Sn-Based Perovskite Solar Cells towards High Stability and Performance
Abstract
:1. Introduction
2. Sn Perovskite Materials
2.1. High Conductivity and Metallic Behavior
2.2. Metallic to Semiconducting by Incorporation of Different Organic Cations
2.3. Importance of Preparation Method
2.4. Defect Physics of Sn Perovskites
3. Stability of Sn Perovskites
3.1. Moisture Effect
3.2. Oxygen Effect
3.3. Illumination
3.4. Ion Migration
4. Basic Structure and Charge Transport Materials for Tin-Based Perovskite Solar Cells
4.1. Electron Transport Layer (ETL)
4.2. Hole Transport Layer (HTL)
5. Thin Films of Sn Perovskites towards High Efficiency and Stability
5.1. Tin Perovskites with Additives/Reducing Agents
5.1.1. SnF2 Additive
5.1.2. SnCl2 Additive
5.1.3. Hydrazine Additive
5.1.4. Acidic Additives
5.2. Surface Modifiers
5.3. Cation Engineering
5.4. Solvent Engineering
5.5. Low-Dimensional Perovskites
5.6. Variety of Very Recent Perovskite Additives, Surface/interface Modifiers in TPSCs with Noticeable Performance
6. Conclusions and Prospects
Funding
Acknowledgments
Conflicts of Interest
References
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X. Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 2022, 30, 687–701. [Google Scholar] [CrossRef]
- Verduci, R.; Romano, V.; Brunetti, G.; Yaghoobi Nia, N.; Di Carlo, A.; D’Angelo, G.; Ciminelli, C. Solar Energy in Space Applications: Review and Technology Perspectives. Adv. Energy Mater. 2022, 12, 2200125. [Google Scholar] [CrossRef]
- Weber, D. CH3NH3PbX3, ein Pb (II)-system mit Kubischer Perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with Cubic Perovskite Structure. Z. Nat. B 1978, 33, 1443–1445. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- De Wolf, S.; Holovsky, J.; Moon, S.-J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F.-J.; Yum, J.-H.; Ballif, C. Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039. [Google Scholar] [CrossRef]
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [Green Version]
- Assi, M.A.; Hezmee, M.N.M.; Sabri, M.Y.M.; Rajion, M.A. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Needleman, H. Lead poisoning. Annu. Rev. Med. 2004, 55, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B.; et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M.G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Frazer, L.; Clark, D.J.; Kim, Y.S.; Rhim, S.H.; Freeman, A.J.; Ketterson, J.B.; Jang, J.I.; Kanatzidis, M.G. Hybrid germanium iodide perovskite semiconductors: Active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. J. Am. Chem. Soc. 2015, 137, 6804–6819. [Google Scholar] [CrossRef]
- Krishnamoorthy, T.; Ding, H.; Yan, C.; Leong, W.L.; Baikie, T.; Zhang, Z.; Sherburne, M.; Li, S.; Asta, M.; Mathews, N. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 2015, 3, 23829–23832. [Google Scholar] [CrossRef]
- Park, B.W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E.M. Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813. [Google Scholar] [CrossRef] [PubMed]
- Hebig, J.-C.; Kuhn, I.; Flohre, J.; Kirchartz, T. Optoelectronic properties of (CH3NH3) 3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. 2016, 1, 309–314. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, S.S.; Im, J.; Ahn, T.K.; Noh, J.H.; Jeon, N.J.; Seok, S.I.; Seo, J. Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Lett. 2017, 3, 46–53. [Google Scholar] [CrossRef]
- Jokar, E.; Chien, C.H.; Tsai, C.M.; Fathi, A.; Diau, E.W.G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Adv. Mater. 2019, 31, 1804835. [Google Scholar] [CrossRef]
- Gil-Escrig, L.; Dreessen, C.; Palazon, F.; Hawash, Z.; Moons, E.; Albrecht, S.; Sessolo, M.; Bolink, H.J. Efficient Wide-Bandgap Mixed-Cation and Mixed-Halide Perovskite Solar Cells by Vacuum Deposition. ACS Energy Lett. 2021, 6, 827. [Google Scholar] [CrossRef]
- Nasti, G.; Abate, A. Tin Halide Perovskite (ASnX3) Solar Cells: A Comprehensive Guide toward the Highest Power Conversion Efficiency. Adv. Energy Mater. 2020, 10, 1902467. [Google Scholar] [CrossRef]
- Chen, M.; Ju, M.G.; Garces, H.F.; Carl, A.D.; Ono, L.K.; Hawash, Z.; Zhang, Y.; Shen, T.; Qi, Y.; Grimm, R.L.; et al. Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gu, F.; Zhao, Z.; Rao, H.; Qiu, Y.; Cai, Z.; Zhan, G.; Li, X.; Sun, B.; Yu, X. Self-repairing tin-based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 2020, 32, 1907623. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Yakumaru, S.; Truong, M.A.; Kim, K.; Liu, J.; Hu, S.; Otsuka, K.; Hashimoto, R.; Murdey, R.; Sasamori, T. Sn (IV)-free tin perovskite films realized by in situ Sn (0) nanoparticle treatment of the precursor solution. Nat. Commun. 2020, 11, 3008. [Google Scholar] [CrossRef] [PubMed]
- Gai, C.; Wang, J.; Wang, Y.; Li, J. The low-dimensional three-dimensional tin halide perovskite: Film characterization and device performance. Energies 2019, 13, 2. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.; Song, J.H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhou, Y.; Xing, G.; Xu, Q.; Garces, H.F.; Solanki, A.; Goh, T.W.; Padture, N.P.; Sum, T.C. Long minority-carrier diffusion length and low surface-recombination velocity in inorganic lead-free CsSnI3 perovskite crystal for solar cells. Adv. Funct. Mater. 2017, 27, 1604818. [Google Scholar] [CrossRef]
- Ma, L.; Hao, F.; Stoumpos, C.C.; Phelan, B.T.; Wasielewski, M.R.; Kanatzidis, M.G. Carrier Diffusion Lengths of over 500 nm in Lead-Free Perovskite CH3NH3SnI3 Films. J. Am. Chem. Soc. 2016, 138, 14750–14755. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of P-N Junction Solar Cells. J. Appl. Phys. 1961, 32, 510. [Google Scholar] [CrossRef]
- Dixit, H.; Punetha, D.; Pandey, S.K. Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 2019, 179, 969–976. [Google Scholar] [CrossRef]
- Song, Z.; Abate, A.; Watthage, S.C.; Liyanage, G.K.; Phillips, A.B.; Steiner, U.; Graetzel, M.; Heben, M.J. Perovskite solar cell stability in humid air: Partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 2016, 6, 1600846. [Google Scholar] [CrossRef]
- Mannino, G.; Alberti, A.; Deretzis, I.; Smecca, E.; Sanzaro, S.; Numata, Y.; Miyasaka, T.; La Magna, A. First evidence of CH3NH3PbI3 optical constants improvement in a N2 environment in the range 40–80 °C. J. Phys. Chem. C 2017, 121, 7703–7710. [Google Scholar] [CrossRef]
- Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J.R.; Haque, S.A. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 2016, 9, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.; Kim, S.; Lee, S.-W.; Cho, K.J.; Park, S.; Lee, S.; Kang, Y.; Lee, H.-S.; Kim, D. Electric-field-induced degradation of methylammonium lead iodide perovskite solar cells. J. Phys. Chem. Lett. 2016, 7, 3091–3096. [Google Scholar] [CrossRef] [PubMed]
- Alberti, A.; Deretzis, I.; Mannino, G.; Smecca, E.; Sanzaro, S.; Numata, Y.; Miyasaka, T.; La Magna, A. Revealing a discontinuity in the degradation behavior of CH3NH3PbI3 during thermal operation. J. Phys. Chem. C 2017, 121, 13577–13585. [Google Scholar] [CrossRef]
- Zhao, T.; Chueh, C.-C.; Chen, Q.; Rajagopal, A.; Jen, A.K.-Y. Defect passivation of organic–inorganic hybrid perovskites by diammonium iodide toward high-performance photovoltaic devices. ACS Energy Lett. 2016, 1, 757–763. [Google Scholar] [CrossRef]
- Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S.S.; Ma, T. CH3NH3Sn x Pb (1–x) I3 Perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 2014, 5, 1004–1011. [Google Scholar] [CrossRef]
- Abate, A. Perovskite Solar Cells Go Lead Free. Joule 2017, 1, 659–664. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Kanatzidis, M.G. Prospects for low-toxicity lead-free perovskite solar cells. Nat. Commun. 2019, 10, 965. [Google Scholar] [CrossRef]
- Lee, D.-Y.; Na, S.-I.; Kim, S.-S. Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 2016, 8, 1513–1522. [Google Scholar] [CrossRef]
- Yamada, K.; Matsui, T.; Tsuritani, T.; Okuda, T.; Ichiba, S. 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M= K, NH4, Rb, Cs, and CH3NH3). Z. Nat. A 1990, 45, 307–312. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Fang, H.H.; Adjokatse, S.; Shao, S.; Even, J.; Loi, M.A. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat. Commun. 2018, 9, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, F.; Stoumpos, C.C.; Guo, P.; Zhou, N.; Marks, T.J.; Chang, R.P.; Kanatzidis, M.G. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 11445–11452. [Google Scholar] [CrossRef] [PubMed]
- Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M. Conducting Tin Halides with a Layered Organic-Based Perovskite Structure. Nature 1994, 369, 467–469. [Google Scholar] [CrossRef]
- Mitzi, D.; Wang, S.; Feild, C.; Chess, C.; Guloy, A. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 1995, 267, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Mitzi, D.B.; Feild, C.A.; Schlesinger, Z.; Laibowitz, R.B. Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3. J. Solid State Chem. 1995, 114, 159–163. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Liang, K. Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH2CH=NH2SnI3and Related Systems. J. Solid State Chem. 1997, 134, 376–381. [Google Scholar] [CrossRef]
- Li, X.T.; Wu, J.B.; Wang, S.H.; Qi, Y.B. Progress of All-inorganic Cesium Lead-free Perovskite Solar Cells. Chem. Lett. 2019, 48, 989–1005. [Google Scholar] [CrossRef]
- Li, B.; Chang, B.; Pan, L.; Li, Z.; Fu, L.; He, Z.; Yin, L. Tin-based defects and passivation strategies in tin-related perovskite solar cells. ACS Energy Lett. 2020, 5, 3752–3772. [Google Scholar] [CrossRef]
- Umari, P.; Mosconi, E.; De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 2014, 4, 4467. [Google Scholar] [CrossRef] [Green Version]
- Cox, H.; Stace, A.J. Molecular View of the Anomalous Acidities of Sn2+, Pb2+, and Hg2+. J. Am. Chem. Soc. 2004, 126, 3939–3947. [Google Scholar] [CrossRef]
- LaMer, V.K.; Dinegar, R.H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854. [Google Scholar] [CrossRef]
- Chen, B.; Rudd, P.N.; Yang, S.; Yuan, Y.; Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Zhao, D.; Yu, Y.; Grice, C.R.; Wang, C.; Cimaroli, A.J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.G. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 2016, 28, 9333–9340. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Stoumpos, C.C.; Chang, R.P.; Kanatzidis, M.G. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 2014, 136, 8094–8099. [Google Scholar] [CrossRef]
- Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y. Architecture of p-i-n Sn-Based Perovskite Solar Cells: Characteristics, Advances, and Perspectives. ACS Energy Lett. 2021, 6, 2863–2875. [Google Scholar] [CrossRef]
- Kuan, C.-H.; Luo, G.-S.; Narra, S.; Maity, S.; Hiramatsu, H.; Tsai, Y.-W.; Lin, J.-M.; Hou, C.-H.; Shyue, J.-J.; Wei-Guang Diau, E. How can a hydrophobic polymer PTAA serve as a hole- transport layer for an inverted tin perovskite solar cell? Chem. Eng. J. 2022, 450, 138037. [Google Scholar] [CrossRef]
- Ke, W.; Stoumpos, C.C.; Kanatzidis, M.G. “Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. Adv. Mater. 2019, 31, e1803230. [Google Scholar] [CrossRef]
- Awais, M.; Kirsch, R.L.; Yeddu, V.; Saidaminov, M.I. Tin Halide Perovskites Going Forward: Frost Diagrams Offer Hints. ACS Mater. Lett. 2021, 3, 299–307. [Google Scholar] [CrossRef]
- Aftab, A.; Ahmad, M.I. A review of stability and progress in tin halide perovskite solar cell. Sol. Energy 2021, 216, 26–47. [Google Scholar] [CrossRef]
- Song, T.-B.; Yokoyama, T.; Stoumpos, C.C.; Logsdon, J.; Cao, D.H.; Wasielewski, M.R.; Aramaki, S.; Kanatzidis, M.G. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J. Am. Chem. Soc. 2017, 139, 836–842. [Google Scholar] [CrossRef]
- Christians, J.A.; Miranda Herrera, P.A.; Kamat, P.V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 2015, 137, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.D.; Guo, X.D.; Wang, L.D. Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3, 8970–8980. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Organic Cation-Dependent Degradation Mechanism of Organotin Halide Perovskites. Adv. Funct. Mater. 2016, 26, 3417–3423. [Google Scholar] [CrossRef]
- Wang, K.; Liang, Z.; Wang, X.; Cui, X. Lead replacement in CH3NH3PbI3 perovskites. Adv. Electron. Mater. 2015, 1, 1500089. [Google Scholar] [CrossRef]
- Lanzetta, L.; Webb, T.; Zibouche, N.; Liang, X.; Ding, D.; Min, G.; Westbrook, R.J.; Gaggio, B.; Macdonald, T.J.; Islam, M.S. Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nat. Commun. 2021, 12, 2853. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Jiang, Y.; Juarez-Perez, E.J.; Ono, L.K.; Qi, Y.B. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat. Energy 2017, 2, 16195. [Google Scholar] [CrossRef]
- Leijtens, T.; Eperon, G.E.; Pathak, S.; Abate, A.; Lee, M.M.; Snaith, H.J. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 2013, 4, 2885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Zhang, Y.; Gu, F.; Zhao, Z.; Li, H.; Jiang, H.; Bian, Z.; Liu, Z. Illumination Durability and High-Efficiency Sn-Based Perovskite Solar Cell under Coordinated Control of Phenylhydrazine and Halogen Ions. Matter 2021, 4, 709–721. [Google Scholar] [CrossRef]
- Juarez-Perez, E.J.; Ono, L.K.; Maeda, M.; Jiang, Y.; Hawash, Z.; Qi, Y. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 2018, 6, 9604. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Perez, E.J.; Hawash, Z.; Raga, S.R.; Ono, L.K.; Qi, Y. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy Environ. Sci. 2016, 9, 3406. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Feng, X.; Jia, W.; Lv, W.; Mei, A.; Zhou, Y.; Zhang, Q.; Chen, R.; Huang, W. Recent advances and challenges of inverted lead-free tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 4292–4317. [Google Scholar] [CrossRef]
- Chen, B.; Yang, M.; Zheng, X.; Wu, C.; Li, W.; Yan, Y.; Bisquert, J.; Garcia-Belmonte, G.; Zhu, K.; Priya, S. Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 2015, 6, 4693–4700. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, E.; Umari, P.; De Angelis, F. Electronic and optical properties of mixed Sn–Pb organohalide perovskites: A first principles investigation. J. Mater. Chem. A 2015, 3, 9208–9215. [Google Scholar] [CrossRef]
- Li, S.; Liu, P.; Pan, L.; Li, W.; Yang, S.-E.; Shi, Z.; Guo, H.; Xia, T.; Zhang, S.; Chen, Y. The investigation of inverted pin planar perovskite solar cells based on FASnI3 films. Sol. Energy Mater. Sol. Cells 2019, 199, 75–82. [Google Scholar] [CrossRef]
- Lee, H.; Lee, C.; Song, H.-J. Influence of electrical traps on the current density degradation of inverted perovskite solar cells. Materials 2019, 12, 1644. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Lin, J.; Liu, X.; He, X.; Wang, Y.; Noda, T.; Wu, T.; Yang, X.; Han, L. Highly Stable and Efficient FASnI3-Based Perovskite Solar Cells by Introducing Hydrogen Bonding. Adv. Mater. 2019, 31, 1903721. [Google Scholar] [CrossRef]
- Okuya, M.; Prokudina, N.A.; Mushika, K.; Kaneko, S. TiO2 thin films synthesized by the spray pyrolysis deposition (SPD) technique. J. Eur. Ceram. Soc. 1999, 19, 903–906. [Google Scholar] [CrossRef]
- Tiwana, P.; Docampo, P.; Johnston, M.B.; Snaith, H.J.; Herz, L.M. Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells. ACS Nano 2011, 5, 5158–5166. [Google Scholar] [CrossRef]
- Heo, J.H.; Lee, M.H.; Han, H.J.; Patil, B.R.; Yu, J.S.; Im, S.H. Highly efficient low temperature solution processable planar type CH 3 NH 3 PbI 3 perovskite flexible solar cells. J. Mater. Chem. A 2016, 4, 1572–1578. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, Z.; Ono, L.K.; Jiang, Y.; Son, D.Y.; Hawash, Z.; He, S.; Qi, Y. Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer. Adv. Funct. Mater. 2019, 29, 1806779. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Zhang, X.; You, J. SnO2: A wonderful electron transport layer for perovskite solar cells. Small 2018, 14, 1801154. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Sun, X.; Li, C.; Xu, J.; Xu, R.; Du, Y.; Ni, J.; Cai, H.; Li, J.; Hu, Z. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 2017, 9, 21909–21920. [Google Scholar] [CrossRef] [PubMed]
- Noh, M.F.M.; Soh, M.F.; Teh, C.H.; Lim, E.L.; Yap, C.C.; Ibrahim, M.A.; Ludin, N.A.; Teridi, M.A.M. Effect of temperature on the properties of SnO2 layer fabricated via AACVD and its application in photoelectrochemical cells and organic photovoltaic devices. Sol. Energy 2017, 158, 474–482. [Google Scholar] [CrossRef]
- Zhu, Z.; Chueh, C.C.; Li, N.; Mao, C.; Jen, A.K.Y. Realizing efficient lead-free formamidinium tin triiodide perovskite solar cells via a sequential deposition route. Adv. Mater. 2018, 30, 1703800. [Google Scholar] [CrossRef]
- Zahran, R.; Hawash, Z. Fullerene-Based Inverted Perovskite Solar Cell: A Key to Achieve Promising, Stable, and Efficient Photovoltaics. Adv. Mater. Interfaces 2022, 9, 2201438. [Google Scholar] [CrossRef]
- Ryu, S.; Seo, J.; Shin, S.S.; Kim, Y.C.; Jeon, N.J.; Noh, J.H.; Seok, S.I. Fabrication of metal-oxide-free CH 3 NH 3 PbI 3 perovskite solar cells processed at low temperature. J. Mater. Chem. A 2015, 3, 3271–3275. [Google Scholar] [CrossRef]
- Fang, Y.; Bi, C.; Wang, D.; Huang, J. The Functions of Fullerenes in Hybrid Perovskite Solar Cells. ACS Energy Lett. 2017, 2, 782–794. [Google Scholar] [CrossRef]
- Hawash, Z.; Ono, L.K.; Qi, Y.B. Recent Advances in Spiro-MeOTAD Hole Transport Material and Its Applications in Organic-Inorganic Halide Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1700623. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; You, J.; Guo, T.F.; Yang, Y. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 155–165. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, W.; Song, W.; Hawash, Z.; Wang, Y.; Pradhan, B.; Zhang, Y.; Naumenko, D.; Amenitsch, H.; Moons, E.; et al. An Integrated Bulk and Surface Modification Strategy for Gas-Quenched Inverted Perovskite Solar Cells with Efficiencies Exceeding 22%. Sol. RRL 2022, 6, 2200053. [Google Scholar] [CrossRef]
- Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C. CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2013, 25, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-K.; Li, M.; Yuan, D.-X.; Shi, X.-B.; Ma, H.; Liao, L.-S. Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Appl. Mater. Interfaces 2015, 7, 9645–9651. [Google Scholar] [CrossRef]
- Susic, I.; Zanoni, K.P.S.; