A Method for Rapid, Quantitative Evaluation of Particle Sorting in Microfluidics Using Basic Cytometry Equipment
Abstract
:1. Introduction
2. Statement of Purpose
3. Methods
3.1. Overview
3.2. Detailed Methods
- Step 1: Sample preparation
- Step 2: Microfluidic separation
- Step 3: Sample collection and processing
- Step 4: Flow data acquisition
- Step 5: Flow data analysis
- Step 6: Calculating quantitative performance
4. Results and Discussion
4.1. Gating Strategy for Bead Populations
4.2. Quantitative Characterisation Using Bead Populations to Identify Appropriate System Conditions
4.3. Quantitative Characterisation Using Beads and Blood
5. Conclusions
- Provides quantitative data on two key metrics of device performance, namely:
- a.
- Purity
- b.
- Separation Efficiency
- Allows the simultaneous analysis of
- a.
- Multiple particles
- b.
- Complex cell mixtures
- Can distinguish between doublets and clusters even when these are exceedingly rare events
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Case Study-Enrichment of Ultra-Rare CTCs and CTC Clusters Using Continuous Flow Devices
Appendix A.1. Biology of CTCs
Appendix A.2. Problem of Isolating CTCs
Appendix A.3. Relevance of Method
References
- Bazaz, S.R.; Rouhi, O.; Raoufi, M.A.; Ejeian, F.; Asadnia, M.; Jin, D.; Warkiani, M.E. 3D Printing of Inertial Microfluidic Devices. Sci. Rep. 2020, 10, 5929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic Point-of-Care Testing: Commercial Landscape and Future Directions. Front. Bioeng. Biotechnol. 2021, 8, 602659. [Google Scholar] [CrossRef]
- Cong, H.; Zhang, N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics 2022, 16, 021301. [Google Scholar] [CrossRef]
- Li, X.Y.; Dong, M.; Zang, X.Y.; Li, M.Y.; Zhou, J.Y.; Ma, J.J.; Wang, G.Y. The Emerging Role of Circulating Tumor Cells in Cancer Management. Am. J. Transl. Res. 2020, 12, 332–342. [Google Scholar] [PubMed]
- Kuntaegowdanahalli, S.S.; Bhagat, A.A.S.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 2009, 9, 2973–2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagat, A.A.S.; Hou, H.W.; Li, L.D.; Lim, C.T.; Han, J. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 2011, 11, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- Bazaz, S.R.; Mihandust, A.; Salomon, R.; Joushani, H.A.N.; Li, W.; Amiri, H.A.; Mirakhorli, F.; Zhand, S.; Shrestha, J.; Miansari, M.; et al. Zigzag microchannel for rigid inertial separation and enrichment (Z-RISE) of cells and particles. Lab Chip 2022, 22, 4093–4109. [Google Scholar] [CrossRef]
- Warkiani, M.E.; Guan, G.; Luan, K.B.; Lee, W.C.; Bhagat, A.A.S.; Chaudhuri, P.K.; Tan, D.S.W.; Lim, W.T.; Lee, S.C.; Chen, P.C.; et al. Slanted Spiral Microfluidics for the Ultra-Fast, Label-Free Isolation of Circulating Tumor Cells. Lab Chip 2014, 14, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Khoo, B.L.; Warkiani, M.E.; Tan, D.S.-W.; Bhagat, A.A.S.; Irwin, D.; Lau, D.P.; Lim, A.S.T.; Lim, K.H.; Krisna, S.S.; Lim, W.-T.; et al. Clinical Validation of an Ultra High-Throughput Spiral Microfluidics for the Detection and Enrichment of Viable Circulating Tumor Cells. PLoS ONE 2014, 9, e99409. [Google Scholar] [CrossRef] [Green Version]
- Hou, H.W.; Warkiani, M.E.; Khoo, B.L.; Li, Z.R.; Soo, R.A.; Tan, D.S.-W.; Lim, W.-T.; Han, J.; Bhagat, A.A.S.; Lim, C.T. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 2013, 3, 1259. [Google Scholar] [CrossRef] [Green Version]
- Bark, J.M.; Kulasinghe, A.; Hartel, G.; Leo, P.; Warkiani, M.E.; Jeffree, R.L.; Chua, B.; Day, B.W.; Punyadeera, C. Isolation of Circulating Tumour Cells in Patients With Glioblastoma Using Spiral Microfluidic Technology—A Pilot Study. Front. Oncol. 2021, 11, 681130. [Google Scholar] [CrossRef] [PubMed]
