Recent Advances in Micro-LEDs Having Yellow–Green to Red Emission Wavelengths for Visible Light Communications
Abstract
:1. Introduction
2. Challenges
2.1. Quantum Confined Stark Effect
2.2. Size-Dependent Effect
2.3. Droop Effect
3. Progress for Micro-LED VLC in Yellow–Green to Red Emission Wavelength Range
4. Summary and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Griffiths, A.D.; Herrnsdorf, J.; McKendry, J.J.D.; Strain, M.J.; Dawson, M.D. Gallium nitride micro-light-emitting diode structured light sources for multi-modal optical wireless communications systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190185. [Google Scholar] [CrossRef] [Green Version]
- James Singh, K.; Huang, Y.-M.; Ahmed, T.; Liu, A.-C.; Huang Chen, S.-W.; Liou, F.-J.; Wu, T.; Lin, C.-C.; Chow, C.-W.; Lin, G.-R.; et al. Micro-LED as a Promising Candidate for High-Speed Visible Light Communication. Appl. Sci. 2020, 10, 7384. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.D.; Herrnsdorf, J.; Zhu, S.; Gu, E.; Laurand, N.; Dawson, M.D. Chapter Nine—Micro-LED based optical wireless communications systems. In Semiconductors and Semimetals; Jiang, H., Lin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 106, pp. 281–321. [Google Scholar]
- Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, U.M.; Shaikh, F.K.; Aziz, Z.; Shah, S.M.Z.S.; Sheikh, A.A.; Felemban, E.; Qaisar, S.B. RF Path and Absorption Loss Estimation for Underwater Wireless Sensor Networks in Different Water Environments. Sensors 2016, 16, 890. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, L.; Hao, Z.; Luo, Y.; Sun, C.; Xiong, B.; Han, Y.; Wang, J.; Li, H. High-speed micro-LEDs for visible light communication: Challenges and progresses. Semicond. Sci. Technol. 2022, 37, 023001. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Rishinaramangalam, A.; Feezell, D. Nonpolar ${m}$ -Plane InGaN/GaN Micro-Scale Light-Emitting Diode With 1.5 GHz Modulation Bandwidth. IEEE Electron. Device Lett. 2018, 39, 520–523. [Google Scholar] [CrossRef]
- Tian, P.; McKendry, J.J.D.; Gong, Z.; Guilhabert, B.; Watson, I.M.; Gu, E.; Chen, Z.; Zhang, G.; Dawson, M.D. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 2012, 101, 231110. [Google Scholar] [CrossRef]
- Xie, E.; Bian, R.; He, X.; Islim, M.S.; Chen, C.; McKendry, J.J.D.; Gu, E.; Haas, H.; Dawson, M.D. Over 10 Gbps VLC for Long-Distance Applications Using a GaN-Based Series-Biased Micro-LED Array. IEEE Photonics Technol. Lett. 2020, 32, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Xie, Y.; Geng, C.; Xu, S.; Bi, W. Efficiency Enhancement of Quantum-Dot-Converted LEDs by 0D–2D Hybrid Scatterers. ACS Photonics 2020, 7, 3430–3439. [Google Scholar] [CrossRef]
- Lai, S.; Li, Q.; Long, H.; Ying, L.; Zheng, Z.; Zhang, B. Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer. Superlattices Microstruct. 2021, 155, 106906. [Google Scholar] [CrossRef]
- Yan, D.; Zhao, S.; Zhang, Y.; Wang, H.; Zang, Z. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr<sub>3</sub> quantum dots. Opto-Electron. Adv. 2022, 5, 200075-1–200075-14. [Google Scholar] [CrossRef]
- Chen, X.; Jin, M.; Lin, R.; Zhou, G.; Cui, X.; Tian, P. Visible light communication based on computational temporal ghost imaging and micro-LED-based detector. Opt. Lasers Eng. 2022, 152, 106956. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Jiang, W.; Li, X.; Chen, X.; Meng, X.; Tian, P.; Sun, B. Optical encryption for visible light communication based on temporal ghost imaging with a micro-LED. Opt. Lasers Eng. 2020, 134, 106290. [Google Scholar] [CrossRef]
