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Abstract: The kinematic synthesis of compliant mechanisms based on flexure hinges is not an easy
task. A commonly used method is the equivalent rigid model, which involves replacing the flexure
hinges with rigid bars connected with lumped hinges using the already known methods of synthesis.
This way, albeit simpler, hides some interesting issues. This paper addresses the elasto-kinematics and
instantaneous invariants of flexure hinges with a direct approach, making use of a nonlinear model
to predict their behaviour. The differential equations that govern the nonlinear geometric response
are given in a comprehensive form and are solved for flexure hinges with constant sections. The
solution to the nonlinear model is then used to obtain an analytical description of two instantaneous
invariants: the centre of instantaneous rotation (c.i.r.) and the inflection circle. The main result is
that the c.i.r. evolution, namely the fixed polode, is not conservative but is loading-path dependent.
Consequently, all other instantaneous invariants are loading-path dependent, and the property of
instantaneous geometric invariants (independent of the motion time law) can no longer be used. This
result is analytically and numerically evidenced. In other words, it is shown that a careful kinematic
synthesis of compliant mechanisms cannot be addressed by only considering the kinematics as rigid
mechanisms, and it is essential to take into consideration the applied loads and their histories.

Keywords: compliant mechanisms; instantaneous invariants; MEMS; large displacements; nonlinear
analysis

1. Introduction

In the last two decades, compliant mechanisms [1–3] have produced a growing interest
in academic and industrial fields [4,5]. These types of mechanisms manifest their motion
through the deformation of some very slender parts [6–8] instead of kinematic pairs. Compli-
ant mechanisms have some advantages when compared to lumped pairs: they do not require
lubrication or maintenance as they have a monolithic form (directly replaceable if failure oc-
curs); can be made via low-cost additive manufacturing; are not affected by clearance, friction
and wear on contacting parts; and they can be very light. These features make them ideal
for micro-electro-mechanical systems (MEMS) [9–18], micro-opto-electromechanical systems
(MOEMS) [19,20], and precision engineering [21–24], including micro-manipulators [25–28]
eventually driven by piezoelectric actuators (PEA) [29–32]. Other specific applications of com-
pliant mechanisms include vibration isolation [33], precision polishing [34], micro-scribing [35]
or micro-jetting [36].

On the other hand, the design of compliant mechanisms is tricky, as their motion
involves large displacements/rotations [37–41] (i.e., highly nonlinear geometric behaviour)
of the slender joints (flexure hinges). The design analysis requires a nonlinear structural
approach. The main challenge regarding these mechanisms is finding consolidated method-
ologies to define the adequate sizing of flexible joints to realize the required trajectory
(kinematic synthesis) and guarantee the desired fatigue life. Therefore, it is straight-
forward to observe that the design of compliant mechanisms must be addressed as a
multi-objective problem.
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The introduction of deformable bodies implies that compliant mechanisms do not
depend on a countable number of degrees of freedom (dof), as is customary for rigid bodies;
this dramatically increases the complexity of the design phase [42,43]. For this reason,
in the literature, many authors have made use of pseudo-rigid models [2], in which the
compliant behaviour is approximated (strictly for small movements around the reference
configuration) using an equivalent rigid mechanism formed by ideal constraints [44,45].
This strategy aims to apply the standard methodologies of kinematic synthesis. Different
studies have exploited this simplification, where the pseudo-rigid model has been used
for various types of flexure hinges, including leaf [46], circular [47], parabolic [48] and
notched [49]. The result is that lumped hinges and flexural springs replace the overall flexu-
ral hinges (the more lumped hinges and springs are used, the more the accuracy increases).
Their locations are a function of the geometry of the compliant mechanism; however, they
are also affected by the applied load directions and intensities. The shift of the centre of
instantaneous rotation in the pseudo-rigid body model is usually not considered [50]. With
the aim of improving this aspect, the motion of the centre of instantaneous rotation has
been studied for flexure hinges only loaded by concentrated moments at the end [48,51,52].

With the purpose of providing a complete study of the instantaneous invariants of
rigid bodies connected with flexure hinges (Figure 1), in this paper, we analytically deduce
the evolution of the centre of instantaneous rotation (i.e., the fixed and mobile polodes)
and the inflection circle for flexure hinges loaded by a concentrated force and moment,
emphasizing the effect of the loading path.
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Figure 1. Connection of two rigid bodies through a flexure hinge.

This paper is organized as follows: In Section 2, a comprehensive deduction of the elasto-
kinematics of flexure hinges and its analytical solution is discussed. In Section 3, the results of
Section 2 are applied to deduce the analytical expressions for two fundamental instantaneous
invariants: the fixed and mobile polodes and the inflection circle. Section 4 includes some
numerical examples of the results obtained in Section 3 and experimental verification.

2. A Comprehensive Analytical Model of Flexure Hinge Kinematics

A faithful analytical characterization of rigid bodies connected via flexure hinges
(Figure 1) should consider that, due to the high flexibility of the joints, the configuration
changes involve large rotations/displacements of not only the rigid parts but also the
deformable parts (although small strains are assumed) [53–56]. Therefore, it is necessary to
use a fully nonlinear model.

Figure 2 shows a generic 2D flexure hinge (curvilinear) in two positions. Three refer-
ence systems describe the deformed and undeformed configurations along the reference
lines; these are parametrized by the curvilinear abscissa s ∈ [0, L], where L is the length
of the undeformed configuration. The reference systems are: the global (inertial) frame,
identified through the orthogonal unit vectors iX , iY (for vector and tensor quantities, bold
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font is used), and two (local, non-inertial) mobile frames ex(s), ey(s) and ex(s), ey(s), the
first associated with the undeformed configuration and the second with the deformed one.
Given two-dimensional motion, the unit vector iZ = iX × iY is the same for all triads.
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The two mobile frames can be expressed in Cartesian components (i.e., with respect to
the global frame) through the change-of-basis orthogonal tensors Λϑ, Λψ as follows:

ei(s) = Λϑ·ii (1)

ei(s) = Λψ·ii (2)

where the subscript i is used in place of X, Y or x, y.

Λϑ(s) = ex ⊗ iX + ey ⊗ iY
= cos ϑ iX ⊗ iX − sin ϑ iX ⊗ iY + sin ϑ iY ⊗ iX + cos ϑ iY ⊗ iY

(3)

Λψ(s) = ex ⊗ iX + ey ⊗ iY
= cos ψ iX ⊗ iX − sin ψ iX ⊗ iY + sin ψ iY ⊗ iX + cos ψ iY ⊗ iY

(4)

The angles ϑ(s), ψ(s) are shown in Figure 2.
Based on the previous equations, it is possible to define the curvatures of the reference

lines, which are important intrinsic quantities that characterize the configurations. Differ-
entiating Equations (1) and (2) with respect to s and using Equations (1) and (2) again to
express the results in the mobile frame ex(s), ey(s) results in the following:

dei(s)
ds

= K·ei = k× ei (5)

dei(s)
ds

= K·ei = k× ei (6)

in which:
K(s) =

∂Λϑ

∂s
(Λϑ)

T (7)

K(s) =
∂Λψ

∂s
(
Λψ

)T (8)

are the curvature tensors of the undeformed and deformed reference lines, respectively.
The terms in Equations (7) and (8) are skew-symmetric tensors (Appendix A); therefore, it
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is possible to simplify Equations (5) and (6) using the curvature vectors, which are the axial
vectors of the skew-symmetric curvature tensors:

k(s) =
dϑ

ds
iZ (9)

k(s) =
dψ

ds
iZ (10)

A one-dimensional model is adopted; therefore, for each point, the motion that occurs
during the configuration change is due to two translation components along ex, ey, and
a rotation of the cross-section, assumed to be transversely rigid [57,58]. This allows us to
separately examine axial (ε), shear (γ) and rotational (χ) strains. Adopting a Lagrangian
approach, the radius vector that identifies the reference line of the deformed configuration
is (Figure 2):

r(s) = X iX + Y iY (11)

where X(s), Y(s) represent the position of the generic point of the deformed configuration
with respect to the global reference system as functions of the curvilinear abscissa s.

