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Abstract: In recent decades, thriving Internet of Things (IoT) technology has had a profound impact
on people’s lifestyles through extensive information interaction between humans and intelligent
devices. One promising application of IoT is the continuous, real-time monitoring and analysis
of body or environmental information by devices worn on or implanted inside the body. This
research area, commonly referred to as wearable electronics or wearables, represents a new and
rapidly expanding interdisciplinary field. Wearable electronics are devices with specific electronic
functions that must be flexible and stretchable. Various novel materials have been proposed in recent
years to meet the technical challenges posed by this field, which exhibit significant potential for
use in different wearable applications. This article reviews recent progress in the development of
emerging nanomaterial-based wearable electronics, with a specific focus on their flexible substrates,
conductors, and transducers. Additionally, we discuss the current state-of-the-art applications of
nanomaterial-based wearable electronics and provide an outlook on future research directions in
this field.

Keywords: nanomaterials; flexible substrates; soft conductors; wearable sensors; healthcare monitor-
ing

1. Introduction

The rapid proliferation of Internet of Things (IoT) applications, enabled by the ad-
vancement of 5G and beyond technologies, has significantly transformed people’s way
of life in recent years by connecting physical objects, such as sensors and memories, for
data and information collection and exchange [1,2]. The adoption of wearable electronics is
an area of remarkable growth, allowing individuals to access and interact with the IoT in
novel and convenient ways [3,4]. The pliability and softness of wearable electronics make
them suitable for use as an accessory or integrated into clothing, enabling the continuous
and real-time exchange of information between devices and users while on the move. This
degree of performance would not be feasible with traditional electronic technologies, which
are typically composed of rigid and bulky materials.

The development of wearable electronics has been propelled by advancements in
technology, particularly in the domains of microelectronics [5], material science [6], and
sensors and actuators [7,8]. These advancements have resulted in a broad range of practical
applications, including smart watches [9,10], fitness trackers [11,12], and augmented reality
(AR) glasses [13–15]. In recent years, wearables have demonstrated outstanding promise in
healthcare monitoring applications [16–18], necessitating that they be flexible, stretchable,
twistable, and/or biocompatible for attachment to the human epidermis or for implantation
within the body. Tremendous research efforts have been focused on advanced materials
that meet these challenges, with nanomaterials drawing particular attention due to their
distinctive mechanical, chemical, and biological properties at the nanoscale. To date, a
range of nanomaterials, including silicon nanomembranes [19,20], graphene [21], carbon
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nanotubes [22,23], liquid metal [24,25], and other chemical/organic nanomaterials [26,27],
have been implemented in various wearable scenarios.

To ensure that wearable devices are completely compatible with the curved surface of
the human epidermis, both the electronic component and the substrate must be flexible and
stretchable, necessitating the use of nanomaterials with differing mechanical and electrical
properties [28]. Electrical performance is not a major consideration for the substrate, but
high air permeability and heat dissipation are crucial because the substrate may be in direct
contact with the skin. Materials such as styrene–ethylene–butylene–styrene (SEBS) thermo-
plastic elastomer [29], polydimethylsiloxane (PDMS) [30], and polyimide (PI) [31,32] have
shown great potential as soft platforms for wearables. On the other hand, the materials
used in building electronic components, such as conductors and transducers, must have ad-
equate electrical conductivity and other electromechanical properties (e.g., piezoelectricity
and photovoltaics) to perform the desired functions of wearable devices. Examples include
silver nanowires [20], liquid metal [33], soft ferroelectric materials [34], and temperature-
sensitive materials [35], among many others.

In addition to wearable devices that operate on the surface of the skin or clothing,
another class of wearable electronics known as implantable devices is placed inside the hu-
man body to monitor vital signs such as intracranial pressure [36], intestinal pressure [37],
and intraocular pressure [38]. These devices have more stringent requirements for ma-
terials, particularly for biocompatibility, as the implants must not cause any unwanted
inflammation. The materials used for these devices must also have a high tolerance to the
influence of human tissues, ensuring that the implants maintain their performance after
implantation. Some research groups have further investigated biodegradable materials for
implants [39,40], which can safely degrade in the body after their intended use, reducing
the number of necessary surgeries for implantation, maintenance, or replacement of the
devices and lowering the risk of complications such as inflammation or hemorrhage.

This review article centers on the utilization of nanomaterials in wearable electron-
ics, including their use as substrate materials to support electronic systems, conductive
materials to connect different electronic components, and functional materials for trans-
lation of physical quantities to electrical signals. We also examine recent advancements
in nanomaterial-enabled wearable electronics applications and offer an outlook on their
potential future.

2. Nanomaterial-Enabled Wearable Electronics
2.1. Flexible and Biocompatible Substrates

The substrate is an essential component in wearable electronic systems as it serves
as the platform for operation and comes into direct contact with the skin. Thus, the
materials used for flexible substrates should possess multifunctional properties to ensure
biocompatibility, such as passive cooling [41], high breathability [42], waterproofing [43],
recyclability [44], and minimal impact on electronic systems. One practical approach to
achieve these objectives is the use of nanoporous materials made from biocompatible
natural or synthetic polymers, such as gelatin [45], poly(glycerol sebacate) (PGS) [46],
SEBS [29], and polyethylene (PE) [41]. For example, Figure 1a–c depict a multiscale porous
SEBS-based substrate proposed by Yadong Xu et al. that meets these requirements [47]. In
contrast to conventional SEBS substrates, this novel porous SEBS substrate is impregnated
with multiscale nanopores that provide not only the usual properties of a flexible substrate
but also high sunlight reflectance and low reflectance for body radiation (IR), allowing for
passive cooling without energy consumption. The porous SEBS is produced using a simple,
inexpensive, and scalable phase-separation-based process, which involves preparing a
solution of SEBS and isopropyl alcohol (IPA) in chloroform, coating it onto an aluminum
foil, and evaporating the volatile chloroform to create phase separation of the IPA from the
SEBS, forming nano-/microscale droplets. The subsequent evaporation of these droplets
results in a porous SEBS substrate with pores of varying sizes. It is noteworthy that the