- Zhu, S.; Qiu, P.; Shan, X.; Lin, R.; Wang, Z.; Jin, Z.; Cui, X.; Zhang, G.; Tian, P. High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing. Photonics Res. 2022, 10, 1892–1899. [Google Scholar] [CrossRef]
- Asad, M.; Li, Q.; Sachdev, M.; Wong, W.S. Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates. Nano Energy 2020, 73, 104724. [Google Scholar] [CrossRef]
- Lai, S.Q.; Lu, T.W.; Lin, S.H.; Lin, Y.; Lin, G.C.; Pan, J.H.; Zhuang, Y.L.; Lu, Y.J.; Lin, Y.; Kuo, H.C.; et al. Improved Modulation Bandwidth of Blue Mini-LEDs by Atomic-Layer Deposition Sidewall Passivation. IEEE Trans. Electron. Devices 2022, 69, 4936–4943. [Google Scholar] [CrossRef]
- Cao, H.; Lin, S.; Ma, Z.; Li, X.; Li, J.; Zhao, L. Color Converted White Light-Emitting Diodes With 637.6 MHz Modulation Bandwidth. IEEE Electron. Device Lett. 2019, 40, 267–270. [Google Scholar] [CrossRef]
- Xue, D.; Ruan, C.; Zhang, Y.; Chen, H.; Chen, X.; Wu, C.; Zheng, C.; Chen, H.; Yu, W.W. Enhanced bandwidth of white light communication using nanomaterial phosphors. Nanotechnology 2018, 29, 455708. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, M.; Han, T.; Xiao, X.; Chen, W.; Wang, L.; Wong, K.S.; Wang, R.; Wang, K.; Tang, B.Z.; et al. Aggregation-Induced Emission Luminogens as Color Converters for Visible-Light Communication. ACS Appl. Mater. Interfaces 2018, 10, 34418–34426. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Wang, K.; Wong, K.S.; Wu, K. Recent Advances in the Hardware of Visible Light Communication. IEEE Access 2019, 7, 91093–91104. [Google Scholar] [CrossRef]
- Ryou, J.H.; Lee, W.; Limb, J.; Yoo, D.; Liu, J.P.; Dupuis, R.D.; Wu, Z.H.; Fischer, A.M.; Ponce, F.A. Control of quantum-confined Stark effect in InGaN∕GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes. Appl. Phys. Lett. 2008, 92, 101113. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Prades, J.D.; Gülink, J.; Waag, A. Beyond solid-state lighting: Miniaturization, hybrid integration, and applications of GaN nano- and micro-LEDs. Appl. Phys. Rev. 2019, 6, 041315. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Lin, S.; Li, J.; Yu, Z.; Cao, H.; Yang, C.; Li, J.; Zhao, L. Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs. Appl. Phys. Lett. 2017, 111, 171105. [Google Scholar] [CrossRef]
- Cai, Y.; Haggar, J.I.H.; Zhu, C.; Feng, P.; Bai, J.; Wang, T. Direct Epitaxial Approach to Achieve a Monolithic On-Chip Integration of a HEMT and a Single Micro-LED with a High-Modulation Bandwidth. ACS Appl. Electron. Mater. 2021, 3, 445–450. [Google Scholar] [CrossRef]
- He, X.; Xie, E.; Islim, M.S.; Purwita, A.A.; McKendry, J.J.D.; Gu, E.; Haas, H.; Dawson, M.D. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photonics Res. 2019, 7, B41–B47. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Yu, H.; Ren, B.C.; Zhou, L.M.; Fu, H.Y.; Cheng, X.; Ying, L.Y.; Long, H.; Zhang, B.P. Modulation Characteristics of GaN-Based Light-Emitting-Diodes for Visible Light Communication. ECS J. Solid State Sci. Technol. 2017, 6, R135. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Z.; Tao, T.; Tian, P.; Wang, G.; Liu, X.; Zhi, T.; Yan, Q.a.; Pan, D.; Xie, Z.; et al. C-Plane Blue Micro-LED With 1.53 GHz Bandwidth for High-Speed Visible Light Communication. IEEE Electron. Device Lett. 2022, 43, 910–913. [Google Scholar] [CrossRef]