The prime derivative of r is close to ex, but the two vectors differ due to axial and
shear strain:

dr(s)
ds

= (1 + ε)ex + γ ey =
∂X
∂s

iX +
∂Y
∂s

iY (12)

Using the reverse of Equation (2), namely:

ii =
(
Λψ

)T ·ei(s) (13)

to express the right side of Equation (12) with respect to the mobile frame, the following
relations occur:

ε(s) =
dX
ds

cos ψ +
dY
ds

sin ψ− 1 (14)

γ(s) = −dX
ds

sin ψ +
dY
ds

cos ψ (15)

For slender structures, i.e., when the ratio between the half of thickness and the
curvature radius is� 1 [58,59], the rotational strain is:

χ(s) =
(
k− k

)
·iZ =

dψ

ds
− dϑ

ds
(16)

Therefore, the Green–Lagrange strains are given by:

εx(s, ξ) = ε− yχ (17)

γxy(s) = γ (18)

where y is the coordinate along ey that identifies the points on the cross-section.
Assuming that the beam is made of an isotropic elastic material, the stress components

are σx = Eεx , τxy = Gγxy, where E, G are the axial end shear moduli of elasticity.
In this one-dimensional model, the flexure hinge exchanges forces and moments with

the rigid bodies it connects through its ends. For convenience, the load quantities are
referred to with respect to the global reference system. At s = 0, the force and moment
vectors are:

F0 = F0
X iX + F0

Y iY ; M0 = M0
Z iZ (19)
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At the other end (s = L), the loads are:

FL = FL
X iX + FL

Y iY ; ML = ML
Z iZ (20)

Distributed forces and moments can be applied along the length of the flexure hinge:

q(s) = qX(s) iX + qY(s) iY ; m(s) = mZ(s) iZ (21)

It is worth pointing out that distributed loads are usually omitted in studies regarding
flexure hinges, as most of the forces are exchanged at the extremes. In this paper, we include
this type of loads because there are some applications in which compliant mechanisms are
driven using a distribution of smart materials (e.g., piezoelectric actuators [60] or shape
memory alloys [61]); in these cases, the effect of smart-material actuators manifests as
distributed loads.

At a generic point s, the forces and moment are given by:

F(s) = FX(s)iX + FY(s)iY ; M(s) = MZ(s)iZ (22)

Since the flexure hinge respects the equilibrium in the deformed configuration, the
forces and moment at the generic curvilinear abscissa s can be expressed as a function of
the applied loads [62]. Assuming F0, M0 at the origin, the following equations result:

FX(s) = −F0
X −

s∫
0

qX(s̃)ds̃ (23)

FY(s) = −F0
Y −

s∫
0

qY(s̃) ds̃ (24)

MZ(s) = −M0
Z −YF0

X + XF0
Y +

s∫
0

[(
Ỹ−Y

)
qX(s̃)−

(
X̃− X

)
qY(s̃)−mZ(s̃)

]
ds̃ (25)

where X(s), Y(s) depend on s, while X̃(s̃), Ỹ(s̃) depend on the dummy variable s̃.
Appendix B shows Equations (23)–(25), where known forces and moment FL, ML are

given at s = L, and makes the relations between F0, M0 and FL, ML explicit.
The axial and shear internal forces N(s), T(s) act in the normal and tangential direction

of the cross-section; that is, rotated counterclockwise by a small angle γ with respect to the
mobile frame ex, ey. The effect of shear distortion on the direction of the internal forces is
generally very small and can be neglected, thus obtaining:

N(s) = (N − γT) ex + (T + γN) ey ∼= N ex + T ey (26)

Therefore, the internal forces N(s) result from F(s), using Equation (2):

N(s) = Λψ·F(s) (27)

or, in components:
N(s) = FX(s) cos ψ + FY(s) sin ψ (28)

T(s) = −FX(s) sin ψ + FY(s) cos ψ (29)

Due to the planar motion, the internal moment is simply M(s) = Mz(s).
The stress tensor can be expressed as follows (having neglected the shear distortion effect):

σ(s, ξ) = σx ex ⊗ ex + τxy
(
ex ⊗ ey + ey ⊗ ex

)
(30)
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The internal forces and moment N(s), M(s) can be expressed as the integration along the
cross-section of the stress vector t = σ·ex = σx ex + τxy ey:

N(s) =
∫
A

tdA ; M(s) =
∫
A

(
y ey

)
× tdA (31)

Using Equations (17) and (18) assuming the local reference as the principal of inertia
and with the origin on the barycentre of the section, the force–strain relationships are:

N(s) = EAε ; T(s) = GAsγ ; M(s) = EIχ (32)

where A(s), I(s) are the area and moment of the inertia of the cross-section and As(s) is the
effective shear area [57,63].

The three unknows that identify the deformed configuration are X, Y, ψ; they can be
found by applying Equations (28), (29) and (32) to Equations (14)–(16):

dX
ds

= cos ψ +

(
cos2 ψ

EA
+

sin2 ψ

GAs

)
FX(s)−

(
1

GAs
− 1

EA

)
sin ψ cos ψFY(s) (33)

dY
ds

= sin ψ−
(

1
GAs

− 1
EA

)
sin ψ cos ψFX(s) +

(
sin2 ψ

EA
+

cos2 ψ

GAs

)
FY(s) (34)

dψ

ds
=

dϑ

ds
+

M(s)
EI

(35)

Equations (33)–(35) form a nonlinear first-order ODE system that holds for every type
of flexure hinge (with variable section, initially curvilinear, etc.). It is not possible to solve
this analytically in a general form (i.e., for all types of load conditions) [37,39,54]. The bound-
ary conditions (b.c.) in Equations (33) and (34) are trivial, i.e., X(s = 0) = X0 , Y(s = 0) = Y0,
namely the choice of the location of the global reference system. More interesting are the
b.c. of the Equation (35), which represent the difficulties encountered in solving this system.
In general, ψ(s = 0) = ψ0 is unknown; however, above all, the bending moment M0

Z at the
origin (namely, the curvature ψ′(s = 0) = ψ′0) is unknown. The b.c. regarding the bending
moment could be known at the end s = L (e.g., the case of a cantilever beam loaded by
concentrated forces at the end), which entails that the b.c. problem becomes a boundary
value problem (b.v.p.). As is well known, the numerical methods employed to solve ODE
only work with initial value problems (i.v.p.); therefore, to solve a b.v.p., a shooting method
should be adopted [37,39] that involves integrating the systems of Equations (33)–(35)
several times.