Micromachines 2023, 14, 603 3 of 21

evaporation of the organic solvents must proceed under specific conditions to ensure that
the fabrication process is harmless to the environment.
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Figure 1. (a) Microscopic and macroscopic images of a nanoporous SEBS structure as a substrate
attached to human epidermis. (b) Comparison of the passive cooling function of nanoporous
and nonporous SEBS substrates. (c) The water vapor transmission of nanoporous SEBS (red) and
nonporous SEBS (blue). ((a–c) Reprinted with permission from Ref. [47], Copyright 2019 National
Academy of Sciences.) (d) Picture of nanoPE obtained from SEM. (e) Transmissions of body radiation
of different material-based substrates. (f) Opacity under visible light of different material-based
substrates. ((d–f) Reprinted with permission from Ref. [48], Copyright 2016 The American Association
for the Advancement of Science.).

Figure 1b clearly illustrates the impressive passive cooling capabilities of the proposed
porous SEBS compared to a normal flexible substrate. The epidermis covered by the porous
SEBS is 6 ◦C cooler than that covered by the nonporous SEBS. Furthermore, the porous
SEBS may have a high water vapor transmission rate due to the interconnected hierarchical
pores presented in the substrate, as shown in Figure 1c (red line for the porous substrate
and blue line for the nonporous substrate). This multifunctional porous SEBS, when
used as a substrate for wearable electronics, can significantly improve user comfort and
reduce the risk of inflammation due to sweat accumulation. In addition to its exceptional
biocompatibility, the porous SEBS substrate can also support bioelectronic devices, such as
pressure/strain sensors [29] and electromyography (EMG) sensors [49], through the spray
printing of conductive materials such as silver nanowires (Ag NWs), which exhibit excellent
mechanical compliance and electrical conductivity when applied to a porous SEBS.

Po-Chun Hsu and his colleagues proposed another promising nanomaterial as a
substrate for on-skin electronics that can provide similar biocompatibility [48]. This material
is a textile-like porous polyethylene with pore sizes ranging from 50 nm to 1000 nm, making
it opaque to visible light and transparent to body radiation due to the distribution of pore
sizes. Figure 1e and the inset of Figure 1f show a scanning electron microscopic (SEM)
photograph of the nanoporous polyethylene (nanoPE) textile and its macroscopic structure,
respectively. Additionally, Figure 1e,f demonstrate the ability of nanoPE to transmit body
radiation while blocking visible light. These unique characteristics make the nanoPE
textile an ideal candidate for making clothes-like substrates for wearables with excellent
thermal management and passive cooling. Measurement results have shown that skin
covered by nanoPE textile can be cooled by 2.7 ◦C compared to skin covered by normal
cotton. Furthermore, the nanoPE textile can also exhibit excellent air permeability and
waterproofing after specific chemical modification. Although the nanoPE textile may not
have high stretchability and ductility, it can be processed into garments with relatively
fixed shapes that can accommodate complex electronic systems.
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In addition to the two representative nanomaterials used for the substrate in a wear-
able electronic system, many other flexible materials have emerged in recent years, enabled
by porous polymers with excellent mechanical properties and outstanding appliances for
the spray painting of electronics, such as porous PDMS [50] and porous polyurethane
(PU) [51]. Figure 2a illustrates the fabrication process of a nanoporous PDMS-based flexible
substrate [52]. This hybrid material is made by integrating a silica nanoparticle/PDMS
and nanoporous cellulose acetate layer on two sides of a cotton fabric, which can achieve
excellent waterproofing and high air permeability. The microscopic image of the substrate
presented in Figure 2b clearly shows the porous structure with pore sizes of approximately
500 nm. The passive cooling capability is depicted in Figure 2c, where a 2 ◦C temperature
drop can be achieved by covering such a nanoporous PDMS-based substrate on the epider-
mis. It is worth noting that the nanoporous cellulose acetate layer introduces the passive
cooling feature, while the nanoparticle/PDMS layer functioning as a superhydrophobic
layer provides excellent waterproofness. Furthermore, a breathable, flexible substrate made
of thermoplastic PU film proposed by Ziwei Chen et al. [53] is shown in Figure 2d. Their
prepared porous membrane possesses a graded pore size distribution and can therefore
exhibit high air permeability. At the same time, through integrating with Ag@K2Ti4O9,
this substrate has enhanced sensitivity as a piezoresistive substrate. Figure 2e depicts a
macroscopic photograph of the fabricated nanoporous PU film while stretched and attached
to the epidermis for human–machine interactions, which shows its good stretchability. Ad-
ditionally, this PU-based flexible substrate can achieve desired waterproofness, as shown in
Figure 2f, with a contact angle of 140◦. Table 1 presents a comparison of the four mentioned
nanoporous-based substrates.
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Figure 2. (a) Fabrication process of silica nanoparticle PDMS/nanoporous cellulose acetate film.
(b) Microscopic photographs of the silica nanoparticle PDMS and the nanoporous cellulose acetate;
the three scale bars are 10 µm, 2 µm, and 1 µm, respectively. (c) Passive cooling feature of the proposed
hybrid material ((a–c) reprinted with permission from Ref. [52], Copyright 2018 American Chemical
Society). (d) Fabrication process of the nanoporous PU substrate. (e) Photograph showing the
stretchability of the nanoporous PU. (f) Waterproofness of the nanoporous PU under different strains
((d–f) are reprinted with permission from Ref. [53], Copyright 2022 Royal Society of Chemistry).
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Table 1. Comparisons of the biocompatibility and stretchability of four nanoporous polymer-based
flexible substrates.