- Lin, R.; Jin, Z.; Qiu, P.; Liao, Y.; Hoo, J.; Guo, S.; Cui, X.; Tian, P. High bandwidth series-biased green micro-LED array toward 6 Gbps visible light communication. Opt. Lett. 2022, 47, 3343–3346. [Google Scholar] [CrossRef]
- Shan, X.; Wang, G.; Zhu, S.; Qiu, P.; Lin, R.; Wang, Z.; Yuan, Z.; Yan, Q.a.; Cui, X.; Wang, J.; et al. Comparison of Beyond 1 GHz C-Plane Freestanding and Sapphire-Substrate GaN-Based micro-LEDs for High-Speed Visible Light Communication. J. Light. Technol. 2022, 1–8. [Google Scholar] [CrossRef]
- Zhu, S.; Shan, X.; Lin, R.; Qiu, P.; Wang, Z.; Lu, X.; Yan, L.; Cui, X.; Zhang, G.; Tian, P. Characteristics of GaN-on-Si Green Micro-LED for Wide Color Gamut Display and High-Speed Visible Light Communication. ACS Photonics 2023, 10, 92–100. [Google Scholar] [CrossRef]
- Ferreira, R.X.G.; Xie, E.; McKendry, J.J.D.; Rajbhandari, S.; Chun, H.; Faulkner, G.; Watson, S.; Kelly, A.E.; Gu, E.; Penty, R.V.; et al. High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications. IEEE Photonics Technol. Lett. 2016, 28, 2023–2026. [Google Scholar] [CrossRef] [Green Version]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H.; et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED. Photonics Res. 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- Tsonev, D.; Chun, H.; Rajbhandari, S.; McKendry, J.J.D.; Videv, S.; Gu, E.; Haji, M.; Watson, S.; Kelly, A.E.; Faulkner, G.; et al. A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$. IEEE Photonics Technol. Lett. 2014, 26, 637–640. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Singh, K.J.; Hsu, Y.-C.; Liou, F.-J.; Song, J.; Choi, J.; Lee, P.-T.; Lin, C.-C.; Chen, Z.; et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res. 2020, 8, 630–636. [Google Scholar] [CrossRef]
- Wu, T.; Lin, Y.; Huang, Y.-M.; Liu, M.; Singh, K.J.; Lin, W.; Lu, T.; Zheng, X.; Zhou, J.; Kuo, H.-C.; et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res. 2021, 9, 2132–2143. [Google Scholar] [CrossRef]
- Huang, S.Y.; Horng, R.H.; Shi, J.W.; Kuo, H.C.; Wuu, D.S. High-Performance InGaN-Based Green Resonant-Cavity Light-Emitting Diodes for Plastic Optical Fiber Applications. J. Light. Technol. 2009, 27, 4084–4094. [Google Scholar] [CrossRef]
- Stephen, P.N.; Piotr, P.; Tadek, S.; Lucja, M.; Mike, L.; Przemek, W.; Robert, C.; Robert, K.; Gregorz, T.; Malcolm, A.W.; et al. AlGaInN laser diode technology for GHz high-speed visible light communication through plastic optical fiber and water. Opt. Eng. 2016, 55, 026112. [Google Scholar] [CrossRef] [Green Version]
- Monavarian, M.; Rashidi, A.; Aragon, A.A.; Nami, M.; Oh, S.H.; DenBaars, S.P.; Feezell, D. Trade-off between bandwidth and efficiency in semipolar (202¯1¯) InGaN/GaN single- and multiple-quantum-well light-emitting diodes. Appl. Phys. Lett. 2018, 112, 191102. [Google Scholar] [CrossRef]
- Monavarian, M.; Rashidi, A.; Aragon, A.A.; Oh, S.H.; Rishinaramangalam, A.K.; DenBaars, S.P.; Feezell, D. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes. Appl. Phys. Lett. 2018, 112, 041104. [Google Scholar] [CrossRef]
