. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Busnaina, A.; Selvarasah, S.; Somu, S.; Wei, M.; Mead, J.; Chen, C.L.; Aceros, J.; Makaram, P.; Dokmeci, M.R. Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Appl. Phys. Lett. 2007, 91, 063101. [Google Scholar] [CrossRef] [Green Version]
- Cheon, D.; Kumar, S.; Kim, G.H. Assembly of gold nanoparticles of different diameters between nanogap electrodes. Appl. Phys. Lett. 2010, 96, 013101. [Google Scholar] [CrossRef]
- Lee, J.; Mubeen, S.; Hangarter, C.M.; Mulchandani, A.; Chen, W.; Myung, N.V. Selective and rapid room temperature detection of H2S using gold nanoparticle chain arrays. Electroanalysis 2011, 23, 2623–2628. [Google Scholar] [CrossRef]
- Bezryadin, A.; Dekker, C.; Schmid, G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 1997, 71, 1273–1275. [Google Scholar] [CrossRef] [Green Version]
- Amlani, I.; Rawlett, A.M.; Nagahara, L.A.; Tsui, R.K. An approach to transport measurements of electronic molecules. Appl. Phys. Lett. 2002, 80, 2761–2763. [Google Scholar] [CrossRef]
- Krahne, R.; Dadosh, T.; Gordin, Y.; Yacoby, A.; Shtrikman, H.; Mahalu, D.; Sperling, J.; Bar-Joseph, I. Nanoparticles and nanogaps: Controlled positioning and fabrication. Phys. E Low Dimens. Syst. Nanostruct. 2003, 17, 498–502. [Google Scholar] [CrossRef]
- Na, J.S.; Ayres, J.; Chandra, K.L.; Chu, C.; Gorman, C.B.; Parsons, G.N. Conduction mechanisms and stability of single molecule nanoparticle/ molecule/nanoparticle junctions. Nanotechnology 2007, 18, 035203. [Google Scholar] [CrossRef]
- Kumar, S.; Seo, Y.K.; Kim, G.H. Manipulation and trapping of semiconducting ZnO nanoparticles into nanogap electrodes by dielectrophoresis technique. Appl. Phys. Lett. 2009, 94, 153104. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, K.; Yamada, K.; Matsumoto, K.; Shimoyama, I. Creating a nano-sized light source by electrostatic trapping of nanoparticles in a nanogap. J. Micromech. Microeng. 2006, 16, 1285–1289. [Google Scholar] [CrossRef]
- Hwang, Y.; Sohn, H.; Phan, A.; Yaghi, O.M.; Candler, R.N. Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection. Nano Lett. 2013, 13, 5271–5276. [Google Scholar] [CrossRef]
- Koshi, T.; Iwase, E. Self-healing metal wire using electric field trapping of metal nanoparticles. Jpn. J. Appl. Phys. 2015, 54, 06FP03. [Google Scholar] [CrossRef]
- Koshi, T.; Iwase, E. Particle size dependence on self-healing metal wire using an electric field trapping of metal nanoparticles. Trans. JSME 2016, 82, 15–470. [Google Scholar] [CrossRef] [Green Version]
- Koshi, T.; Nakajima, Y.; Iwase, E. Voltage and current conditions for nanoparticle chain formation using dielectrophoresis. Micro Nano Lett. 2017, 12, 532–535. [Google Scholar] [CrossRef]
Gap Width [µm] | Interconnect Width [µm] | Interconnect Thickness [µm] |
---|---|---|
10 | 25 | 0.50 |
Conductivity [S/m] | Permittivity [F/m] | Viscosity [cSt] | Density [g/cm3] | Boiling Point [°C] | |
---|---|---|---|---|---|
Silicone oil (KF-96-30cs, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan) | 1.00 × 10−12 or less | 2.4 × 10−13 | 30 | 0.96 | 152 |
Conductivity [S/m] | Permittivity [F/m] | Density [g/cm3] | Diameter [µm] | |
---|---|---|---|---|
Copper microparticles (FMC-SB, Furukawa Chemical Co., Ltd., Osaka, Japan) | 5.76 × 107 | 7.7 × 10−13 | 3.5 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suetsugu, N.; Iwase, E. Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil. Micromachines 2023, 14, 475. https://doi.org/10.3390/mi14020475
Suetsugu N, Iwase E. Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil. Micromachines. 2023; 14(2):475. https://doi.org/10.3390/mi14020475
Chicago/Turabian StyleSuetsugu, Naoki, and Eiji Iwase. 2023. "Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil" Micromachines 14, no. 2: 475. https://doi.org/10.3390/mi14020475
APA StyleSuetsugu, N., & Iwase, E. (2023). Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil. Micromachines, 14(2), 475. https://doi.org/10.3390/mi14020475