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Abstract: Single-event effects (SEE) are an important index of radiation resistance for fully depleted
silicon on insulator (FDSOI) devices. The research into traditional FDSOI devices is based on
simulation software, which is time consuming, requires a large amount of calculation, and has
complex operations. In this paper, a prediction method for the SEE of FDSOI devices based on deep
learning is proposed. The characterization parameters of SEE can be obtained quickly and accurately
by inputting different particle incident conditions. The goodness of fit of the network curve for
predicting drain transient current pulses can reach 0.996, and the accuracy of predicting the peak
value of drain transient current and total collected charge can reach 94.00% and 96.95%, respectively.
Compared with TCAD Sentaurus software, the simulation speed is increased by 5.10 x 102 and
1.38 x 10° times, respectively. This method can significantly reduce the computational cost, improve
the simulation speed, and provide a new feasible method for the study of the single-event effect in
FDSOI devices.

Keywords: deep neural network (DNN); FDSOI devices; single-event effect (SEE); drain transient
current pulse

1. Introduction

The anti-irradiation performance of integrated circuits is an important index in circuit
design. With the progress of technology, the anti-irradiation effect of fully depleted Silicon
on insulator technology (FDSOI) device circuits becomes more and more complex [1-4]. The
research on the anti-irradiation performance of FDSOI devices has become a hot topic in the
industry. The anti-irradiation performance includes single-event effects (SEE), total-dose
effects, displacement effects, and so on. Among them, an SEE is caused by the interaction
between high-energy particles and microelectronic devices or circuits, which will affect the
work of devices and even damage the circuits [5-7].

The traditional device research method is based on simulation software such as Silvaco,
TCAD Sentaurus, and other simulation software [8-11]. For example, Bi J. et al. studied
FDSOI devices using Sentaurus software. and first used SDE (SDE is a simulation tool of
TCAD Sentaurus software) for device modeling and grid division. After establishing the
correct model, the device should be used for physical function modeling before further
analysis and research [11]. This process not only requires researchers to be familiar with
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FDSOI devices and simulation software but also requires a lot of time to establish the
correct device model and physical simulation, which brings great inconvenience to device
research. In addition, when using TCAD to simulate the single-event effect of multiple
devices, there is a convergence problem that has not yet been solved at present.

In recent years, deep learning has been widely applied in the field of electronic design
automation because deep learning can form more abstract high-level attribute features
by combining low-level features and discovering distributed features of data [12-16].
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Moreover, deep learning has the characteristics of simple operation and fast simulation
speed, making it a very powerful research method in quantum mechanics, optical materials,
nanostructures, and other fields. For example, Jing Chen et al. obtained an average
error of less than 4% when using a deep neural network to predict SOI lateral power
device breakdown [17]. Christian C. et al. applied deep learning to accelerate all-dielectric
metasurface design, and the mean square error was only 1.16 x 1073 [18]. Kashyap Mehta
et al. show that complete FIinFET current-voltage and capacitance—voltage curves can be
predicted using machine learning [19]. These results demonstrate the advantages of deep
learning in device research. However, they predicted that FinFET’s current—voltage and
capacitance-voltage curves only used 250 sets of data [19], which is a relatively small range
and can only be applied to a small part of the device parameter range.

In this paper, a deep learning method for predicting the SEE of FDSOI devices is
proposed. By inputting different particle incident device conditions, the corresponding
characterization parameters of SEE can be obtained very quickly and then the influence of
particle incident conditions on SEE can be studied. We design two network models, one
for the prediction of drain transient current pulse and the other for the prediction of drain
transient current peak and the total collected charge. In the process of network training
and network testing, we use such parameters as accuracy, mean square error, and goodness
of fit to quantify network performance [20,21]. In addition, we also use some traditional
machine learning methods to compare with the deep neural network model we designed,
to demonstrate the advantages of deep neural networks. The results show that the trained
network has a very good effect. At the same time, our prediction method provides a new
possibility for device research.