- Huang, W.-T.; Peng, C.-Y.; Chiang, H.; Huang, Y.-M.; Singh, K.J.; Lee, W.-B.; Chow, C.-W.; Chen, S.-C.; Kuo, H.-C. Toward high-bandwidth yellow-green micro-LEDs utilizing nanoporous distributed Bragg reflectors for visible light communication. Photonics Res. 2022, 10, 1810–1818. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi (A) 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Miller, D.A.B.; Chemla, D.S.; Damen, T.C.; Gossard, A.C.; Wiegmann, W.; Wood, T.H.; Burrus, C.A. Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. Phys. Rev. Lett. 1984, 53, 2173–2176. [Google Scholar] [CrossRef]
- Usman, M.; Munsif, M.; Mushtaq, U.; Anwar, A.-R.; Muhammad, N. Green gap in GaN-based light-emitting diodes: In perspective. Crit. Rev. Solid State Mater. Sci. 2021, 46, 450–467. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Huang, Y.-M.; Chang, Y.-H.; Lin, Y.; Liou, F.-J.; Hsu, Y.-C.; Song, J.; Choi, J.; Chow, C.-W.; Lin, C.-C.; et al. High-Bandwidth Green Semipolar (20–21) InGaN/GaN Micro Light-Emitting Diodes for Visible Light Communication. ACS Photonics 2020, 7, 2228–2235. [Google Scholar] [CrossRef]
- Haemmer, M.; Roycroft, B.; Akhter, M.; Dinh, D.V.; Quan, Z.; Zhao, J.; Parbrook, P.J.; Corbett, B. Size-Dependent Bandwidth of Semipolar (11-22) Light-Emitting-Diodes. IEEE Photonics Technol. Lett. 2018, 30, 439–442. [Google Scholar] [CrossRef]
- Bui, H.Q.T.; Velpula, R.T.; Jain, B.; Aref, O.H.; Nguyen, H.-D.; Lenka, T.R.; Nguyen, H.P.T. Full-Color InGaN/AlGaN Nanowire Micro Light-Emitting Diodes Grown by Molecular Beam Epitaxy: A Promising Candidate for Next Generation Micro Displays. Micromachines 2019, 10, 492. [Google Scholar] [CrossRef] [Green Version]
- Miao, W.-C.; Hong, Y.-H.; Hsiao, F.-H.; Chen, J.-D.; Chiang, H.; Lin, C.-L.; Lin, C.-C.; Chen, S.-C.; Kuo, H.-C. Modified Distributed Bragg Reflectors for Color Stability in InGaN Red Micro-LEDs. Nanomaterials 2023, 13, 661. [Google Scholar] [CrossRef]
- Arif, R.A.; Zhao, H.; Ee, Y.K.; Tansu, N. Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes. IEEE J. Quantum Electron. 2008, 44, 573–580. [Google Scholar] [CrossRef]
- Kim, K.-C.; Schmidt, M.C.; Sato, H.; Wu, F.; Fellows, N.; Saito, M.; Fujito, K.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Improved electroluminescence on nonpolar m -plane InGaN/GaN quantum wells LEDs. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2007, 1, 125–127. [Google Scholar] [CrossRef]
- Wernicke, T.; Schade, L.; Netzel, C.; Rass, J.; Hoffmann, V.; Ploch, S.; Knauer, A.; Weyers, M.; Schwarz, U.; Kneissl, M. Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 2012, 27, 024014. [Google Scholar] [CrossRef]
- Park, S.H.; Ahn, D.; Chuang, S.L. Electronic and Optical Properties of ${\rm a}$- and ${\rm m}$-Plane Wurtzite InGaN–GaN Quantum Wells. IEEE J. Quantum Electron. 2007, 43, 1175–1182. [Google Scholar] [CrossRef]
- Park, S.-H. Piezoelectric and Spontaneous Polarization Effects on Many-Body Optical Gain of Wurtzite InGaN/GaN Quantum Well with Arbitrary Crystal Orientation. Jpn. J. Appl. Phys. 2003, 42, 5052. [Google Scholar] [CrossRef]
- Park, S.-H. Crystal orientation effects on electronic properties of wurtzite InGaN/GaN quantum wells. J. Appl. Phys. 2002, 91, 9904–9908. [Google Scholar] [CrossRef]