Often, Equation (35) appears as a second-order ODE. By applying the derivative of
Equation (35), being careful to use the Leibniz integration rule (differentiation under the
integral sign) for the differentiation of Equation (25), one obtains:

d2ψ

ds2 +

(
1

EI
d2EI
ds2

)
dψ

ds
=

d2ϑ

ds2 +
1

EI

[(
d EI
ds

)
dϑ

ds
+

dy
ds

FX(s)−
dx
ds

FY(s) + mz

]
(36)

This form does not change the aforementioned difficulties. ψ′0 and ψ0 remain unknown;
however, the form of Equation (36) can be analytically integrated under some assump-
tions. This will be carried out in the following section to provide some benchmark results
regarding the computation of the fixed and mobile polodes of compliant mechanisms.

Furthermore, it is important to emphasize (for what follows) that in compliant mecha-
nism applications, the forces and moments are not directly applied at the ends of the flexure
hinges but on the rigid bodies connected with them. In this case, the forces and moments
F0

X, F0
Y, M0

Z or FL
X, FL

Y , ML
Z applied to the flexure hinge are also a function of the unknown

angles ψ0 or ψL (Figure 3). Consider Figure 3, where a flexure hinge connects two rigid
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bodies, of which the one on the left is clamped. The rigid body on the right is loaded at
point P with the forces and moment:

FP = FP
X iX + FP

Y iY; MP = MP
Z iZ (37)
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Figure 3. Flexure hinge loaded by forces and moment applied to a generic point of the rigid body
connected to it.

Applying static equivalence, the forces and moment FL
X, FL

Y , ML
Z experienced by the

flexure hinge are not only a function of known quantities such as FP
X , FP

Y , MP
Z and xP, yP,

but also of the unknown angle ψL (or ψ0):

FL
X = FP

X (38)

FL
Y = FP

Y (39)

ML
Z = MP

Z +
[
xP ex(L) + yP ey(L)

]
×
(

FP
X iX + FP

Y iY
)

= MP
Z + (xP cos ψL − yP sin ψL) FP

Y − (xP sin ψL − yP cos ψL) FP
X

(40)

Therefore, as previously mentioned, in this scenario the applied moment ML
Z depends

on the unknown angle ψL.
This case is an example in which the b.c. turn into a b.v.p., inasmuch the moment M0

Z
at the origin is unknown; however, it must be found such that at the end of the computation,
the final moment ML

Z obtained from the curvature ψ′(L) is consistent with Equation (40).
In the following section, an analytical solution of Equations (33)–(35) is presented under
some simplifying assumptions.

2.1. Analytical Solution

An analytical solution of Equations (33), (34) and (36) can be found taking into account some
assumptions: the extensional and shear strains are negligible (ε = γ = 0 or EA, GAs → ∞);
the section has a constant shape (EI = const.); the initial curvature is constant (ϑ′ = const.);
and the distributed loads are null (qX = qY = mZ = 0). Although the analytical solution
requires the assumption of a constant section, this is a valuable solution since for notched
flexure hinges, the main deformable parts are the central ones with an extended constant
section (Figure 3).

Under these conditions, the forces FX , FY (Equations (23) and (24) or Equations (A3)
and (A4)) acting at a generic point s are constant, and the Equations (33), (34) and (36) can
be simplified as:

dX
ds

= cos ψ (41)
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dY
ds

= sin ψ (42)

EI
d2ψ

ds2 = FX sin ψ− FY cos ψ (43)

Multiplying both sides of the latter equation by ψ′, Equation (43) can be integrated, obtaining:

EI
2

(
dψ

ds

)2
= c− FX cos ψ− FY sin ψ (44)

where c is an integration constant.
If b.c. at s = 0 are applied:

c = FX cos ψ0 + FY sin ψ0 +
EI
2

(
ϑ′ +

M0
Z

EI

)2

(45)

Otherwise, if b.c. at s = L are applied:

c = FX cos ψL + FY sin ψL +
EI
2

(
ϑ′ +

ML
Z

EI

)2

(46)

Equation (44) can be rearranged as follows:

dψ

ds
= sign

(
ψ′
)

f (ψ) (47)

in which:

f (ψ) =

√
2

EI
(c− FX cos ψ− FY sin ψ) (48)

The function sign(ψ′) is unknown and generally piecewise-defined; it defines the
sign of the curvature. This is a crucial point; since the ODE system in Equations (41)–(43)
is nonlinear, more than one solution generally exists. These multiple solutions of the
deformed shape have an unknown number of inflection points (i.e., points where the
curvature ψ′ = 0 and the curvature sign therefore changes). Furthermore, the presence of
one or more inflection points depends on the position of the applied load in the deformed
(unknown) configuration. A priori determination of the presence of inflection points (i.e.,
the exact determination of sign(ψ′)) as the only function of the magnitude of the applied
loads is an open problem. We will not deal with that in the following and present a solution
limited to one internal inflection point.

If no internal inflection points exist, the angle ψ(s) is monotone and the sign function
is trivial:

sign
(
ψ′
)
= ±1 ∀ ψ(s) ∈ (ψ0, ψL) (49)

However, the latter can be zero at the extremities if the terms
(

ϑ′ +
M0

Z
EI

)
or
(

ϑ′ +
ML

Z
EI

)
are nulls in ψ0 or ψL.

If one internal inflection point does exist, Equation (47) is null at a point s = sin, which
corresponds to an angle ψ(s = sin) = ψin:

FX cos ψin + FY sin ψin = c (50)
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The latter equations can be manipulated to obtain a relation between the angle ψin
and the triplet ψ0, ϑ′, M0

Z or ψL, ϑ′, ML
Z, according to the choice of the Equation (45) or

Equation (46) for c evaluation:

ψin = arcsin

(
c√

FX2 + FY
2

)
− ϕ (51)

where:

ϕ = atan2(FY, FX) (52)

We suspect that if multiple inflection points ψin,1 , ψin,2, . . . , ψin,k exist, the relation
between the generic inflection point angle ψin,k and the angle ψ0 or ψL can always be found
with Equation (50); however, the sign equation and the closure equation (Equation (54))
must be split into parts. This issue has not yet been thoroughly investigated and is beyond
the scope of the present paper.

The sign function for a single inflection point appears in a more articulated form than
Equation (49), namely as a piecewise-defined function:

sign
(
ψ′
)
=


sign(ψ′0) i f ψ(s) ∈ (ψ0, ψin)

0 i f ψ(s) = ψin
sign(ψ′L) i f ψ(s) ∈ (ψin, ψL)

(53)

where sign(ψ′0) , sign(ψ′L) are constant values that can be ±1. Again, Equation (53) can be

zero at the extremities if the terms
(

ϑ′ +
M0

Z
EI

)
or
(

ϑ′ +
ML

Z
EI

)
are nulls in ψ0 or ψL.

Both in the case of zero or a single inflection point, the determination of ψin is condi-
tioned by the knowledge of ψ0 or ψL. To find the unknown angle, it is necessary to integrate
Equation (47), obtaining:

L =

ψL∫
ψ0

sign(ψ′) dψ

f (ψ)
(54)

Equation (54) appears as a closure equation that involves geometric and material vari-
ables, in addition to applied loads. It is not possible to analytically integrate Equation (54),
and the search for the unknown parameter (ψ0 or ψL) involves an attempt method [53,54].
It is important to observe that the function f (ψ) also depends on ψL.

