Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Operating Principle
2.2. Device Design and Fabrication Process
2.3. Reagent Preparation
2.4. Cell Preparation
2.5. Agarose Droplet Preparation
2.6. Experimental Setup
3. Results and Discussion
3.1. Finite Element Simulations
3.2. Droplet Trapping and Extraction
3.3. Selective Droplet Extraction
3.4. Application of the Device to Biological Samples
3.5. Evaluation of Damage to Biological Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skelley, A.M.; Kirak, O.; Suh, H.; Jaenisch, R.; Voldman, J. Microfluidic control of cell pairing and fusion. Nat. Methods 2009, 6, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Park, M.C.; Hur, J.Y.; Cho, H.S.; Park, S.; Suh, K.Y. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging. Lab Chip 2011, 11, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Vriens, K.; Kumar, P.T.; Struyfs, C.; Cools, T.L.; Spincemaille, P.; Kokalj, T.; Sampaio-Marques, B.; Ludovico, P.; Lammertyn, J.; Cammue, B.P.; et al. Increasing the fungicidal action of Amphotericin B by inhibiting the nitric oxide-dependent tolerance pathway. Oxid. Med. Cell. Longev. 2017, 2017, 4064628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breukers, J.; Horta, S.; Struyfs, C.; Spasic, D.; Feys, H.B.; Geukens, N.; Thevissen, K.; Cammue, B.P.; Vanhoorelbeke, K.; Lammertyn, J. Tuning the surface interactions between single cells and an OSTE+ Microwell array for enhanced single cell manipulation. ACS Appl. Mater. Interfaces 2021, 13, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, J.Y.; Hong, S.; Dimov, I.K.; Li, K.; Wu, A.M.; Mumenthaler, S.; Mallick, P.; Lee, L.P. Concurrent transcript and protein quantification in a massive single cell array enables population-wide observation of oncogene escape. Biophys. J. 2013, 104, 686a. [Google Scholar] [CrossRef] [Green Version]
- Rettig, J.R.; Folch, A. Large-scale single-cell trapping and imaging using microwell arrays. Anal. Chem. 2005, 77, 5628–5634. [Google Scholar] [CrossRef]
- Yeo, T.; Tan, S.J.; Lim, C.L.; Lau, D.P.X.; Chua, Y.W.; Krisna, S.S.; Lim, C.T. Microfluidic enrichment for the single cell analysis of circulating tumor cells. Sci. Rep. 2016, 6, 22076. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Li, B.; Li, W.; Ren, X.; Su, N.; Li, R.; Li, J.; Huang, Q. A resistance-based Microfluidic chip for deterministic single cell trapping followed by immunofluorescence staining. Micromachines 2022, 13, 1272. [Google Scholar] [CrossRef]
- Mondal, P.P.; Baro, N.; Singh, A.; Joshi, P.; Basumatary, J. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells. Sci. Rep. 2022, 12, 10229. [Google Scholar] [CrossRef]
- Winters, A.; McFadden, K.; Bergen, J.; Landas, J.; Berry, K.A.; Gonzalez, A.; Salimi-Moosavi, H.; Murawsky, C.M.; Tagari, P.; King, C.T. Rapid single B cell antibody discovery using nanopens and structured light. MAbs 2019, 11, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Yamamoto, T.; Fourmy, D.; Fujii, T. Electroactive Microwell arrays for highly efficient single-cell trapping and analysis. Small 2011, 7, 3239–3247. [Google Scholar] [CrossRef]
- Lv, D.; Zhang, X.; Xu, M.; Cao, W.; Liu, X.; Deng, J.; Yang, J.; Hu, N. Trapping and releasing of single microparticles and cells in a microfluidic chip. Electrophoresis 2022, 43, 2165–2174. [Google Scholar] [CrossRef]
- Zhu, Z.; Frey, O.; Ottoz, D.S.; Rudolf, F.; Hierlemann, A. Microfluidic single-cell cultivation chip with controllable immobilization and selective release of yeast cells. Lab Chip 2012, 12, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Devarenne, T.P.; Han, A. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Lab Chip 2015, 15, 2467–2475. [Google Scholar] [CrossRef]
- Xie, R.; Liu, Y.; Wang, S.; Shi, X.; Zhao, Z.; Liu, L.; Liu, Y.; Li, Z. Combinatorial perturbation sequencing on single cells using microwell-based droplet random pairing. Biosens. Bioelectron. 2023, 220, 114913. [Google Scholar] [CrossRef]
- Zheng, G.; Gu, F.; Cui, Y.; Lu, L.; Hu, X.; Wang, L.; Wang, Y. A microfluidic droplet array demonstrating high-throughput screening in individual lipid-producing microalgae. Anal. Chim. Acta 2022, 1227, 340322. [Google Scholar] [CrossRef]