- Masui, H.; Asamizu, H.; Melo, T.; Yamada, H.; Iso, K.; Cruz, S.C.; Nakamura, S.; DenBaars, S.P. Effects of piezoelectric fields on optoelectronic properties of InGaN/GaN quantum-well light-emitting diodes prepared on nonpolar (1 0 0) and semipolar (1 1 2) orientations. J. Phys. D Appl. Phys. 2009, 42, 135106. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Peng, C.-Y.; Miao, W.-C.; Chiang, H.; Lee, T.-Y.; Chang, Y.-H.; Singh, K.J.; Iida, Z.D.; Horng, R.-H.; Chow, C.-W.; et al. High-efficiency InGaN red micro-LEDs for visible light communication. Photonics Res. 2022, 10, 1978–1986. [Google Scholar] [CrossRef]
- Gong, Z.; Jin, S.; Chen, Y.; McKendry, J.; Massoubre, D.; Watson, I.M.; Gu, E.; Dawson, M.D. Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes. J. Appl. Phys. 2010, 107, 013103. [Google Scholar] [CrossRef]
- Rashidi, A.; Monavarian, M.; Aragon, A.; Feezell, D. Thermal and efficiency droop in InGaN/GaN light-emitting diodes: Decoupling multiphysics effects using temperature-dependent RF measurements. Sci. Rep. 2019, 9, 19921. [Google Scholar] [CrossRef] [Green Version]
- Monavarian, M.; Rashidi, A.; Aragon, A.; Oh, S.H.; Nami, M.; DenBaars, S.P.; Feezell, D. Explanation of low efficiency droop in semipolar () InGaN/GaN LEDs through evaluation of carrier recombination coefficients. Opt. Express 2017, 25, 19343–19353. [Google Scholar] [CrossRef] [Green Version]
- Ling, S.-C.; Lu, T.-C.; Chang, S.-P.; Chen, J.-R.; Kuo, H.-C.; Wang, S.-C. Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes. Appl. Phys. Lett. 2010, 96, 231101. [Google Scholar] [CrossRef] [Green Version]
- David, A.; Grundmann, M.J. Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis. Appl. Phys. Lett. 2010, 96, 103504. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, Y.; Lu, X.; Wang, Z.; Qiu, P.; Cui, X.; Tian, P.; Wang, Q.; Zhang, G. Investigation of Modulation Bandwidth of InGaN Green Micro-LEDs by Varying Quantum Barrier Thickness. IEEE Trans. Electron. Devices 2022, 69, 4298–4305. [Google Scholar] [CrossRef]
- Lin, G.-R.; Kuo, H.-C.; Cheng, C.-H.; Wu, Y.-C.; Huang, Y.-M.; Liou, F.-J.; Lee, Y.-C. Ultrafast 2 × 2 green micro-LED array for optical wireless communication beyond 5 Gbit/s. Photonics Res. 2021, 9, 2077–2087. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, L.; Liu, Z.; Zhang, C.; Chen, C.-J.; Wu, M.-C.; Yang, Y.; Yu, C.; Wang, L.; Fu, H.Y. Multigigabit Visible Light Communication Based on High-Bandwidth InGaN Quantum Dot Green Micro-LED. ACS Photonics 2022, 9, 2354–2366. [Google Scholar] [CrossRef]
- Carreira, J.F.C.; Xie, E.; Bian, R.; Herrnsdorf, J.; Haas, H.; Gu, E.; Strain, M.J.; Dawson, M.D. Gigabit per second visible light communication based on AlGaInP red micro-LED micro-transfer printed onto diamond and glass. Opt. Express 2020, 28, 12149–12156. [Google Scholar] [CrossRef]
- Bulashevich, K.A.; Karpov, S.Y. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2016, 10, 480–484. [Google Scholar] [CrossRef]
- Fan, K.; Tao, J.; Zhao, Y.; Li, P.; Sun, W.; Zhu, L.; Lv, J.; Qin, Y.; Wang, Q.; Liang, J.; et al. Size effects of AlGaInP red vertical micro-LEDs on silicon substrate. Results Phys. 2022, 36, 105449. [Google Scholar] [CrossRef]
- Huang, H.-H.; Huang, S.-K.; Tsai, Y.-L.; Wang, S.-W.; Lee, Y.-Y.; Weng, S.-Y.; Kuo, H.-C.; Lin, C.-c. Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers. Opt. Express 2020, 28, 38184–38195. [Google Scholar] [CrossRef]
- Jung, B.O.; Lee, W.; Kim, J.; Choi, M.; Shin, H.-Y.; Joo, M.; Jung, S.; Choi, Y.-H.; Kim, M.J. Enhancement in external quantum efficiency of AlGaInP red μ-LED using chemical solution treatment process. Sci. Rep. 2021, 11, 4535. [Google Scholar] [CrossRef]