Once Equation (54) is solved with the considered geometry and loads, the deformed
shape can be obtained through the integration of Equations (41) and (42), using the relation
ds = dψ/ψ′ and applying Equation (47) and the b.c. X0 = X(s = 0) , Y0 = Y(s = 0):

X(ψ) = X0 +

ψ∫
ψ0

sign(ψ̃′) cos ψ̃

f (ψ̃)
dψ̃ (55)

Y(ψ) = Y0 +
∫ ψ

ψ0

sign(ψ̃′) cos ψ̃

f (ψ̃)
dψ̃ (56)

where ψ̃ is a dummy variable and ψ(s) ∈ [ψ0, ψL].
Similar to Equation (54), it is not possible to analytically integrate Equations (55) and

(56); thus, they require a numerical integration. However, Equations (54)–(56) are computa-
tionally advantageous when compared to the full-length numerical integration required to
compute Equations (33)–(35); this is because Equations (54)–(56) allow for the computation
of the results only at a single point (e.g., the end point), which is very advantageous in the
computation of the instantaneous invariants covered in the following section.
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If an inflection point exists, Equations (54)–(56) involve improper integrals. To avoid
complications due to singularity, Equations (54)–(56) are evaluated by applying a trick
reported in Appendix C.

3. Analytical Deduction of Instantaneous Invariants for Compliant Mechanism

The kinematic synthesis of rigid planar mechanisms is often performed using instanta-
neous geometric and kinematic invariants [64–69]. The first type of invariants (geometric)
are more useful, as they have the important property of being independent of the motion
time law. They include important geometric loci, such as the fixed and mobile polodes
(and their curvature, appearing in the Euler–Savary formula), the first Bresse’s circle (zero
normal acceleration), the cubic curve of stationary curvature, Ball’s point and the Burmester
points. The second type of invariants (kinematic) define instantaneous properties of the
motion but are a function of the motion time law (i.e., angular velocity, acceleration, etc.).
Some examples of instantaneous kinematic invariants are the second Bresse’s circle (zero
tangential acceleration), the centre of the accelerations (i.e., the point with null acceleration),
the jerk and Javot centres, etc.

Instantaneous invariants, mainly the geometric ones, are essential to set problems of
kinematic synthesis in analytical form [68–73].

To our best knowledge, for compliant mechanisms, the instantaneous invariants have
not yet been deduced in an analytical form. As mentioned in Section 1, pseudo-rigid
models are commonly used [2,44,45], in which the flexure hinges are replaced by rigid
bars connected with lumped hinges. However, this approach implies that the bar lengths
and the positions of the lumped hinges must be changed during motion as the centre of
instantaneous rotation moves, and their positions change as a function of the applied load.

In this section, the determination of the instantaneous invariants is addressed with
a direct approach, considering the real deformable behaviour of flexure hinges.

The first instantaneous invariant investigated is the centre of instantaneous rotation.
In order to study the relative motion, the case of a flexure hinge connected a fixed and
a mobile rigid body is taken into account. The position of a generic point M on the mobile
rigid body in Figure 4 is:

rM = rL + rML (57)

where:
rM = XM iX + YM iY (58)

rL = XL iX + YL iY (59)

rML = xM ex(L) + yM ey(L) = ΛψL ·xML (60)

in which Equation (2) has been used in Equation (60). The others terms that appear in
Equations (59) and (60) are: XL = X(ψ = ψL) , YL = Y(ψ = ψL), xML = xM iX + yM iY
and ΛψL = Λψ(ψ = ψL).
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Figure 4. Generic configuration of two rigid bodies (fixed and mobile) connected by a flexure hinge.

In other words, XM, YM are the coordinates of the generic point M with respect to the
global reference system, while xM, yM are the coordinates of the same point with respect to
the mobile frame ex(ψL), ey(ψL), having its origin at the end of the flexure hinge.

The coordinates of the centre of instantaneous rotation (c.i.r.) (XC, YC, still unknown)
of the mobile rigid body expressed in the global reference system do not change for an
infinitesimal motion:

drC = 0 = drL + drCL (61)

The coordinates xC, yC of the c.i.r., expressed with respect to the mobile frame are not
modified during infinitesimal motion due to the rigidity of the mobile rigid body. The only
variable terms are XL, YL and ex(ψL), ey(ψL), which are all functions of the final angle ψL
(Equations (2), (55) and (56)). Hence:

drC
dψL

= 0 =
drL
dψL

+
dΛψL

dψL
·xCL ⇒ xCL = −

(
dΛψL

dψL

)T drL
dψL

(62)

Or, in components:

xC(ψL) =
dXL
dψL

sin ψL −
dYL
dψL

cos ψL (63)

yC(ψL) =
dXL
dψL

cos ψL +
dYL
dψL

sin ψL (64)

Equations (63) and (64) are the Cartesian parametric equations of the mobile polode,
namely the position of the c.i.r. within the mobile frame. Using Equations (57), (60) and
(62), the equation of the fixed polode is given as:

rC = rL −ΛψL ·
(

dΛψL

dψL

)T drL
dψL

(65)

From Equation (57), the condition of stationarity yields:

XC(ψL) = XL −
dYL
dψL

(66)

YC(ψL) = YL +
dXL
dψL

(67)

Equations (63), (64), (66) and (67) are generally valid no matter the shape of the
flexure hinges. In the following, they are made explicit by taking into account the case
examined in Section 2.1, in which the flexure hinge is loaded by different combinations of



Micromachines 2023, 14, 783 12 of 25

loads FP
X , FP

Y , MP
Z; this scenario can be analytically explained using Equations (55) and (56).

Although Equations (55) and (56) are valid for flexure hinges with a constant section only,
all results obtained through the use of Equations (55) and (56) may be extended to notched
flexure hinges if an equivalent length of the main deformable part (with a constant section)
is estimated [73].

By computing Equations (55) and (56) with ψ = ψL and applying their differentiation
with respect to ψL, considering that the terms c, FX, FY are function of ψL, the following
result is obtained:

dXL
dψL

=
sign(ψ′L) cos ψL(

ϑ′ +
ML

Z
EI

) −
ψL∫

ψ0

sign
(
ψ′
)d f (ψ)

dψL

cos ψ

f (ψ)2 dψ (68)

dYL
dψL

=
sign(ψ′L) sin ψL(

ϑ′ +
ML

Z
EI

) −
ψL∫

ψ0

sign
(
ψ′
)d f (ψ)

dψL

sin ψ

f (ψ)2 dψ (69)

where, using Equations (38), (39), (A3) and (A4) for the derivatives of FX , FY:

d f (ψ)
dψL

=
1

EI f (ψ)

[
dc

dψL
−

dFP
X

dψL
cos ψ−

dFP
Y

dψL
sin ψ

]
(70)

Differentiating Equation (46) gives the following:

dc
dψL

=
dFP

X
dψL

cos ψL − FP
X sin ψL +

dFP
Y

dψL
sin ψL + FP

Y cos ψL +

(
ϑ′ +

ML
Z

EI

)
dML

Z
dψL

(71)

in which ML
Z is reported in Equation (40), and its derivative is:

dML
Z

dψL
=

dMP
Z

dψL
+

[(
dFP

Y
dψL
− FP

X

)
xP +

(
dFP

X
dψL
− FP

Y

)
yP

]
cos ψL+

−
[(

dFP
X

dψL
+ FP

Y

)
xP +

(
dFP

Y
dψL

+ FP
X

)
yP

]
sin ψL

(72)

A dimensionless parameter τ ∈ [τ0, τ1] can be introduced to “chronologically” evaluate
the trend of the loading path. In other words, the parameter τ acts as an ordering variable,
identifying the configuration change as a function of it. Therefore, the applied loads
become a function of τ FP

X(τ), FP
X(τ), FP

X(τ), where the loads applied at the initial and
final configurations are FP

X(τ0), FP
Y (τ0), MP

Z(τ0) and FP
X(τ1), FP

Y (τ1), MP
Z(τ1), respectively

(Figure 5).
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As a consequence, the final angle ψL(τ) becomes a function of the parameter τ, and
the differentiations that appear in Equations (70)–(72) can be expressed as:

dFP
X

dψL
=

.
FP

X
.