- Khorshidi, M.A.; Rajeswari, P.K.; Wählby, C.; Joensson, H.N.; Andersson Svahn, H. Automated analysis of dynamic behavior of single cells in picoliter droplets. Lab Chip 2014, 14, 931. [Google Scholar] [CrossRef]
- Tan, W.; Takeuchi, S. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab Chip 2008, 8, 259–266. [Google Scholar] [CrossRef]
- Toprakcioglu, Z.; Knowles, T.P. Sequential storage and release of microdroplets. Microsyst. Nanoeng. 2021, 7, 76. [Google Scholar] [CrossRef]
- Caen, O.; Schütz, S.; Jammalamadaka, M.S.; Vrignon, J.; Nizard, P.; Schneider, T.M.; Baret, J.; Taly, V. High-throughput multiplexed fluorescence-activated droplet sorting. Microsyst. Nanoeng. 2018, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Park, J. Ultrasonic surface acoustic wave-assisted separation of microscale droplets with varying acoustic impedance. Ultrason. Sonochem. 2023, 93, 106305. [Google Scholar] [CrossRef] [PubMed]
- Agresti, J.J.; Antipov, E.; Abate, A.R.; Ahn, K.; Rowat, A.C.; Baret, J.; Marquez, M.; Klibanov, A.M.; Griffiths, A.D.; Weitz, D.A. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA 2010, 107, 4004–4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schütz, S.S.; Beneyton, T.; Baret, J.; Schneider, T.M. Rational design of a high-throughput droplet sorter. Lab Chip 2019, 19, 2220–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isozaki, A.; Nakagawa, Y.; Loo, M.H.; Shibata, Y.; Tanaka, N.; Setyaningrum, D.L.; Park, J.; Shirasaki, Y.; Mikami, H.; Huang, D.; et al. Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Sci. Adv. 2020, 6, eaba6712. [Google Scholar] [CrossRef]
- Jiang, T.; Jia, Y.; Sun, H.; Deng, X.; Tang, D.; Ren, Y. Dielectrophoresis response of water-in-Oil-in-water double emulsion droplets with singular or dual cores. Micromachines 2020, 11, 1121. [Google Scholar] [CrossRef]
- Li, D. DC-Dielectrophoresis in Microfluidic Chips. In Electrokinetic Microfluidics and Nanofluidics; Springer: Berlin/Heidelberg, Germany, 2022; pp. 77–106. [Google Scholar]
- Doornaert, B.; Leblond, V.; Galiacy, S.; Gras, G.; Planus, E.; Laurent, V.; Isabey, D.; Lafuma, C. Negative impact of DEP exposure on human airway epithelial cell adhesion, stiffness, and repair. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L119–L132. [Google Scholar] [CrossRef]
- Lu, J.; Barrios, C.A.; Dickson, A.R.; Nourse, J.L.; Lee, A.P.; Flanagan, L.A. Advancing practical usage of microtechnology: A study of the functional consequences of dielectrophoresis on neural stem cells. Integr. Biol. 2012, 4, 1223–1236. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.P.; Voldman, J. Cell-based sensors for quantifying the physiological impact of microsystems. Integr. Biol. 2011, 3, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Mazutis, L.; Araghi, A.F.; Miller, O.J.; Baret, J.; Frenz, L.; Janoshazi, A.; Taly, V.; Miller, B.J.; Hutchison, J.B.; Link, D.; et al. Droplet-based Microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis. Anal. Chem. 2009, 81, 4813–4821. [Google Scholar] [CrossRef]
- Novick, A.; Szilard, L. Experiments with the chemostat on spontaneous mutations of bacteria. Proc. Natl. Acad. Sci. USA 1950, 36, 708–719. [Google Scholar] [CrossRef] [Green Version]
Trial | Incubation Time (h) | Control Droplets | DEP Droplets |
---|---|---|---|
1st | 0 | 0.9 | 1.3 |
15 | 17.8 | 21.8 | |
2nd | 0 | 0.8 | 0.9 |
15 | 18.4 | 25.6 | |
3rd | 0 | 1.0 | 1.1 |
15 | 23.2 | 23.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shijo, S.; Tanaka, D.; Sekiguchi, T.; Ishihara, J.-i.; Takahashi, H.; Kobayashi, M.; Shoji, S. Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis. Micromachines 2023, 14, 706. https://doi.org/10.3390/mi14030706
Shijo S, Tanaka D, Sekiguchi T, Ishihara J-i, Takahashi H, Kobayashi M, Shoji S. Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis. Micromachines. 2023; 14(3):706. https://doi.org/10.3390/mi14030706
Chicago/Turabian StyleShijo, Seito, Daiki Tanaka, Tetsushi Sekiguchi, Jun-ichi Ishihara, Hiroki Takahashi, Masashi Kobayashi, and Shuichi Shoji. 2023. "Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis" Micromachines 14, no. 3: 706. https://doi.org/10.3390/mi14030706
APA StyleShijo, S., Tanaka, D., Sekiguchi, T., Ishihara, J. -i., Takahashi, H., Kobayashi, M., & Shoji, S. (2023). Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis. Micromachines, 14(3), 706. https://doi.org/10.3390/mi14030706