Soft Substrate Air Permeability Waterproofness Thermal
Management Stretchability Pore Size

Porous SEBS [47] High Moderate High High 200–800 nm
Porous PE [48] No No Low High 50–1000 nm

Porous PDMS [52] High \ Moderate Moderate ~500 nm
Porous PU [53] High Moderate No Moderate \

In addition to porous-structure-based substrates, nanomesh-based substrates have
also been developed that are ideal for supporting wearable electronics. While the former
substrate has been found to exhibit suboptimal durability and electrical performance, the
latter can effectively address these issues. Wooseong Jeong and his group proposed an
Ag–Au nanowire network (AANN) synthesized with a polymer nanomesh substrate, as
shown in Figure 3a–d [54]. The Ag nanowires are attached to the polymer nanofiber, and
upon photonic sintering, Au is electroplated onto the Ag nanowires, forming Ag–Au core–
shell nanowires. To fabricate this substrate, TPU elastomer solution is first diluted with a
mixture of methyl ethyl ketone solvent and dimethylformamide (DMF) by stirring for six
hours. The resulting solution is then placed in an electrospinning system with 15 kV voltage
applied and ejected at 1.5 mL/h to obtain TPU elastomer nanofiber mesh structures. The
Ag nanowire dispersion in ethanol is subsequently spray-coated onto the nanofiber mesh.
This AANN-integrated substrate is essentially biocompatible, stretchable, and ultradurable,
as evidenced by the photograph of the substrate attached to human epidermis and the
microscopic SEM picture presented in Figures 3b and 3c, respectively. Figure 3d is a
demonstration of the impressive stretchability of this AANN substrate. However, the
electrospun nanomesh-based substrate may be expensive to manufacture due to the use of
Au to ensure biocompatibility. Yancong Qiao and his collaborators proposed a laser-scribe-
graphene (LSG)/PU-based nanomesh-type e-skin (Figure 3e), which may significantly
lower the cost of fabrication [55]. This substrate is ultralightweight and possesses good
air permeability and fine conformability. The PU nanomesh has a low melting point and
therefore cannot support the chemical vapor deposition of graphene, so a laser-scribed
fabrication process is adopted, as depicted in Figure 3e. The graphene oxide dispersion is
first mixed with tetrahydrofuran and poured onto the PU nanomesh. After full evaporation,
the nanomesh is embedded into the graphene oxide film. In addition to its good gas
permeability and comfortability, Figure 3f,g also demonstrate its remarkable durability,
as the device remains unchanged even after being worn on a hand for different intervals
of time. Since the substrate exhibits exceptional tensile properties, as shown in Figure 3h,
it may have a bright future in pressure sensing applications. Both of these examples of
nanomesh-based substrates have demonstrated the immense potential of this structure for
use as a substrate for wearable electronics.

2.2. Soft Nanoconductors for Wearables

If the substrate of a wearable electronic system can be considered as the foundation of
a skyscraper, then the conductor can be seen as the mainframe of the skyscraper. This is
because the conductive materials used in wearable electronics must not only be flexible
but also have favorable electrical conductivities to ensure that the function of the electronic
systems does not degrade compared to those composed of traditional rigid conductors,
such as copper or gold. Ag NW is one of the most popular nanomaterials used for flexible
conductors due to its high conductivity and ease of fabrication through methods such as
spray painting, coating, and inkjet printing [56,57]. Zhi Jiang and his group proposed an
extraordinary example of nanomesh-type elastic conductors, as shown in Figure 4a [58].
This porous nanomesh-type conductor is made of two layer-by-layer nanofibers (NFs) or
nanowires (NWs) produced through interfacial hydrogen bonding. High conductivity and
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stretchability are achieved by adhering the highly conductive Ag NWs to the stretchable
PU NFs, as illustrated in Figure 4a. Moreover, this conductor exhibits good cyclic durability,
facilitating a prolonged wearable lifetime. It has been reported that their proposed flexible
conductors exhibit a conductivity near 9190 S/cm, with stretchability of up to 310%. The
resistance of the conductor increases by up to 82% after 1000 stretch/release cycles at up to
70% tensile strain. Notably, they have realistically created an electrode with a nanomesh-
type conductor that is 2.5 mm wide and 20 mm long, the resistance of which can be less than
1.5 Ω. Such performance is very close to that of traditional metallic materials, demonstrating
its considerable potential for use in connecting electronic systems in wearable devices.
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Figure 3. (a) Fabrication process of an Ag–Au nanowire network (AANN). (b) Photograph of an
AANN substrate when attached to human epidermis (c) Microstructure of an AANN. (d) Stretchability
of an AANN substrate. ((a–d) Reprinted with permission from Ref. [54], Copyright 2022 Published
by Elsevier Ltd.) (e) Photograph of LSG/PU substrate when attached to human epidermis and its
fabrication process. (f,g) Photographs of an LSG/PU substrate attached to epidermis for different
time intervals. (h) Tensile property of an LSG/PU substrate ((e–h) reprinted with permission from
Ref. [55], Copyright 2021 Wiley-VCH GmbH.).
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Figure 4. (a) Microscopic photograph and diagram of the conducting network of Ag NWs and PU NFs
(reprinted with permission from Ref. [58], Copyright 2019 John Wiley & Sons, Inc.). (b) Microscopic
photograph of Ag NWs/PEDOT:PSS and its transparent nature (reprinted with permission from
Ref. [59], Copyright 2015 Royal Society of Chemistry). (c) Graphene nanoink-fabricated patterns
and their conductivity (reprinted with permission from Ref. [60], Copyright 2011 Springer Nature).
(d) Structure of the carbon nanotube–propyl methacrylate–conductive-carbon back (CNT-PMPS-
CCB), a demonstration of its stretchability, and its recovery rate under different stretchability condi-
tions (reprinted with permission from Ref. [61], Copyright 2020 Elsevier Ltd.). (e) Diagram of Au
nanomeshes, photographs of the conductor attached to the epidermis, and an SEM image (reprinted
with permission from Ref. [62], Copyright 2017 Springer Nature). (f) Porous liquid metal in under
a microscope and comparison of liquid leakage between the porous and nonporous liquid metal
(reprinted with permission from Ref. [63], Copyright 2023 The American Association for the Ad-
vancement of Science). (g) MoO2-enabled Hilbert serpentine pattern and its SEM image (reprinted
with permission from Ref. [64], Copyright 2022 The American Association for the Advancement
of Science).