ψL
;

dFP
Y

dψL
=

.
FP

Y
.

ψL
;

dMP
Z

dψL
=

.
MP

Z
.

ψL
(73)

where the notation
.
() indicates the derivatives with respect to the parameter τ.

To recap, for one d.o.f. rigid mechanisms, ψL is a function of time t and the relationship
is unique. This implies that the polodes are instantaneous geometric invariants. For
a compliant mechanism, ψL is not only a function of the applied loads’ intensity but also of
the loading histories and loading rates. In other words, the polodes are not conservative;
if two different loading paths are applied (e.g., two different motion time laws to obtain
two different dynamic loads), the c.i.r. locations (i.e., fixed and mobile polodes) differ.
Therefore, the polodes are not instantaneous geometric invariants; as consequence, for
compliant mechanisms do not exist instantaneous invariants that are independent of the
motion time law.

There is only one situation where, for static loading, the polodes are conservative
(i.e., are not loading-path dependent); this occurs when the flexure hinges are loaded by
a concentrated moment only. For this case, the analytical equations of the fixed and mobile
polodes are provided in Appendix D.

Another important instantaneous invariant that is worth defining analytically is the
first Bresse’s circle (or inflection circle) [68–72,74,75]. It is the locus of points that have an
instantaneous rectilinear motion (i.e., have zero normal acceleration). The curvature of the
trajectory of a generic moving point M of the mobile rigid body (Figure 4) is:

kM =

dXM
dψL

d2YM
dψL2 − d2XM

dψL2
dYM
dψL[(

dXM
dψL

)2
+
(

dYM
dψL

)2
] 3

2
(74)

To find the locus of points Xin, Yin, which have zero normal acceleration (i.e., an
instantaneous inflection in their trajectory) and hence zero curvature to their trajectory, it is
sufficient to set Equation (74) to zero:

dXin
dψL

d2Yin
dψL2 −

d2Xin
dψL2

dYin
dψL

= 0 (75)
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Using Equation (57), one obtains:

dXin
dψL

=
dXL
dψL
− xin sin ψL − yin cos ψL (76)

d2Xin
dψL2 =

d2XL

dψL2 − xin cos ψL + yin sin ψL (77)

dYin
dψL

=
dYL
dψL

+ xin cos ψL − yin sin ψL (78)

d2Yin
dψL2 =

d2YL

dψL2 − xin sin ψL − yin cos ψL (79)

Applying Equations (76)–(79), Equation (75) is expressed as:

xin
2 + yin

2 + a xin + b yin + c = 0 (80)

where:

a =

(
dYL
dψL
− d2XL

dψL2

)
cos ψL −

(
dXL
dψL

+
d2YL

dψL2

)
sin ψL (81)

b =

(
d2XL

dψL2 −
dYL
dψL

)
sin ψL −

(
d2YL

dψL2 +
dXL
dψL

)
cos ψL (82)

c =
dXL
dψL

d2YL

dψL2 −
d2XL

dψL2
dYL
dψL

(83)

Equation (80) is a circumference. Therefore, the parametric equations of the inflection
circle with respect to the mobile frame are:

xin = cx + R cos u (84)

yin = cy + R sin u (85)

where u ∈ [0, 2π] is the curve parameter and C = cx iX + cy iY = − 1
2 [a iX + b iY] and

R = 1
2

√
a2 + b2 − 4c are the centre and radius of the inflection circle in Equation (84,85),

respectively. The parametric Cartesian equations of the inflection circle with respect the
fixed frame are (Equation (57)):

Xin = XL + xin cos ψL − yin sin ψL (86)

Yin = YL + xin sin ψL + yin cos ψL (87)

Equations (84)–(87) of the inflection circle are analytically defined if the second derivative
of XL, YL is made explicit (the prime derivatives are already defined by Equations (68) and (69)).

Therefore, by differentiating Equations (68) and (69), one obtains:

d2XL
dψL2 =

sign(ψ′L) cos ψL

EI
(

ϑ′+
ML

Z
EI

)3

[
FP

Y cos ψL − FP
X sin ψL +

(
ϑ′ +

ML
Z

EI

)
dML

Z
dψL

]
− sign(ψ′L) sin ψL(

ϑ′+
ML

Z
EI

) − sign(ψ′L) cos ψL

EI
(

ϑ′+
ML

Z
EI

)2
dML

Z
dψL

−
ψL∫
ψ0

sign(ψ′) cos ψ

f (ψ)2

[
d2 f (ψ)
dψL2 − 2

f (ψ)

(
d f (ψ)
dψL

)2
]

dψ

(88)
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d2YL
dψL2 =

sign(ψ′L) sin ψL

EI
(

ϑ′+
ML

Z
EI

)3

[
FP

Y cos ψL − FP
X sin ψL +

(
ϑ′ +

ML
Z

EI

)
dML

Z
dψL

]
− sign(ψ′L) cos ψL(

ϑ′+
ML

Z
EI

) − sign(ψ′L) sin ψL

EI
(

ϑ′+
ML

Z
EI

)2
dML

Z
dψL

−
ψL∫
ψ0

sign(ψ′) sin ψ

f (ψ)2

[
d2 f (ψ)
dψL2 − 2

f (ψ)

(
d f (ψ)
dψL

)2
]

dψ

(89)

where:
d2 f (ψ)
dψL2 = 1

EI f (ψ)

[
d2c

dψL2 +

(
dFP

Y
dψL
− d2FP

X
dψL2

)
cos ψ +

(
dFP

X
dψL
− d2FP

Y
dψL2

)
sin ψ

]
+ 1

f (ψ)

(
d f (ψ)
dψL

)2 (90)

d2c
dψL2 =

(
d2FP

X
dψL2 − FP

X +
dFP

Y
dψL

)
cos ψL +

(
d2FP

Y
dψL2 −

dFP
X

dψL
− FP

Y

)
sin ψL

+

(
1

EI
dML

Z
dψL

)2
+

(
ϑ′ +

ML
Z

EI

)
d2 ML

Z
dψL2

(91)

d2 ML
Z

dψL2 =
d2 MP

Z
dψL2 +

[(
d2FP

Y
dψL2 − 2 dFP

X
dψL
− FP

Y

)
xP +

(
d2FP

X
dψL2 − 2 dFP

Y
dψL
− FP

X

)
yP

]
cos ψL

−
[(

2 dFP
Y

dψL
− FP

X +
d2FP

X
dψL2

)
xP +

(
2 dFP

X
dψL
− FP

Y +
d2FP

Y
dψL2

)
yP

]
sin ψL

(92)

in which:

d2FP
X

dψL2 =
..

FP
X −

.
FP

X
.

ψL

..
ψL;

d2FP
Y

dψL2 =
..

FP
Y −

.
FP

Y
.

ψL

..
ψL;

d2MP
Z

dψL2 =
..

MP
Z −

.
MP

Z
.

ψL

..
ψL (93)

For the case where only a concentrated moment is applied, the analytical expression
of the inflection circle is reported Appendix D.

Following the flow of the work above, it is possible to find the analytical description
of many other geometric loci important for kinematic synthesis, including the second
Bresse’s circle, the centre of accelerations, the cubic of stationary curvature, the Burmester
points, etc.