- Rzhevskiy, A.S.; Bazaz, S.R.; Ding, L.; Kapitannikova, A.; Sayyadi, N.; Campbell, D.; Walsh, B.; Gillatt, D.; Warkiani, M.E.; Zvyagin, A.V. Rapid and Label-Free Isolation of Tumour Cells from the Urine of Patients with Localised Prostate Cancer Using Inertial Microfluidics. Cancers 2019, 12, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrill, E.W.; Pelletier, A.G. Viscosity of human blood: Transition from Newtonian to non-Newtonian. J. Appl. Physiol. 1967, 23, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.W.; Ayscue, L.H.; Watson, J.; Bentley, S.A. Stability of Hematologic Parameters in Healthy Subjects: Intraindividual Versus Interindividual Variation. Am. J. Clin. Pathol. 1988, 90, 262–267. [Google Scholar] [CrossRef]
- Edd, J.F.; Mishra, A.; Dubash, T.D.; Herrera, S.; Mohammad, R.; Williams, E.K.; Hong, X.; Mutlu, B.R.; Walsh, J.R.; Machado de Carvalho, F.; et al. Microfluidic concentration and separation of circulating tumor cell clusters from large blood volumes. Lab Chip 2020, 20, 558–567. [Google Scholar] [CrossRef]
- Condina, M.R.; Dilmetz, B.A.; Bazaz, S.R.; Meneses, J.; Warkiani, M.E.; Hoffmann, P. Rapid separation and identification of beer spoilage bacteria by inertial microfluidics and MALDI-TOF mass spectrometry. Lab Chip 2019, 19, 1961–1970. [Google Scholar] [CrossRef] [Green Version]
- Bazaz, S.R.; Zhand, S.; Salomon, R.; Beheshti, E.H.; Jin, D.; Warkiani, M.E. ImmunoInertial microfluidics: A novel strategy for isolation of small EV subpopulations. Appl. Mater. Today 2023, 30, 101730. [Google Scholar] [CrossRef]
- Hou, H.W.; Petchakup, C.; Tay, H.M.; Tam, Z.Y.; Dalan, R.; Chew, D.E.K.; Li, K.H.H.; Boehm, B.O. Rapid and label-free microfluidic neutrophil purification and phenotyping in diabetes mellitus. Sci. Rep. 2016, 6, 29410. [Google Scholar] [CrossRef]
- Lee, W.C.; Bhagat, A.A.S.; Huang, S.; Van Vliet, K.J.; Han, J.; Lim, C.T. High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 2011, 11, 1359–1367. [Google Scholar] [CrossRef]
- Kwon, T.; Yao, R.; Hamel, J.-F.P.; Han, J. Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics. Lab Chip 2018, 18, 2826–2837. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wu, N.; Chen, F.; Wei, J.; Zhao, Y. Engineering Microfluidic Chip for Circulating Tumor Cells: From Enrichment, Release to Single Cell Analysis. TRAC Trends Anal. Chem. 2019, 117, 27–38. [Google Scholar] [CrossRef]
- Salomon, R.; Kaczorowski, D.; Valdes-Mora, F.; Nordon, R.E.; Neild, A.; Farbehi, N.; Bartonicek, N.; Gallego-Ortega, D. Droplet-based single cell RNAseq tools: A practical guide. Lab Chip 2019, 19, 1706–1727. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Mora, F.; Handler, K.; Law, A.M.K.; Salomon, R.; Oakes, S.R.; Ormandy, C.J.; Gallego-Ortega, D. Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology. Front. Immunol. 2018, 9, 2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; et al. Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science 2013, 339, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; et al. Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis. Cell 2014, 158, 1110–1122. [Google Scholar] [CrossRef] [Green Version]
- Gkountela, S.; Castro-Giner, F.; Szczerba, B.M.; Vetter, M.; Landin, J.; Scherrer, R.; Krol, I.; Scheidmann, M.C.; Beisel, C.; Stirnimann, C.U.; et al. Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding. Cell 2019, 176, 98–112.e14. [Google Scholar] [CrossRef] [Green Version]
- Krol, I.; Castro-Giner, F.; Maurer, M.; Gkountela, S.; Szczerba, B.M.; Scherrer, R.; Coleman, N.; Carreira, S.; Bachmann, F.; Anderson, S.; et al. Detection of circulating tumour cell clusters in human glioblastoma. Br. J. Cancer 2018, 119, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Sarioglu, A.F.; Aceto, N.; Kojic, N.; Donaldson, M.C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H.; Sundaresan, T.K.; Miyamoto, D.T.; et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 2015, 12, 685–691. [Google Scholar] [CrossRef]
- Szczerba, B.M.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M.C.; Donato, C.; Scherrer, R.; Singer, J.; et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 2019, 566, 553–557. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.; et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Li, H.; Xu, S.; Feng, L.; Ma, X.; Chu, Y.; Zou, B.; Wang, S.; Zhou, G. Circulating tumour cells at baseline and late phase of treatment provide prognostic value in breast cancer. Sci. Rep. 2021, 11, 13441. [Google Scholar] [CrossRef] [PubMed]