In addition to the nanomesh-type conductors made by adhesion between Ag NWs
and PU NFs, another flexible conductor enabled by Ag NWs and poly(3,4-ethylenedioxy-
thiophene):poly(styrenesulfonate) (PEDOT:PSS) was proposed by Seyul Kim [59]. PE-
DOT:PSS is a well-known conducting polymer that can enhance the conductivity of metallic
nanowires by functioning as an electrical bridge between separated nanowires [65]. How-
ever, the traditional fabrication process of Ag NWs/PEDOT:PSS may result in reduced
conductivity due to the rough surface of PEDOT:PSS on top of Ag NWs and the necessary
additive binders that prevent the aggregation of Ag NWs, which may, in turn, disrupt elec-
tron transfer from PEDOT:PSS to Ag NWs [66,67]. To address these issues, Seyul Kim et al.
proposed a one-step coating without any post treatment, significantly enhancing the con-
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ductivity. Figure 4b shows the microstructure of Ag NWs/PEDOT:PSS and a macroscopic
photograph; Ag NWs/PEDOT:PSS are coated on a transparent polyethylene terephthalate
(PET) film. The measured sheet resistance is reported to be 10.8 Ω/sq. This conductor
is also transparent in visible light, providing additional benefits for wearable electronics
incorporated into clothing, as they do not compromise the integrity and beauty of clothes.
Although these two types of Ag NW-based flexible conductors may have advantages such
as remarkable durability or transparency, they both suffer from the relatively high cost of
Ag NWs and unstable conductivity due to the non-uniform distribution of Ag NWs.

Single-layered graphene oxide (GO) or few-layered graphene oxide (FGO) conducting
films are promising alternatives for use in flexible conductors due to the superb electrical
properties of graphene [68–70]. Lu Huang et al. proposed an extremely easy fabrication
process for GO or FGO conductors using a cheap commercial inkjet printer [60]. The use of
inkjet printing to make soft electronics has several advantages, including compatibility with
different substrates, contactless and mask-free patterning, and vacuum-free processing [71].
GO and FGO solutions were obtained by oxidizing graphite with a modified Hummers
method, which, after proper preparation for a certain viscosity, were then injected into
a cleaned ink cartridge. The GO and FGO were printed onto soft substrates, such as
paper, PET, and PI, following predesigned patterns. The printed pattern and measured
conductivity are depicted in Figure 4c. The conductivity can be significantly improved by
repeating prints or using FGO ink. This may be attributed to the multiple prints leading to a
cascaded connection among different prints, effectively reducing the surface impedance of
the conducting film. Compared to previous Ag NW-based conductors, GO and FGO have
much simpler fabrication processes, although they have lower conductivity. Additionally,
although conductivity can be improved by multiple prints, the alignment among different
prints can be a challenge. The authors demonstrated the application of this conductor
as a flexible electrode for H2O2 sensing, which does not have rigorous requirements for
conductivity. Therefore, these GO and FGO conducting materials may have a bright future,
e.g., as electrodes for wearable electrocardiogram (ECG) and EMG sensors.

Furthermore, the utilization of the carbon nanomaterial family has attracted significant
research interest. Figure 4d demonstrates a hybrid carbon nanotube–propyl methacrylate–
conductive-carbon back (CNT-PMPS-CCB) conductor proposed by Pan Song et al. [61].
This conductor may possess excellent mechanical properties, with an elongation at break of
211% and a tensile strength of 4.5 MPa, in addition to a high electrical conductivity that
can reach 248.8 S/m. The fabrication process begins with the preparation of CCB-PMPS.
CCB and MPS monomers are first placed in dry toluene and ultrasonicated for 30 min.
The mixture is washed three times with toluene to obtain self-polymerized PMPS, which
is highly soluble in toluene. After drying in a vacuum oven, the CCB-PMPS is prepared.
Next, CNTs containing hydroxyl groups react with the prepared CCB-PMPS to obtain
the CCB-P-CNT hybrid filler. The first panel of Figure 4d clearly shows the structure of
the synergistic dispersion of the CNTs via CCB-PMPS. The conductor’s great mechanical
stretchability is demonstrated in Figure 4d, where the light-emitting diode connected to
the conductor can light up when 100% strain is applied to it. Additionally, the conductor
can have a good recovery rate within a certain range of applied strain, as shown in the last
panel of Figure 4d. Furthermore, the authors proposed utilizing the conductor’s high strain
sensitivity and excellent deformation recovery performance for sensing applications.

In addition to the nascent nanomaterials used for soft and pliable conductors, tradi-
tional metallic conductors that employ novel fabrication processes to attain both inflam-
mation-free and stretchability requisites have also captured the interest of numerous re-
searchers [72,73]. A noteworthy example of this is the Au nanomeshes introduced by
Akihito Miyamoto and his colleagues [62]. Nanofibers with diameters ranging from 300 nm
to 500 nm were produced from a polyvinyl alcohol (PVA) solution and configured into a
mesh-like sheet. Subsequently, an Au layer was deposited onto the sheet using a shadow
mask. This nanomesh conductor could be directly placed on the epidermis or other soft
substrates, and the PVA nanofibers could be easily removed by spraying water. Figure 4e



Micromachines 2023, 14, 603 9 of 21

lucidly illustrates the conductor’s structure and its macro-/microscopic photographs. The
fabricated nanomesh conductor proposed in this study, which had a width of 2.5 mm
and a length of 80 mm, might have a resistance close to 600 Ω, which is significantly
superior to that of previous nanoconductors. Additionally, this Au nanomesh conductor
demonstrates remarkable robustness against stretch/release cycles, as the conductance
may remain unchanged within a 15% strain and display limited reduction within a 50%
strain. It is quite surprising that even after 500 stretching cycles, the conductance may not
undergo any substantial changes, suggesting that it has excellent robustness. Compared
to GO and FGO conductors, the drawbacks of this Au nanomesh conductor might be its
relatively complicated fabrication process that requires deposition and post treatment, as
well as the high cost of Au.