2. Experimental
2.1. Device Structure

The FDSOI device structure we used is shown in Figure 1. The device uses silicon as
the substrate and HfO, as the gate oxide material. The source and drain of the device are
doped with Gaussian, the doping concentration is N* 4.4 x 10?° cm~3, and the body region
and substrate are doped uniformly with P~ 1 x 10’ cm ™3 and 1 x 10'* cm~3, respectively.
To reduce the series resistance of the source and drain, the device model adopts the design
of source and drain elevation [22,23]. In addition, a backplane layer is added under the
device buried oxide (BOX) layer. The structural parameters of the device are shown in
Table 1.

backplane

DopingConcetration(cm-3)
B 4.440X 1020

1.128 X 1078

2.892X 1015

7.382X1012

-1.313X 1013

-5.128X 1015
. -2.000x 1018

substrate

Figure 1. FDSOI device structure.
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Table 1. FDSOI device parameters.

Parameters Values

gate length (L) 28 nm

buried oxygen layer thickness (T o) 20 nm
gate dielectric layer thickness (Tox) 1.2 nm
backplane layer thickness (pr) 25 nm
metal work function (WF) 452 eV

backplane doping concentration (Nbp)

substrate doping concentration (Ngp)
bulk doping concentration (Npq)
source doping concentration (Ns)
drain doping concentration (Ng)

2 x 1018 ¢m™3
1x 10% cm—3
1 x 10% cm—3
44 x 100 cm™3
44 x 1020 cm—3

2.2. Dataset

To predict the SEE of FDSOI devices using deep learning, we must first determine
the input features and output labels of the network. The input features should select the
parameters that influence the SEE, and the output labels should be the characterization pa-
rameters of the SEE. Through TCAD simulation software, we selected the inputs including
the linear transmission energy (LET) when the particle is incident on the device, particle
incident position (x), the incident angle of the particle (0), and the drain bias voltage (V4).
The selected outputs include drain transient current pulse, drain transient current peak
(Ip), and total collected charge (Qp). Figure 2 shows the influence of the LET value on the

transient current pulse and the influence of particle incident position and particle incident

angle on the transient current peak. Figure 3 shows the charge density distribution of heavy
ions at different positions and angles.
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Figure 2. Influence of particle incident conditions on SEE: (a) is the effect of different LET values on

the transient current pulse, and (b) is the effect of the position and angle of the particle incident on
the device on the transient current peak.
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Figure 3. The charge density distribution of heavy ions at different positions and different angles
of incidence.
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After determining the input and output parameters of the network, we obtain the
data set by using TCAD simulation software. By changing the input parameters, 3300 data
sets were obtained for training and testing the network model. The values of input data
are shown in Table 2 (x = 0 is the center of the device, and the direction pointing to the
drain is positive. 0 is the angle between the particle incident direction and the vertical
device surface).

Table 2. Input parameters of the deep neural network.

Input Parameters Range/Step
Linear transmission energy (LET) [10, 100]/10 (MeV-cm? /mg)
The incident position of the particle (x) [—75,75]/15 (nm)
The incident angle of the particle (0) [0,75]1/15 (°)
Drain bias voltage (Vq4) [0.2,1]/0.2 (V)

To eliminate the adverse effects caused by singular sample data, we can use the
MinMaxScaler function to normalize the data. That is, the data X is first centered at the
minimum value and then scaled by the range (maximum-minimum) [24-26]. At this
point, the data converges between [0, 1]. Normalized data are normally distributed. The
normalized data are shown in Formula (1):

. X — min(x)

= max(x) — min(x) @

The reason why input data should be normalized is that the essence of neural network
learning is to learn the distribution of data. Once the distribution of training data and test
data is different, the generalization ability of the network will be greatly reduced. On the
other hand, once the distribution of each batch of training data is different, the network
will have to learn to adapt to different distributions in each iteration, which will greatly
reduce the training speed of the network [27-29].

We randomly divide the normalized input data according to the ratio of 6:2:2 to use as
a training set, validation set, and test set for training the network.