- Li, Y.Y.; Lin, F.Z.; Chi, K.L.; Weng, S.Y.; Lee, G.Y.; Kuo, H.C.; Lin, C.C. Analysis of Size-Dependent Quantum Efficiency in AlGaInP Micro–Light-Emitting Diodes With Consideration for Current Leakage. IEEE Photonics J. 2022, 14, 7007907. [Google Scholar] [CrossRef]
- Oh, J.-T.; Lee, S.-Y.; Moon, Y.-T.; Moon, J.H.; Park, S.; Hong, K.Y.; Song, K.Y.; Oh, C.; Shim, J.-I.; Jeong, H.-H.; et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 2018, 26, 11194–11200. [Google Scholar] [CrossRef]
- Wong, M.S.; Kearns, J.A.; Lee, C.; Smith, J.M.; Lynsky, C.; Lheureux, G.; Choi, H.; Kim, J.; Kim, C.; Nakamura, S.; et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments. Opt. Express 2020, 28, 5787–5793. [Google Scholar] [CrossRef]
- Yeh, C.H.; Chow, C.W.; Gu, C.S.; Guo, B.S.; Chang, Y.J.; Weng, J.H.; Wu, M.C. 400 Mbit/s OOK green-LED visible light communication with low illumination. Opt. Quantum Electron. 2018, 50, 430. [Google Scholar] [CrossRef]
- Chen, C.J.; Yan, J.H.; Chen, D.H.; Lin, K.H.; Feng, K.M.; Wu, M.C. A 520-nm Green GaN LED with High Bandwidth and Low Current Density for Gigabits OFDM Data Communication. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Carreira, J.F.C.; Xie, E.; Bian, R.; Chen, C.; McKendry, J.J.D.; Guilhabert, B.; Haas, H.; Gu, E.; Dawson, M.D. On-chip GaN-based dual-color micro-LED arrays and their application in visible light communication. Opt. Express 2019, 27, A1517–A1528. [Google Scholar] [CrossRef]
- Haggar, J.I.H.; Cai, Y.; Ghataora, S.S.; Smith, R.M.; Bai, J.; Wang, T. High Modulation Bandwidth of Semipolar (11–22) InGaN/GaN LEDs with Long Wavelength Emission. ACS Appl. Electron. Mater. 2020, 2, 2363–2368. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chang, G.H.; Liou, F.J.; Peng, C.W.; Gunawan, W.H.; Chow, C.W.; Kuo, H.C.; Liu, Y.; Yeh, C.H. 3.129-Gbit/s OFDM Visible Light Communication Using Semipolar Green μ-Light Emitting Diode (μ-LED) Array. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), Washington, DC, USA, 6–10 June 2021; pp. 1–3. [Google Scholar]
- Chang, Y.H.; Huang, Y.M.; Gunawan, W.H.; Chang, G.H.; Liou, F.J.; Chow, C.W.; Kuo, H.C.; Liu, Y.; Yeh, C.H. 4.343-Gbit/s Green Semipolar (20-21) μ-LED for High Speed Visible Light Communication. IEEE Photonics J. 2021, 13, 7300204. [Google Scholar] [CrossRef]
- Luo, J.; Tang, Y.; Jia, H.; Zhu, Q.; Xue, W. 750 Mb/s monochromatic LED-based real-time visible light communication system employing a low-complexity cascaded post-equalizer. Chin. Opt. Lett. 2016, 14, 120604. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Wang, F.; Shi, M.; Chi, N.; Liu, J.; Jiang, F. 10.72Gb/s Visible Light Communication System Based On Single Packaged RGBYC LED Utilizing QAM-DMT Modulation With Hardware Pre-Equalization. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 1–3. [Google Scholar]
- Milovančev, D.; Vokić, N.; Hübel, H.; Schrenk, B. Gb/s Visible Light Communication With Low-Cost Receiver Based on Single-Color LED. J. Light. Technol. 2020, 38, 3305–3314. [Google Scholar] [CrossRef]
- Demir, H.V.; Nizamoglu, S.; Erdem, T.; Mutlugun, E.; Gaponik, N.; Eychmüller, A. Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today 2011, 6, 632–647. [Google Scholar] [CrossRef]