Using a similar principle of direct utilization of metal conductors, liquid metal has
piqued growing research interests as a flexible conductive material for next-generation skin-
interfaced bioelectronics [24,25,33,74]. However, the primary challenge associated with
liquid metal conductors is the difficulty of confining the liquid metal within a specific area
serving as conductors and the inevitable leakage of the liquid metal during the deformation
of the substrate. In Ref. [63], Yadong Xu and his colleagues proposed a porous liquid metal–
elastomer composite as a soft conductor with high leakage resistance and antimicrobial
properties. It concurrently possesses high conductivity conferred by the liquid metal and
high resistance against deformations due to its porous structure. In this study, eutectic
gallium–indium (EGaIn) liquid metal was selected, as it can provide the desired electrical
conductivity, negligible vapor pressure, and nontoxicity [75]. Furthermore, EGaIn can
also retain its electrical conductivity against deformations. The fabrication process begins
with the sonication of EGaIn in 1-butanol to generate the liquid metal in micro/nanoscale
particles. Subsequently, the particles are integrated into a bis(2-ethylhexyl) sulfosuccinate
(BEHS)-modified epsilon polylysine (ε-PL) and PU solution in tetrahydrofuran (THF)
to imbue the composite with antimicrobial properties. This precursor solution is then
transferred onto an aluminum foil and dried. Since the volatile THF has a relatively low
boiling point compared to 1-butanol, the complete evaporation of THF and 1-butanol
in a separated phase eventually leads to the formation of porous EGaIn composites. As
illustrated in the left panel of Figure 4f, EGaIn particles adhere to the surface of pores
during the phase separation process and interconnect with one another to form conductive
pathways via mechanical sintering. This results in high resistance against the leakage of
liquid metal, as shown in the right panel of Figure 4f. Subsequently, the composite can
be fashioned into different patterns by laser cutting and exhibits high leakage resistance.
Nonetheless, some other liquid-metal-based conductors may require additional assistance
to maintain a particular shape [76].

In addition to conventional metallic materials, numerous research endeavors have
been devoted to emerging metal oxide conductors such as zinc oxide [77] and manganese
dioxide (MnO2) [78], which possess captivating electrical conductivity, high chemical
stability, high biocompatibility, and low magnetic susceptibility. Ganggang Zhao and his
colleagues proposed laser-assisted, mask-free, scalable scribing of molybdenum dioxide
(MoO2) (LSM), which not only exhibits the abovementioned superior traits but also employs
a simple, low-cost, and powerful fabrication technique [64]. Figure 4g lucidly displays a
Hilbert serpentine pattern produced by LSM for demonstration. The fabrication process
begins with a spray coating of molybdenum chloride (MoCl5) onto a supporting substrate
(e.g., rigid acrylic or flexible SEBS), which is annealed in the air. Subsequently, CO2
irradiation is employed to transform the precursors into MoO2 via a photothermal process.
Although such laser-assisted fabrication techniques have been employed in, for instance,
laser-scribed SiC, they may lead to undesired electrical conductivity [79,80]. On the contrary,
the fabricated LSM conductor may have a mere 0.4 Ω/sq, which can outperform the
nanoconductors based on Ag NWs and graphene due to its metallic nature. Compared to
the previously described nanoconductors, this laser-scribed LSM may additionally possess
the most precise fabrication process, with intermediate fabrication complexity and cost.
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Such performances can establish LSM as an ideal candidate for wearable electronics, as
it significantly reduces energy loss in the system. Table 2 presents comparisons of the
reviewed nanomaterial-based soft/flexible conductors.

Table 2. Comparisons of mechanical and electrical properties and fabrication difficulties of different
nanomaterial-based conductors.

Soft Conductors Flexibility Stretchability Toxicity Fabrication
Complexity/Cost Conductivity

Ag NWs network [58] High High \ Moderate/high 9190 S/cm
Ag NWs/PEDOT:PSS [59] Moderate Moderate \ Moderate/high 1200 S/cm
Graphene oxide ink [60] High High No Easy/low 900 S/cm

CNT-PMPS-CCB [61] High High No Moderate/Moderate 248.8 S/m
Au nanomesh [62] High Moderate No Easy/high 18,867 S/cm

Porous liquid metal [63] High High No Easy/low 3.4 × 106 S/cm
Molybdenum dioxide [64] Moderate Moderate No Difficult/low 11,363 S/cm

2.3. Nanomaterial-Based Transducers

Following the discussion on flexible substrates and conductors, we now shift our
attention to the functional component of wearable electronics, namely the transducer.
Transducers may be the most effective devices for converting desired physical quantities
into electrical signals that can be leveraged for post-signal processing [81]. Examples of
transducers encompass temperature [82,83], pressure/strain [84,85], and ion concentration
transducers, among others. Recently, Qi Zhang et al. introduced a magnetic-hydrogel-based
soft strain transducer that exploits the relative magnetic field changes of a gelatin methacry-
late (GelMA)/Fe3O4 magnetic hydrogel film, as illustrated in Figure 5a [86]. This material
exhibits excellent magnetic properties (12.74 emu/g), great biocompatibility, desired stabil-
ity, and a very low Young’s modulus that renders it ultrasoft. The fabrication of this strain
transducer entails preparation of GelMA, which is then dissolved in a phosphate-buffered
saline (PBS) solution containing 1% photoinitiator for 10 min. The superparamagnetic
iron oxide nanoparticles are subsequently added to the GelMA solution and sonicated for
30 min. A static magnetic field with a specific magnetic flux density is applied to make
the nanoparticles move and attain thermal equilibrium. The magnetic hydrogel film is
then obtained under UV light, which crosslinks the magnetic hydrogel with an ordered
distribution of magnetic nanoparticles (MNPs). It is worth highlighting that the concentra-
tion of the GelMA is strictly selected to satisfy both a low Young’s modulus and sufficient
crosslinking. When external strain is applied to the film, it exhibits varying magnetic fields
that can be leveraged for use as a strain transducer. Remarkably, this transducer exhibits
sensitivity towards strain variations, responding to bending as low as 50 µm. The authors
found the transducer to be stable, with a prolonged lifetime and free from ionic interference.
In summary, this magnetic-hydrogel-based soft strain transducer shows great potential for
implementation in wearable electronics for monitoring of, e.g., ECG signals, respiratory
regulation, and bone growth.
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Figure 5. (a) A strain transducer based on (GelMA)/Fe3O4–magnetic hydrogel film (reprinted with
permission from Ref. [86], Copyright 2022 American Chemical Society). (b) A pressure transducer
array made of graphene nanoparticles (reprinted with permission from Ref. [87], Copyright 2021
Elsevier, Ltd.). (c) A pressure transducer made of organic field-effect transistors (reprinted with
permission from Ref. [88], Copyright 2020 Elsevier Ltd.). (d) A pressure transducer built from carbon
nanotubes (CNTs) with pyramid patterns (reprinted with permission from Ref. [89], Copyright 2022
Springer Nature). (e) A cadmium ion-selective membrane made of graphene nanosheet (reprinted
with permission from Ref. [90], Copyright 2018 American Chemical Society). (f) A temperature
transducer made of carbon nanotubes (reprinted with permission from Ref. [91], Copyright 2018
Elsevier, Ltd.).