- De Bono, J.S.; Scher, H.I.; Montgomery, R.B.; Parker, C.; Miller, M.C.; Tissing, H.; Doyle, G.V.; Terstappen, L.W.W.M.; Pienta, K.J.; Raghavan, D. Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2008, 14, 6302–6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.J.A.; Punt, C.J.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. J. Clin. Oncol. 2008, 26, 3213–3221. [Google Scholar] [CrossRef] [PubMed]
- Sequist, L.V.; Nagrath, S.; Toner, M.; Haber, D.A.; Lynch, T.J. The CTC-Chip: An Exciting New Tool to Detect Circulating Tumor Cells in Lung Cancer Patients. J. Thorac. Oncol. 2009, 4, 281–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, B.; Xu, Y.; Zhao, J.; Chen, M.; Zhong, W.; Xing, J.; Wang, M. Prognostic role of circulating tumor cells in patients with EGFR -mutated or ALK -rearranged non-small cell lung cancer. Thorac. Cancer 2018, 9, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Malani, R.; Fleisher, M.; Kumthekar, P.; Lin, X.; Omuro, A.; Groves, M.D.; Lin, N.U.; Melisko, M.; Lassman, A.B.; Jeyapalan, S.; et al. Cerebrospinal fluid circulating tumor cells as a quantifiable measurement of leptomeningeal metastases in patients with HER2 positive cancer. J. Neuro-Oncology 2020, 148, 599–606. [Google Scholar] [CrossRef]
- Malani, R.; Fleisher, M.; Lin, X.; Omuro, A.M.P.; Groves, M.D.; Lin, N.U.; Melisko, M.E.; Lassman, A.B.; Jeyapalan, S.A.; Briggs, S.; et al. Cerebrospinal fluid circulating tumor cells (CSF CTC) for real-time patient monitoring and response to treatment. J. Clin. Oncol. 2017, 35, 11549. [Google Scholar] [CrossRef]
- Ruan, H.; Zhou, Y.; Shen, J.; Zhai, Y.; Xu, Y.; Pi, L.; Huang, R.; Chen, K.; Li, X.; Ma, W.; et al. Circulating tumor cell characterization of lung cancer brain metastases in the cerebrospinal fluid through single—Cell transcriptome analysis. Clin. Transl. Med. 2020, 10, e246. [Google Scholar] [CrossRef]
- Magbanua, M.J.M.; Yau, C.; Wolf, D.M.; Lee, J.S.; Chattopadhyay, A.; Scott, J.H.; Bowlby-Yoder, E.; Hwang, E.S.; Alvarado, M.; Ewing, C.A.; et al. Synchronous Detection of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow Predicts Adverse Outcome in Early Breast Cancer. Clin. Cancer Res. 2019, 25, 5388–5397. [Google Scholar] [CrossRef]
- Merugu, S.; Chen, L.; Gavens, E.; Gabra, H.; Brougham, M.; Makin, G.; Ng, A.; Murphy, D.; Gabriel, A.S.; Robinson, M.L.; et al. Detection of Circulating and Disseminated Neuroblastoma Cells Using the ImageStream Flow Cytometer for Use as Predictive and Pharmacodynamic Biomarkers. Clin. Cancer Res. 2020, 26, 122–134. [Google Scholar] [CrossRef]
- Izar, B.; Tirosh, I.; Stover, E.H.; Wakiro, I.; Cuoco, M.S.; Alter, I.; Rodman, C.; Leeson, R.; Su, M.-J.; Shah, P.; et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 2020, 26, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Au, S.H.; Edd, J.; Stoddard, A.E.; Wong, K.H.K.; Fachin, F.; Maheswaran, S.; Haber, D.A.; Stott, S.L.; Kapur, R.; Toner, M. Microfluidic Isolation of Circulating Tumor Cell Clusters by Size and Asymmetry. Sci. Rep. 2017, 7, 2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bead Size | Cat Number | Volume Added to 15 mL PBS +5% FCS | Estimated Concentration |
---|---|---|---|
3 μm | CAF-003UM | 100 | 4.13 × 106/mL |
7 μm | CAF-007UM | 30 | 286 × 103/mL |
10 μm | CAF-010UM | 40 | 161 × 103/mL |
15 μm | PM015UM | 60 | 51 × 103/mL |
20 μm | PM020UM | 120 | 25 × 103/mL |
Method | Approach Summary | Comments |
---|---|---|
Haematocytometer | Measure the total sample volume, collect 10 –20µL of the sample, use a haematocytometer to count the particles or cells, and then characterize the device performance | Advantages: relatively easy; cheap. Disadvantages: Time-consuming; prone to human error; highly dependent on the individual user (although automated counters reduce operator bias); prone to a batch-to-batch difference in the results; not a perfect quantitative approach for device performance; not suitable for rare cells or clusters; not ideal for samples with high concentration or with a mixture of cells or particles. |