4. Numerical Examples and Experimental Evidence

In this section, some numerical applications of the analytical results obtained in
Sections 2 and 3 are shown. If the length, bending stiffness and loads are given, the only
unknown is the angle ψL. The latter needs to be obtained using an attempt method with
Equation (54). A fast method to address this issue is the bisection algorithm [31,33,45],
which requires an interval search ψL ∈ [ψL1, ψL2] (the interval can be chosen to be very
wide, e.g., (0, 2π), to satisfy any load and configuration conditions). The error tolerance of
the end angle is set to 10−8 in the following examples.

The kinematics of a flexure hinge connecting two rigid bodies, constrained and mobile,
were examined. The material of the flexure hinge was ABS with E = 2.3 GPa, the length
was L = 30 mm and the constant section was rectangular, 1 mm thick and 3 mm wide. The
load was applied to the mobile rigid body at xP = 5 mm.

The first case (Figure 6) concerns a straight flexure hinge, where a pure moment
acts on the mobile rigid body. A fully analytical solution for this situation is reported in
Appendix D. The applied moment is equal to MP

Z = πEI/L, obtaining a final angle ψL = π.
Figure 6 shows the trajectory of the endpoint and c.i.r. (i.e., the fixed polode) and the
inflection circle computed in the final configuration. This is a special case, inasmuch as
the presence of only a concentrated moment guarantees that the polode is conservative,
i.e., loading-path independent. It is possible to observe that the initial position of the
c.i.r. coincides with the centre of the flexure hinge; however, it moves away during the
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configuration change out of the flexure hinge axis and closer to the fixed body. For this
reason, the pseudo-rigid body approach used in Howell’s simplest version [2], which
involves a single lumped hinge in the middle of the flexure hinge, causes a significant error
in the predicted motion [46].
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A less trivial example is shown in Figure 7. In this case, an initially curved flexure
hinge (ϑ′ = 10 m−1) is connected to a rigid body loaded with both forces and a moment.
The two loading paths (detailed in Figure 7) have a linear trend but two different final loads.
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Figure 7. Flexure-hinge loaded by two different loading paths.

As expected, for two different final loads, the two fixed polodes and therefore all the
instantaneous invariants differ (all being dependent on the location of the c.i.r.).

The case in Figure 8 examines the influence of the loading trend on the c.i.r. locations,
keeping the same final loads. The first loading path is the same as above, while the second
achieves the same final loads; however, they grow in a nonlinear way.
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Figure 8. Flexure-hinge loaded by two loading paths with the same final loads but different rate-trends.

The two fixed polodes differ, as is evident in Figure 8. It should be noted that the
initial positions of the c.i.r. do not coincide either.

This result is less intuitive than the previous one; however, it proves that, generally,
instantaneous invariants are not conservative for compliant mechanisms.

Therefore, it is not possible to foresee the motion and features (i.e., instantaneous
invariants) of a flexible mechanism if the dynamic knowledge of all acting loads is unknown.
Indeed, in the examples presented above, the c.i.r. locations differ remarkably. In other
words, one should be very careful to address the kinematic synthesis of compliant mecha-
nisms with the same method used for rigid mechanisms connected through kinematic pairs.

Some experiments were conducted on a flexible PVC beam constrained with two almost
rigid pipes at the ends; one is fixed and the other free, subjected to gravity, as shown in
Figure 9. The bending stiffness of the flexible beam was estimated through material testing
and section measurement. The extrapolation of experimental data was conducted through
a digital image analysis where the alignment of the instruments was assessed using laser
beams. The experimental measurements were used to validate the method proposed in
this paper. Comparisons between experimental evidence and numerical predictions were
carried out to compare the overall (i.e., between the initial and final configuration) centre
of rotation, as shown in Figure 9 (first row of Table 1). The two centres of rotation were
very close, demonstrating that the method allows for the correct analysis of considerable
displacements. It is interesting to note that the trajectory of the c.i.r. (i.e., the fixed polode)
during the motion is not predictable a priori with only knowledge of the initial and final
configurations, and it is mandatory to perform a reliable kinematic analysis. In Table 1, four
cases are examined according to the length of the flexible joint, where the experimental and
predicted coordinates of the centre of rotation and final angles are reported. All the results
showed good agreement with small or relevant displacements; however, the error increased
inversely with length, probably due to a lower precision of data acquisition when smaller
displacements occur.
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Table 1. Experimental and predicted position of rotation centre and final end angle for four lengths
of flexible joint.

Flexible Joint
Lengths

[mm]

Experimental
Centre of Rotation

[mm]

Predicted Centre
of Rotation

[mm]

Experimental
Final Angle

[deg]

Predicted Final
Angle
[deg]

360 (87.3, −238.6) (83.7, −242.9) 41.6 42.7
270 (85.2, −169.4) (85.3, −168.2) 33.0 32.6
180 (70.7, −100.1) (71.4, −97.4) 22.2 21.5
90 (40.3, −47.1) (41.5, −38.9) 12.4 10.2

5. Conclusions

This paper investigated the elasto-kinematics and the kinematic features of motion (i.e.,
instantaneous invariants) of compliant mechanisms based on flexure hinges. A comprehen-
sive deduction of the differential equation that governs the nonlinear geometric behaviour
of flexure hinges was presented. These equations were analytically addressed, assuming
the extensional and shear strains to be negligible, the section and the initial curvature
constant and the distributed loads null. The analytical solution provides a remarkable
computational advantage compared to numerical methods (e.g., Runge–Kutta); it allows
for the management of a single point of interest (e.g., the extreme of the flexure hinge),
avoiding a full-length integration. This feature is crucial to deduce the analytical expres-
sions of the instantaneous invariants that require the derivatives of the endpoint of the
flexure hinge. Two instantaneous invariants were investigated, the centre of instantaneous
rotation and the inflection circle (first Bresse’s circle). The main obtained result is that the
c.i.r. locations (i.e., fixed polode) are not conservative, i.e., they depend on the loading path
and evolution. Therefore, all the other instantaneous invariants are not conservative; as
a consequence, the notion of instantaneous geometric invariants (i.e., independent of the
motion time law) decays.

These results were numerically verified in some examples, and a simple experimental
validation was conducted using optical means with the aim of verifying that the step-by-
step analysis resulted in the final configuration experienced.

The obtained equation, although given for flexure hinges with a constant section,
may be extended to notched flexure hinges given that the main deformation is due to
the central part presenting a constant section. Furthermore, the achieved results could
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open new avenues to define the Jacobian constraint matrix (used in multibody codes) of
flexure hinges, where it should appear not only as a function of the geometry and material
properties but also of the actual loads.
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Appendix A. Proof of the Skewness of the Curvature Tensor

The change-of-basis Λ is an orthogonal tensor:

Λ(Λ)T = I (A1)

Applying the derivative with respect to s of Equation (A1), the following is obtained:

∂Λ

∂s
(Λ)T = −Λ

∂(Λ)T

∂s
= −

[
∂Λ

∂s
(Λ)T

]T
(A2)

The above is the definition of a skew-symmetric tensor. Therefore, the curvature
tensors in Equations (7) and (8) are skew-symmetric.