- Zhou, X.; Tian, P.; Sher, C.-W.; Wu, J.; Liu, H.; Liu, R.; Kuo, H.-C. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog. Quantum Electron. 2020, 71, 100263. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Chen, J.-H.; Liou, Y.-H.; James Singh, K.; Tsai, W.-C.; Han, J.; Lin, C.-J.; Kao, T.-S.; Lin, C.-C.; Chen, S.-C.; et al. High-Uniform and High-Efficient Color Conversion Nanoporous GaN-Based Micro-LED Display with Embedded Quantum Dots. Nanomaterials 2021, 11, 2696. [Google Scholar] [CrossRef]
- Kang, J.-H.; Li, B.; Zhao, T.; Johar, M.A.; Lin, C.-C.; Fang, Y.-H.; Kuo, W.-H.; Liang, K.-L.; Hu, S.; Ryu, S.-W.; et al. RGB Arrays for Micro-Light-Emitting Diode Applications Using Nanoporous GaN Embedded with Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 30890–30895. [Google Scholar] [CrossRef]
Color | Structure | Bandwidth (MHz) | Modulation Format | Data Rate (Gbps) | BER | Year | Ref. |
---|---|---|---|---|---|---|---|
Green | 340 | NRZ-OOK | 0.4 | <FEC | 2018 | Yeh et al. [73] | |
Green | 75 um | 340 | QAM-OFDM | 2.16 | <FEC | 2018 | Chen et al. [74] |
Green | 100 um | 144 | QAM-OFDM | 0.62 | Error free | 2019 | Carreira et al. [75] |
Green | 50 um | 756 | NRZ-OOK | 1.5 | <FEC | 2020 | Chen et al. [45] |
Green Yellow Amber | 330 × 330 um2 | 540 350 150 | QAM-OFDM | 4.22 3.72 0.336 | 1.8 × 10−3 1.4 × 10−3 3.6 × 10−3 | 2020 | Hagger et al. [76] |
Green | 2 × 3 array | 1060 | QAM-OFDM | 3.129 | 2.01 × 10−3 | 2021 | Chang et al. [77] |
Green | 2 × 2 array | 800 | NRZ-OOK QAM-OFDM | 1.5 5.02 | 3.3 × 10−3 | 2021 | Lin et al. [63] |
Green | 2 × 3 array | 1102 | QAM-OFDM | 4.343 | 2.47 × 10−3 | 2021 | Chang et al. [78] |
Green Yellow | 3 × 3 array | 1050 500 | QAM-OFDM | 4.39 0.82 | 3.7 × 10−3 3.3 × 10−3 | 2022 | Zhu et al. [15] |
Yellow | 238 | NRZ-OOK | 650 Mbps | 1 × 10−6 | 2016 | Luo et al. [79] | |
Yellow | 300 | QAM-DMT | 1.25 | 3.8 × 10−3 | 2018 | Zhu et al. [80] | |
Yellow | 260 | OFDM | 1.25 | 2020 | Milovančev et al. [81] | ||
Yellow | 30 um | 442 | NRZ-OOK | 800 Mbps | 2022 | Huang et al. [41] | |
Red | 2 × 1 array | 170 | DCO-OFDM | 7093 Mbps | 3.8 × 10−3 | 2020 | Carreira et al. [65] |
Red | 6 × 25 um | 271 | NRZ-OOK | 350 Mbps | 2.6 × 10−3 | 2022 | Huang et al. [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
James Singh, K.; Huang, W.-T.; Hsiao, F.-H.; Miao, W.-C.; Lee, T.-Y.; Pai, Y.-H.; Kuo, H.-C. Recent Advances in Micro-LEDs Having Yellow–Green to Red Emission Wavelengths for Visible Light Communications. Micromachines 2023, 14, 478. https://doi.org/10.3390/mi14020478
James Singh K, Huang W-T, Hsiao F-H, Miao W-C, Lee T-Y, Pai Y-H, Kuo H-C. Recent Advances in Micro-LEDs Having Yellow–Green to Red Emission Wavelengths for Visible Light Communications. Micromachines. 2023; 14(2):478. https://doi.org/10.3390/mi14020478
Chicago/Turabian StyleJames Singh, Konthoujam, Wei-Ta Huang, Fu-He Hsiao, Wen-Chien Miao, Tzu-Yi Lee, Yi-Hua Pai, and Hao-Chung Kuo. 2023. "Recent Advances in Micro-LEDs Having Yellow–Green to Red Emission Wavelengths for Visible Light Communications" Micromachines 14, no. 2: 478. https://doi.org/10.3390/mi14020478
APA StyleJames Singh, K., Huang, W. -T., Hsiao, F. -H., Miao, W. -C., Lee, T. -Y., Pai, Y. -H., & Kuo, H. -C. (2023). Recent Advances in Micro-LEDs Having Yellow–Green to Red Emission Wavelengths for Visible Light Communications. Micromachines, 14(2), 478. https://doi.org/10.3390/mi14020478