Similar to the soft strain transducer, the on-skin pressure transducer also holds promis-
ing application scenarios. Jong-Seok Kim and his colleagues proposed a nanomaterial-based
flexible pressure transducer array, as depicted in Figure 5b, that can accurately detect ap-
plied pressure, even on uneven surface curvatures [87]. This pressure transducer array
is fabricated using graphene nanoplatelets (GNPs), which are mixed in DMF to form a
suspension. The suspension is then coated on a polyethylene naphthalate (PEN) substrate,
which is deposited with platinum electrodes to create a 4 × 4 GNP transducer array. When
a certain pressure is applied to this array, the GNP nanoparticles establish electrical connec-
tions instead of a random distribution without pressure applied. This leads to a decrease
in the resistance of the array, thereby completing the process of translating the pressure
information to an electrical signal. Moreover, since this flexible transducer is ultimately
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attached to an uneven surface, which may introduce a mismatch of piezoresistive response
in the individual pressure transducer, the authors developed a specific calibration method
to ameliorate the inaccuracy caused by this mismatch. This unique circuit design and cali-
bration method make this on-skin pressure transducer the ideal candidate for monitoring
environmental pressure changes. However, a significant drawback of this design is that
the transducer array has a relatively large size, which is not desired for in vivo pressure
monitoring scenarios, such as monitoring of intracranial pressure, intraocular pressure, and
intestinal pressure. Thus, we introduce two additional low-profile and miniaturized pres-
sure sensors. Ziyang Liu and his team proposed a polyelectrolyte-gated organic field-effect
(OFET) pressure sensor, as shown in Figure 5c [88]. The OFET is produced on a flexible
plastic substrate, polyethylene naphthalate (PEN), on which the drain and source electrodes
are located. The semiconductor layer comes in direct contact with the electrodes through
spin coating, followed by the application of an insulating polystyrene (PS) passivation
layer and a dielectric layer made of polyelectrolyte, which is also spin-coated onto the
semiconductor layer. A PI tape with adjustable thickness is attached to the PEN substrate
to support the structure. Finally, a 50 µm-thick PET film coated by indium tin oxide (ITO)
serves as the suspended gate electrode for pressure sensing. In the inset of Figure 5c, we
show a practical photograph of the fabricated sensor array, which is essentially compact
and flexible. Moreover, the pressure sensitivity displayed in the right panel of Figure 5c
illustrates its remarkable ability to detect human movements and gestures. Another exam-
ple of a pressure sensor made of carbon nanotubes/polyimide (CNTs/PI) is presented in
Figure 5d, which was proposed by Fuqin Sun and his colleagues [89]. The pyramid pattern
of CNT/PI, shown in the inset of Figure 5d results in excellent sensitivity, with a resolution
of 0.0015 kPa−1. The CNT/PI layer serves as the sensitive layer, while PET films with
Ag electrodes function as the substrate, forming a relatively simple structure with greater
feasibility. The fabrication process begins by preparing a Si mold with different micropyra-
mids, followed by adding the CNTs in N-dimethylformamide (DMF) for ultrasonication
dispersion. Following the preparation of the CNT/PI films with a pyramid pattern, a
sealant is used to attach these films to the PET substrate with Ag electrodes. In comparison
with the previous two nanomaterial-based pressure sensors, this CNT/PI-based pressure
sensor has a simpler structure, higher sensitivity, and an easier fabrication process, making
it suitable for various applications in on-skin electronics.

In addition to strain and pressure, information on ion concentrations such as Na+,
K+ [92,93], glucose [94], and pH levels [95–97] in sweat or saliva are also crucial for health-
care monitoring. Therefore, wearable potentiometric transducers that can effectively detect
changes in these indicators have attracted significant research attention. Among many
others, one particular wearable potentiometric transducer, as shown in Figure 5e, was
proposed by Chengmei Jiang and their group [90]. This transducer is constructed on a
PET substrate by printing graphene nanosheet (GN)-based ink, a cadmium ion-selective
electrode (Cd+-ISE), and the reference electrode. As a result, when the cadmium ions pass
through the ion-selective electrode, the relative electrical potential between the Cd+-ISE
and the reference electrode changes, achieving the ion detection function. Furthermore, this
potentiometric sensor has high durability against bending and stretching cycles, as seen
in Figure 5e; the conductivity and electromotive force under the same ion concentration
remain almost unchanged. It is evident that this all-writing potentiometric transducer
is cost-effective, as it does not require a sophisticated fabrication process and has high
sensitivity due to the high conductivity and fast electron-transfer kinetics of GN. Moreover,
the Cd+-ISE can be readily replaced by other selective electrodes sensitive to other ions,
glucose, and pH to efficiently detect physiological indices. However, this all-writing fabri-
cation technique may have a significant disadvantage: it cannot support precise fabrication
compared to laser-induced fabrication or spray coating.