Appendix B. Other Relations Regarding the Equilibrium

The forces and moment F(s), M(s) applied at the generic curvilinear abscissa s can
also be expressed as functions of the applied loads FL, ML at s = L, as well as the dis-
tributed loads:

FX(s) = FL
X +

L∫
s

qX(s̃) ds̃ (A3)

FY(s) = FL
Y +

L∫
s

qY(s̃) ds̃ (A4)

MZ(s) = ML
Z − (YL −Y)FL

X + (xL − x)FL
Y

+
∫ L

s
[
−
(
Ỹ−Y

)
qX(s̃)−

(
X̃− X

)
qY(s̃) + mZ(s̃)

]
ds̃

(A5)

where XL = X(s = L) , YL = Y(s = L) are the coordinates of the point in s = L.
By applying the moment equilibrium with the pole at s = 0, the components of F0, M0

can be expressed as function of FL, ML:

F0
X = −FL

X −
L∫

0

qX(s) ds (A6)

F0
Y = −FL

Y −
L∫

0

qY(s) ds (A7)
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M0
Z = −ML

Z + YLFL
X − XLFL

Y +

L∫
0

[Y qX(s)− X qY(s)−mZ(s)] ds (A8)

On the contrary, by applying the moment equilibrium with the pole at s = L, the
components of FL, ML can be expressed as function of F0, M0:

FL
X = −F0

X −
L∫

0

qX(s) ds (A9)

FL
Y = −F0

Y −
L∫

0

qY(s) ds (A10)

ML
Z = −M0

Z −YLF0
X + XLF0

Y
+
∫ L

0 [−(YL −Y)qX(s)− (XL − X)qY(s)−mZ(s)] ds
(A11)

Appendix C. A Useful Trick to Avoid the Singularities of Some Integrals

In the presence of an inflection point, the denominator of the Equations (42)–(44)
becomes null for ψ(s) = ψin. If an internal inflection point occurs at ψ(s) = ψi, the integral
of Equation (42) can be separated into two components using Equation (41):

L =

ψin∫
ψ0

sign(ψ′)
f (ψ)

dψ +

ψL∫
ψin

sign(ψ′)
f (ψ)

dψ (A12)

The previous integrand function becomes singular for ψi. Therefore, to overcome this
problem [76], we introduce a very small positive quantity ε� 1 (numerically, ε ∼= 10−4 is
sufficient), such that:

L = sign
(
ψ′0
) ψi−ε∫

ψ0

dψ

f (ψ)
+

ψin∫
ψin−ε

dψ

f (ψ)

+ sign
(
ψ′L
) ψL∫

ψin+ε

dψ

f (ψ)
+

ψin+ε∫
ψin

dψ

f (ψ)

 (A13)

The two integrals with extremes of integration [ψin − ε, ψin] and [ψin, ψin + ε], by
virtue of the small value of ε, can be linearized (and then integrated) using the change in
variables ψ = ψin −ω, which implies ω ∈ [0, ε], obtaining:

f (ψ) = f (ψin −ω) ∼=
√

2
EI

[c− FX(cos ψin + ω sin ψin)− FY(sin ψin −ω cos ψin)] (A14)

Hence:

I1(ε) =

ψin∫
ψin−ε

dψ

f (ψ)
=

ε∫
0

dω

f (ψin −ω)
=
√

2EI

√
Ã + εB̃−

√
Ã

B̃
(A15)

I2(ε) =

ψin+ε∫
ψin

dψ

f (ψ)
=

0∫
−ε

dω

f (ψin −ω)
=
√

2EI

√
Ã−

√
Ã− εB̃

B̃
(A16)

where:

Ã = c− FX cos ψin − FY sin ψin (A17)

B̃ = FY cos ψin − FX sin ψin (A18)
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Therefore, the integral of Equation (43) (or Equation (A12)) in the presence of an
inflection point is:

L = sign
(
ψ′0
) ψin−ε∫

ψ0

dψ

f (ψ)
+ I1

+ sign
(
ψ′L
) ψL∫

ψin+ε

dψ

f (ψ)
+ I2

 (A19)

and the singularity no longer appears.
The same trick can be applied to the integrals in Equations (44) and (45), obtaining:

X(ψ) = X0 + sign
(
ψ′0
) ψin−ε∫

ψ0

cos ψ̃

f (ψ̃)
dψ̃ + I3

+
+ sign

(
ψ′L
) ψ∫

ψin+ε

cos ψ̃

f (ψ̃)
dψ̃ + I4


(A20)

Y(ψ) = y0 + sign(ψ′0)
[∫ ψin−ε

ψ0

sin ψ̃

f (ψ̃)
dψ̃ + I5

]
+

+sign(ψ′L)
[∫ ψ

ψin+ε

sin ψ̃

f (ψ̃)
dψ̃ + I6

] (A21)

where:

I3(ε) =
I1(ε) cos ψin

sign
(
ψ′L
) +

2 sin ψin

3B̃2

[(
εB̃− 2Ã

)√
Ã + εB̃ + 2Ã

√
Ã
]

(A22)

I4(ε) =
I2(ε) cos ψin

sign
(
ψ′L
) +

2 sin ψin

3B̃2

[(
εB̃ + 2Ã

)√
Ã− εB̃− 2Ã

√
Ã
]

(A23)

I5(ε) =
I1(ε) sin ψin

sign
(
ψ′L
) +

2 cos ψin

3B̃2

[(
εB̃− 2Ã

)√
Ã + εB̃ + 2Ã

√
Ã
]

(A24)

I6(ε) =
I2(ε) sin ψin

sign
(
ψ′L
) +

2 cos ψin

3B̃2

[(
εB̃ + 2Ã

)√
Ã− εB̃− 2Ã

√
Ã
]

(A25)

It is worth pointing out that Equations (A13), (A20) and (A21) hold even if an inflection
point happens at one end (e.g., a cantilever beam loaded by a concentrated force at the end),
simply considering that ψin = ψ0 or ψin = ψL.

Appendix D. Fully Analytical Solution of Polodes (Fixed and Mobile) and Inflection
Circle for a Flexure Hinge Loaded by a Concentrated Moment

Taking into account the assumptions of Section 2.1, the deformed configuration of
a flexure hinge loaded only by a concentrated moment MP

Z is represented by the following
parametric equations [53]:

ψ(s) = ψ0 +

(
ϑ′ +

MP
Z

EI

)
s (A26)

X(s) = X0 +

sin
[(

ϑ′ +
MP

Z
EI

)
s
]

(
ϑ′ +

MP
Z

EI

) (A27)

Y(s) = Y0 +

1− cos
[(

ϑ′ +
MP

Z
EI

)
s
]

(
ϑ′ +

MP
Z

EI

) (A28)
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From the latter equations, the terms XL, YL, dXL
dψL

, dYL
dψL

, d2XL
dψL2 , d2YL

dψL2 that form the paramet-
ric equations of the fixed and mobile polodes in Equations (55), (56), (58) and (59) and the
inflection circle in Equations (74)–(77) can be made explicit. Setting ψ0 = X0 = Y0 = 0 for
the sake of clarity, one obtains:

ψL =

(
ϑ′ +

MP
Z

EI

)
L (A29)

XL =
L sin ψL

ψL
(A30)

YL =
L (1− cos ψL)

ψL
(A31)

dXL
dψL

=
L− XL

ψL
−YL (A32)

dYL
dψL

= XL −
YL
ψL

(A33)

d2XL

dψL2 =
XL − L

ψL2 − dYL
dψL
− 1

ψL

dXL
dψL

(A34)

d2YL

dψL2 =
dXL
dψL
− 1

ψL

dYL
dψL

+
YL

ψL2 (A35)
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49. Šalinić, S.; Nikolic, A.V. A new pseudo-rigid-body model approach for modeling the quasi-static response of planar flexure-hinge
mechanisms. Mech. Mach. Theory 2018, 124, 150–161. [CrossRef]

50. Meng, Q.; Li, Y.; Xu, J. A novel analytical model for flexure-based proportion compliant mechanisms. Precis. Eng. 2014, 38,
449–457. [CrossRef]

51. Belfiore, N.P. Functional synthesis of a new class of micro electro-mechanical systems. In Advances in Soft Computing Intelligent
Robotics and Control of Topics in Intelligent Engineering and Informatics; Fodor, J., Fullér, R., Eds.; Springer: Cham, Switzerland, 2014;
Volume 8, pp. 81–93.