2.3. Deep Neural Network Prediction of Drain Transient Current Pulse

The network structure for predicting drain transient current pulses is shown in Figure 4.
Four network input parameters are first passed through a full connection layer for input
expansion, then through three convolutional layers, and then through three full connection
layers. The input expansion layer extends the 1 x 4 input to 1 x 200. The full connectivity
layer includes Linear, Batch Normalization (BN), and ReLu activation functions. The
convolution layer consists of Conv, BN, ReLu, and Maxpool. The BN layer is to speed up
the training speed of the network and alleviates the problem of gradient disappearance
in the process of network training [30,31]. The ReLu activation function is designed to
complete the nonlinear transformation of data, accelerate training speed, link gradient
explosion, and gradient disappearance [32,33].

The output of this network is 200 points on the drain transient current pulse. To
accurately describe the pulse curve, an average of 110 points were extracted in the time
range of 0~0.03 ns, 60 points in the time range of 0.03~0.3 ns, and 30 points in the time
range of 0.3~1 ns (the time range of the pulse is 0~1 ns).
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Figure 4. The network structure for predicting drain transient current pulses.

2.4. Deep Neural Network Prediction of Drain Transient Current Peak and Total Collected Charge

The network structure for predicting peak drain transient current and total collected
charge is shown in Figure 5. The network structure is similar to that used to predict the
drain transient current peak. The input is first passed through a fully connected layer
for input expansion, then through two convolutional layers, and then through three fully
connected layers. At this time, the input expansion expands the inputof 1 x 4to 1 x 60,
and the data that finally enters the full connection is reduced correspondingly after one less
layer of convolution, and the network output is two parameters. The rest of the structure
remains largely unchanged. Some data used for network training and testing are shown in

Table 3.
r o
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Figure 5. The network structure for predicting transient current peaks and total collected charges.

Table 3. Partial data of network training and testing.

LET (MeV-cm?/mg) x (nm) 0 (°) Vq (V) Ip (mA) Qo (P
10 —45 75 0.2 0.168 9.69
10 —45 75 04 0.213 11.15
20 60 30 1 1.741 48.93

100 30 15 1 3.697 97.01




Micromachines 2023, 14, 502 6of 11
A common calculation method for Ij is shown in Equation (2):
q*tnNaN
Iy = fxp 2)

~

Transient Current(mA

Transient Current(mA)

where q is the electron charge, ., is the electron mobility, N, is the doping concentration of
the channel, N is the line density of the electron-hole pair, ¢ is the dielectric constant, and
xp is the width of the depletion region of the PN junction.

The representation of Qg is shown in Equation (3), The time unit is ns:

1
Q = /O I(t) dt &)

3. Results and Discussion
3.1. Results on Prediction of Ddrain Transient Current Pulse

Figure 6 depicts the comparison of the simulation curve and prediction curve. Figure 6a—d
are the comparison diagrams of six groups of simulation curves and predicted curves
randomly selected from the test set. The red line is the curve predicted by the deep neural
network, the blue line is the curve simulated by the TCAD software, and the blue area in
the figure is the error value of the two curves. It can be seen from the figure that the fitting
effect of the two curves is good and the error is small.
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Figure 6. Comparison of simulation curve and prediction curve: (a-d) are the comparison results of
the prediction curve and the simulation curve of four groups of transient current pulses randomly
selected from the test set. The blue area in the figure is the difference between the two.

To further explain the predicted results of the curve, we adopt the parameter of the
goodness of fit, which can reflect the degree of curve fitting. The maximum value of R? is
1, and the closer R? is to 1, the better the degree of curve fitting. Conversely, the smaller
the value of R?, the worse the degree of the curve fit [34]. The calculation formula for R?is
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shown in Equation (4), where y is the simulation value, ¥ is the predicted value, and ¥ is
the average value of the simulation value.

n - —\2
R2 — Z;:l(Yi - Z)z @)
Yii(yi—y)

We arranged the goodness of fit values of 660 test groups of curves in ascending order,
and the result is shown in Figure 7a. It can be seen that R? values are basically above 0.94,
and curves with goodness of fit values above 0.99 account for 90%; the average goodness
of fit of the curves is 0.9956. Figure 7b is the mean square error of each curve in the test set.
It can be seen that the MSE values are all below 0.005, and the average MSE value for the
660 curves in the test set was 0.00068.

T T T T 0.005
e T R (6)
0.981 (67, 0.99046) R
7 0.0034
- 0'96j | i
0.941 f 1 = 0.002+
0.92. | ] 0.0011
- (@)
0.90— . T . 0.000+— . T .
0 200 400 600 0 200 400 600
test sequence test sequence

Figure 7. Results for the prediction of drain transient current pulse: (a) shows the goodness of fit of
the test set, and (b) shows the MSE value of the test set.

We also used traditional machine learning methods to predict the drain transient
current pulse. These methods included decision tree (DT), support vector regression (SVR),
K-nearest neighbor (KNN), and ridge regression (RR) [35-38]. We compared the mean
relative error predicted by traditional machine learning methods with the prediction result
of a deep neural network, as shown in Figure 8. It can be seen that the effect of the decision
tree and K-nearest neighbor is good; however, the result is still inferior to that of a deep
neural network.

25 124231

20+
151

101 ]
6.097
5_ 4
0.217 0.263 0.076
DT SVR KNN RR DNN
machine learning methods

mean relative error

Figure 8. Comparison of the mean relative errors for drain transient current pulses as predicted by
the traditional machine learning method and deep neural network method.
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3.2. Results on the Prediction of Drain Transient Current Peak and Total Collected Charge

Figure 9 shows results for the peak values of the drain transient current and total
collected charges. Figure 9a shows the comparison between the predicted value and the
simulated value of the peak values of the drain transient current in the test set, and Figure 9b
shows the comparison between the predicted value and the simulated value of the total
collected charge in the test set; the red line is the range of simulation value, and the blue
point is the predicted value. It can be seen that the predicted value fluctuates within a
small range around the simulation value. Figure 9c is the statistical graph of the accuracy
distribution of Iy and Qp. The accuracy of Iy and Qg were both above 80%. The test sets
with the accuracy of Iy between 94% and 96% accounted for the most data, and the test sets
with the accuracy of Qg above 98% accounted for the most data, and the prediction effect
was better than Iy. The average accuracy of Iy and Qg in the test set was 94.00% and 96.95%,
respectively. Figure 9d shows the mean square error of the test set. It can be seen from the
figure that the MSE values are all below 0.0025 and most of them are below 0.0005. The
average MSE value for 660 sets of data in the test set was 0.00027.
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Figure 9. Results for the prediction of drain transient current peak and total collected charge:
(a) shows the comparison between the simulated value and the predicted value of I; (b) shows the
comparison between the simulated value and the predicted value of Qy; (c) is the statistical graph of
accuracy distribution of Iy and Qyp; and (d) shows the MSE value of the test set.

In the same way, we also used traditional machine learning methods such as DT, SVR,
KNN, and RR to predict the peak values of the drain transient current and total collected
charges, and compared them with the deep neural network we previously trained; the
results are shown in Figure 10. Similar to the results for the transient current pulse, DT
and KNN have better prediction performances for current peak and collected charge than
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other traditional machine learning methods; however, DNN still has the best prediction
performance.

T T T T
5. 4.902
DT
SVR
4. KNN |
N I RR
S . I DNN
() .
o 37
=
©
() .
o 2_
& 1.462 1644
£
11 0.69
] 0.418
0.167 075 0.128 0.226l.032
0 T - T
current peak collected charge
parameters

Figure 10. Comparison of the mean relative errors for the peak drain transient current and total
collected charge as predicted by traditional machine learning and deep neural network methods.

4. Conclusions

In this paper, we proposed a deep neural network to predict the single-event effect
in FDSOI devices. By inputting different LET values, particle incident positions, particle
incident directions, and drain bias voltages, the method can quickly and accurately obtain
the drain transient current pulse, the peak value of the drain transient current, and the total
collected charge. The network model trained by us can predict the peak value of drain
transient current and total collected charge with an accuracy of up to 94.00% and 96.95%,
respectively, and the goodness of fit for predicting drain transient pulse can reach 0.996.
Compared with TCAD Sentaurus, the speed is increased by 5.10 x 10 and 1.38 x 10°,
respectively. This provides great convenience for the study of the single-event effect of
FDSOI devices.

In addition, the device research method based on deep learning provided by us is not
only limited to the single-event effect in FDSOI devices but can also be extended to other
microelectronic devices, providing a new idea for the research of microelectronic devices.
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