Body temperature is critical for clinical diagnosis, as it directly reflects the patient’s
health condition [98]. Therefore, wearables that continuously acquire and analyze tempera-
ture information are important. Figure 5f demonstrates a negative temperature coefficient
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(NTC) thermistor based on carbon nanotubes (CNTs) that can translate temperature varia-
tions into resistance changes [91]. CNTs have been reported to have great NTCs, making
them an ideal alternative to traditional NTC thermistors such as manganese-nickel-oxide,
exhibiting significant changes in resistivity due to stoichiometry during the fabrication
process. CNT temperature transducers are fabricated by screen printing on a PET film,
representing a high-precision fabrication process that is low-cost and highly compatible
with other soft substrates.

3. Applications of Nanomaterial-Enabled Wearable Electronics

We have reviewed the fundamental components of wearable electronics, including the
soft substrates, conductors, and sensors. Each segment of wearable electronics has unique
characteristics, which together construct the functional system and are interesting in many
application scenarios, such as radio-frequency identification (RFID) [99,100] (Figure 6a),
wearable displays [101–103] (Figure 6b), wearable wireless power transfer [104–106]
(Figure 6c), and healthcare monitoring [107,108] (Figure 6d). RFID is a well-developed
technique for identification and authentication, e.g., for parking lots, door access control,
and anticounterfeiting technology. Conventional RFIDs are typically used in a credit-card-
like form and commonly made using printed circuit board (PCB) technologies, which are
usually bulky and rigid [109]. This characteristic, in many scenarios, requires the user to
intentionally carry a key card around to prepare for the identification or authentication
process, which is not time-efficient or convenient. In sharp contrast, nanomaterial-based
RFID can essentially be flexible to comply with the uneven curvature of the epidermis while
providing the same functionality as a traditional RFID technology. A particular prototype
of nanomaterial-based flexible RFID is shown in Figure 6a [100]. This class of RFID can
even be made as a tattoo on the human body instead of being worn [110]. Therefore, one
can effectively avoid scenarios in which forgetting a key card may lead to losing access.
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(reprinted with permission from Ref. [103], Copyright 2020 John Wiley & Sons, Inc.). (c) Wearable
wireless power transfer enabled by a hybrid of magnetic colloidal and soft elastomers (reprinted with
permission from Ref. [106], Copyright 2020 American Chemical Society). (d) Smart bandage achieved
by soft material (reprinted with permission from Ref. [108], Copyright 2018 John Wiley & Sons, Inc.).
(e) A bioresorbable nano-pressure sensor made with a Fabry–Pérot interferometer (FPI) structure
attached to a human brain model. (f) Photograph of an FPI sensor implanted in the intracranial space
of a rat. ((e,f) Reprinted with permission from Ref. [36], Copyright 2019 The American Association for
the Advancement of Science). (g) A nanomaterial-based peacemaker that is free of leads and batteries
(reprinted with permission from Ref. [111], Copyright 2021 Springer Nature). (h) Human–machine
interactions enabled by a nanomaterial-based pressure transducer (reprinted with permission from
Ref. [112], Copyright 2020 American Chemical Society).

Wearable displays are a critical area for on-skin electronics. Traditional display tech-
niques such as liquid crystal displays (LCDs) [113] and light-emitting diodes (LEDs) [114]
are constructed upon rigid substrates and therefore require undeformed operation plat-
forms such as televisions, desktop monitors, and smartphone screens. Consequently, they
are unsuitable to be worn on the body to visualize healthcare information such as body
temperature, heart rate, and blood oxygen levels acquired by biosensors. The prototype of a
wearable display made of nanofabrics shown in Figure 6b [103] may provide an opportunity
to address this limitation, allowing physiological signals interrogated by a local wearable
sensor to be directly displayed without being affected by movement, bending, and other
deformations. Wearable displays may also be ideal candidates for next-generation smart
devices, wherein screens can be integrated with clothing, separate from CPUs or GPUs, to
provide convenience on the go and avoid the loss of valuable devices.

Figure 6c showcases a cutting-edge wearable wireless power transfer system based
on a hybrid nanomaterial design [106]. While traditional near-field wireless power trans-
fer has been useful for convenient charging of electronic devices [115], recent advance-
ments in wearable healthcare monitoring systems necessitate an on-skin power supply.
Battery-powered wearables may have reduced lifetimes and relatively large sizes and may
potentially harm human bodies due to their chemical composition. Therefore, wireless
energy supply is of paramount importance for on-skin devices. The wearable wireless
power transfer system depicted in Figure 6c provides a means to wirelessly receive power
from an external source, allowing for continuous operations of local electronic systems.
Additionally, this innovative class of wearable wireless power transfer systems can harvest
radio-frequency energies in free space, enabling the charging of smart devices that users
carry with them [116].

Advanced bandages such as that depicted in Figure 6d [108] and other on-skin wound-
healing systems may significantly benefit from the integration of emerging nanomaterials.
Since smart bandages come in direct contact with the wound bed, they must adhere to
stringent requirements of high biocompatibility and nontoxicity [117]. In comparison to
traditional bandages, the aforementioned technology may enhance the process of wound
healing by continuously monitoring several physiological indicators of the wound bed, such
as temperature, humidity, and pH level, dispensing medication automatically to the focus of
infection [118]. In contrast to conventional smart bandages that consist of integrated circuits
and systems, nanomaterial-based smart bandages may possess exceptional flexibility and
softness, thereby ensuring optimal patient comfort. This trait may render them ideal
substitutes for wound- and injury-healing applications.