52. Verotti, M. Analysis of the center of rotation in primitive flexures: Uniform cantilever beams with constant curvature. Mech. Mach.
Theory 2016, 97, 29–50. [CrossRef]

53. Iandiorio, C.; Salvini, P. An Analytical Solution for Large Displacements of End-Loaded Beams. In Lecture Notes in Mechanical
Engineering, Proceedings of the 1st International Conference on Numerical Modelling in Engineering NME, Ghent University, Ghent,
Belgium, 28–29 August 2018; Springer: Singapore, 2018. [CrossRef]

54. Iandiorio, C.; Salvini, P. Large displacements of slender beams in plane: Analytical solution by means of a new hypergeometric
function. Int. J. Solids Struct. 2020, 185–186, 467–484. [CrossRef]

55. Batista, M. Analytical solution for large deflection of Reissner’s beam on two supports subjected to central concentrated force. Int.
J. Mech. Sci. 2016, 107, 13–20. [CrossRef]

56. Irschik, H.; Gerstmayr, J. A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory:
The case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mech. 2009, 206, 1–21. [CrossRef]

57. Timoshenko, S.P. Strength of Materials (Parts I & II); David Van Nostrand Company: New York, NY, USA, 1940.
58. Iandiorio, C.; Salvini, P. An Engineering Theory of thick Curved Beams loaded in-plane and out-of-plane: 3D Stress Analysis. Eur.

J. Mech.-A/Solids 2022, 92, 104484. [CrossRef]
59. Lacarbonara, W. Nonlinear Structural Mechanics; Springer: New York, NY, USA, 2013; ISBN 978-1-4419-1275-6.
60. Rossi, A.; Botta, F. Optimised Voltage Distribution on Piezoelectric Actuators for Modal Excitations Damping in Tapered Beams.

Actuators 2023, 12, 71. [CrossRef]
61. Thabuis, A.; Thomas, S.; Martinez, T.; Germano, P.; Perriard, Y. Designing compliant mechanisms composed of shape memory

alloy and actuated by induction heating. Smart Mater. Struct. 2021, 30, 095025. [CrossRef]
62. Iandiorio, C.; Salvini, P. Updated Lagrangian Curvilinear Beam Element for 2D Large Displacement Analysis. In Lecture Notes in

Mechanical Engineering, Proceedings of the 5th International Conference on Numerical Modelling in Engineering NME, Ghent University,
Ghent, Belgium, 23–24 August 2022; Springer: Singapore, 2023.

63. Iandiorio, C.; Salvini, P. Elastic-plastic analysis with pre-integrated beam finite element based on state diagrams: Elastic-perfectly
plastic flow. Eur. J. Mech.-A/Solids 2023, 97, 104837. [CrossRef]

64. Krause, M. Analysis der Ebenen Bewegung; Vereinigung Wissenschaftlicher Verlag: Berlin, Germany, 1920.
65. Bottema, O. Some Remarks on theoretical Kinematics: Instantaneous Invariants. In Proceedings of the International Conference

for Teachers of Mechanisms, New Haven, CT, USA, 27–30 March 1961; The Shoe String Press: New Haven, CT, USA, 1961.
66. Veldkamp, G.R. Curvature Theory in Plane Kinematics. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1963.
67. Woo, L.S.; Freudenstein, F. On the curves of synthesis in plane, instantaneous kinematics. In International Union of Theoretical and

Applied Mechanics; Springer: Berlin, Germany, 1969. [CrossRef]
68. Di Benedetto, A.; Pennestrì, E. Introduzione alla Cinematica dei Meccanismi; Casa Editrice Ambrosiana: Milano, Italy, 1993; Volume

2, ISBN 8808084701.
69. Pennestrì, E.; Cera, M. Engineering Kinematics: Curvature Theory of Plane Motion. Independently Published; 2023; ISBN

979-8374816860.
70. Roth, B.; Yang, A.T. Application of Instantaneous Invariants to the Analysis and Synthesis of Mechanisms. J. Eng. Ind. 1977, 99,

97–103. [CrossRef]
71. Roth, B. On the advantages of instantaneous invariants and geometric kinematics. Mech. Mach. Theory 2015, 89, 5–13. [CrossRef]
72. Figliolini, G.; Lanni, C. Geometric Loci for the Kinematic Analysis of Planar Mechanisms via the Instantaneous Geometric

Invariants. In Mechanisms and Machine Science; Springer: Cham, Switzerland, 2019; Volume 66. [CrossRef]
73. Belfiore, N.P.; Simeone, P. Inverse kinetostatic analysis of compliant four-bar linkages. Mech. Mach. Theory 2013, 69, 350–372.

[CrossRef]
74. Luck, K.; Rehwald, W. Historical Evolution of the Pole-Theory. In International Symposium on History of Machines and Mechanisms;

Springer: Dordrecht, The Netherlands, 2004. [CrossRef]
75. Bresse, J.A.C. Memoire sur un theoreme nouveau concernant les mouvements plans, et sur l’application de la cinematique a la

determination des rayons de courbure. J. L’ecole Polytech. 1853, 35, 89.
76. Beléndez, T.; Neipp, C.; Beléndez, A. An Integrated Project for Teaching the Post-Buckling of a Slender Cantilever Bar. Int. J.

Mech. Eng. Educ. 2004, 32. [CrossRef]

http://doi.org/10.1016/j.mechmachtheory.2022.104963
http://doi.org/10.1016/j.mechmachtheory.2019.03.006
http://doi.org/10.1016/j.mechmachtheory.2018.02.011
http://doi.org/10.1016/j.precisioneng.2013.12.001
http://doi.org/10.1016/j.mechmachtheory.2015.10.007
http://doi.org/10.1007/978-981-13-2273-0_25
http://doi.org/10.1016/j.ijsolstr.2019.09.006
http://doi.org/10.1016/j.ijmecsci.2016.01.002
http://doi.org/10.1007/s00707-008-0085-8
http://doi.org/10.1016/j.euromechsol.2021.104484
http://doi.org/10.3390/act12020071
http://doi.org/10.1088/1361-665X/ac1b15
http://doi.org/10.1016/j.euromechsol.2022.104837
http://doi.org/10.1007/978-3-642-85640-2_32
http://doi.org/10.1115/1.3439172
http://doi.org/10.1016/j.mechmachtheory.2014.10.009
http://doi.org/10.1007/978-3-030-00365-4_22
http://doi.org/10.1016/j.mechmachtheory.2013.06.008
http://doi.org/10.1007/1-4020-2204-2_25
http://doi.org/10.7227/IJMEE.32.1.6


Micromachines 2023, 14, 783 25 of 25

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	A Comprehensive Analytical Model of Flexure Hinge Kinematics 
	Analytical Solution 

	Analytical Deduction of Instantaneous Invariants for Compliant Mechanism 
	Numerical Examples and Experimental Evidence 
	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