High-speed camera | Record device perfomracne using a large number of frames per second and visually inspect performance. | Advantages: Can provide the motion of particles or cells passing through the channels; can distinguish between cells and clusters. Disadvantages: Only takes a very short snapshot of device behaviour (in the order of µseconds); not recommended for rare cells; high-speed cameras are rare outside of specialist microfluidic labs; and requires high sampling rates, large storage volumes, and advanced image analysis and devices in which the depth of the channel does not exceed the depth of the focal plane in order to calculate metrics for particle or basic cell separation efficiency or purity. In the case of complex cell mixtures, it would require the development of novel label free cell classification algorithms as well as the above considerations for particles and basic cell separation in order to calculate device performance metrics. |
Fluorescent tracing | Evaluate the device performance using fluorescent trace of particles or cells | Advantages: Can illustrate the trace of fluorescent particles passing through the channel. Disadvantages: Restricted for analysis of highly fluorescent microbeads; only applicable for brightly stained cells/particles cells; unable to provide metrics for separation efficiency or purity; cannot distinguish between single or clusters of particles; cannot be used with mixture of particles with different sizes; only takes a snapshot from device performance over a very short period of time. |
Current study | The step-by-step protocol has been provided in Section 3.2 of the article | Advantages: Highly reproducible; independent of the user; provide metrics for device performance (i.e., separation efficiency or purity); ideal for rare cells; can be used with mixture of cells or particles of different sizes; applicable even in high concentration mixture of particles; able to identify the behaviour of doublets or cluster of cells; evaluates the average device performance over a any period of time; as the method uses a cytometer, it enables a variety of ways for characterization and illustration of the device performance; independent of the material used for the microchannel fabrication or volume of the sample. Disadvantages: Requires the use of a flow cytometer as opposed to high speed imaging and fluorescent tracing and does add an extra validation step; best suited to conditions in which cell/particle types can be easily distinguished from each other; and in cases where cell types of interest are very similar, may require high dimensional characterisation panels to calculate metrics. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salomon, R.; Razavi Bazaz, S.; Li, W.; Gallego-Ortega, D.; Jin, D.; Warkiani, M.E. A Method for Rapid, Quantitative Evaluation of Particle Sorting in Microfluidics Using Basic Cytometry Equipment. Micromachines 2023, 14, 751. https://doi.org/10.3390/mi14040751
Salomon R, Razavi Bazaz S, Li W, Gallego-Ortega D, Jin D, Warkiani ME. A Method for Rapid, Quantitative Evaluation of Particle Sorting in Microfluidics Using Basic Cytometry Equipment. Micromachines. 2023; 14(4):751. https://doi.org/10.3390/mi14040751
Chicago/Turabian StyleSalomon, Robert, Sajad Razavi Bazaz, Wenyan Li, David Gallego-Ortega, Dayong Jin, and Majid Ebrahimi Warkiani. 2023. "A Method for Rapid, Quantitative Evaluation of Particle Sorting in Microfluidics Using Basic Cytometry Equipment" Micromachines 14, no. 4: 751. https://doi.org/10.3390/mi14040751
APA StyleSalomon, R., Razavi Bazaz, S., Li, W., Gallego-Ortega, D., Jin, D., & Warkiani, M. E. (2023). A Method for Rapid, Quantitative Evaluation of Particle Sorting in Microfluidics Using Basic Cytometry Equipment. Micromachines, 14(4), 751. https://doi.org/10.3390/mi14040751