Implantable electronics are another critical area that can provide real-time and con-
tinuous monitoring of vital signals, which can significantly benefit clinical diagnosis,
treatments, and surgical protocols. The Fabry–Pérot interferometer (FPI)-based optical
sensor proposed by the group of John A. Rogers (Figure 6e,f) is bioresorbable and can
be implanted in vivo [36]. This sensor can simultaneously monitor variations in tempera-
ture and pressure, as demonstrated in an in vivo experiment that monitored intracranial
pressure and temperature. Figure 6f depicts the FPI optical sensor implanted into the
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intracranial space of a rat, with remarkable sensitivity performance; the sensor can be
fully resorbed by human tissue after its lifetime without any adverse effects. The sensing
principle of this device relies on the reflection coefficients of the FPI cavity, which con-
sists of inorganic silicon nanomembranes and biopolymers such as poly(lactic-co-glycolic
acid) (PLGA). This work demonstrates the possibility of achieving wireless, real-time, and
continuous monitoring of vital signals, such as intracranial pressure and temperature, via
implantable sensors. Cardiac pacemakers have also garnered significant research interest.
For example, Figure 6g illustrates a bioresorbable cardiac pacemaker proposed by Yeon Sik
Choi et al. [111] that is free of leads and batteries. This pacemaker is suitable for temporal
peacemaking during surgical recovery, which commonly involves percutaneous leads
and external power sources. The device can be fully resorbed when exposed to biofluids
through metabolic action and hydrolysis, thereby avoiding the need for mandatory surgery
to remove traditional pacemakers. Compared to the aforementioned sensing system, this
pacemaker requires the anticipation of metal electrodes and coils for energy harvesting
made of biocompatible tungsten-coated magnesium and a bioresorbable suture. Both
implantable applications require highly biocompatible nanomaterials that do not cause any
inflammation upon implantation.

In addition to implantable systems, nanomaterial-based wearable electronics also
show great promise in human–machine interfaces, as exemplified by the triboelectric
human–machine interface (THMI) nanophotonics system proposed by Bowei Dong and
his collaborators shown in Figure 6h [112]. This system can convert certain human force
signals, which cause deformation of the wearable devices, into an electrical signal via
a triboelectrification and electrostatic induction process. Subsequently, a nanophotonic
readout circuit translates this electrical signal into a photonic signal that can be used in
human–machine interactions. The wearable devices are affixed to a glove worn on a human
hand, and a robotic hand can mimic the gestures of a human hand.

Along these lines, the continuous, real-time, contactless, and accurate monitoring of
biological signals of human bodies has become an attractive research area, with significant
commercial potential due to its ability to provide invaluable information for post-surgery
diagnosis, training plans for athletes, and self-health management. A comprehensive
diagram of implementations of nanomaterial-based wearable electronics in healthcare
monitoring is presented in Figure 7a, which includes physical indicators such as pressure,
motion, tactile, vibration, and body temperature indicators for fitness plans and self-
diagnosis, as well as vital signals such as intracranial pressure, ECG, and EMG information
for clinical diagnosis and pre-/post-surgery treatments [119]. For example, Figure 7b
depicts a wireless intracranial pressure monitoring system that implants a nanomaterial-
based piezoresistive sensor beneath the cranium [120]. This sensor requires exceptionally
high sensitivity and biocompatibility, as it interacts directly with the cerebrospinal fluid.
Conventional methods for measuring intracranial pressure are highly dependent on wires
or catheters and heavy-duty equipment, which cause discomfort and inconvenience for
patients and may introduce risks such as inflammation or hemorrhage. In addition to vital
sign monitoring, routine human activities are also critical. As demonstrated in Figure 7c,
wearing masks during infectious disease pandemics, such as the coronavirus disease
2019 pandemic, is the most effective way to prevent the spread of disease [121]. Hence,
monitoring whether masks are correctly worn and detecting cough frequency may be of
great importance. This nanomaterial-enabled smart mask can wirelessly provide valuable
information to track potentially contagious individuals and improve diagnostic accuracy.
Such RF monitoring systems based on flexible nanomaterials may have a bright future in
healthcare monitoring systems.
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Figure 7. (a) A comprehensive diagram of wearable healthcare monitoring systems (reprinted with
permission from Ref. [119], Copyright 2018 Royal Society of Chemistry). (b) Diagram of a wireless
intracranial pressure monitoring system based on a nanomaterial-enabled piezoresistive sensor
(reprinted with permission from Ref. [120], Copyright 2022 Institute of Electrical and Electronics
Engineers). (c) Diagram of a smart face mask that can wirelessly monitor the mask-wearing condition
and the cough frequency (reprinted with permission from Ref. [121], Copyright 2022 American
Chemical Society).

4. Outlook

In 2016, the global market for wearable electronics was valued at approximately USD
150 million and was expected to grow to USD 2.86 billion by 2025 [122]. We anticipate that
medical applications will dominate most of the wearable market since healthcare has be-
come one of the most significant problems concerning people in modern society. Although
the market size of wearable electronics is now quite large and still rapidly growing, investi-
gations into wearables may still be in their embryonic state. Large-scale implementation of
wearable electronics still faces several urgent problems that could determine the direction
of future investigations. First, the stability of wearables, especially for implantable devices,
must be addressed, which highly relies on the development of nanomaterials with robust
mechanical properties. Prolonged lifetime for implantable devices may significantly reduce
the number of surgeries required to maintain such devices, thereby effectively avoiding the
risks of unexpected complications. Secondly, to facilitate the implementation of wearable
devices, they must be compact, lightweight, and biocompatible; therefore, biodegradable
nanomaterials are highly sought-after in order to achieve noninvasive or minimally inva-
sive monitoring. Furthermore, the sensitivity of wearable transducers is also critical, which
requires the development of emerging nanomaterials that can achieve sensitive responses to
different physical quantities. Additionally, wearable electronics are expected to be wireless
and battery-less. In this vein, various physiological signs such as pressure, strain, vibration,
temperature, ion concentration, glucose and blood oxygen levels, ECG, and EMG, among
many others depicted in Figure 7a, can be contactlessly interrogated by mobile devices
for diagnosis, and patients can have much more mobility and comfort during the medical
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course of treatment. We foresee that in the near future, wearable electronics will make
breakthroughs with respect to the aforementioned challenges, which may further change
and improve people’s lifestyles as the market size of wearables continues to expand.
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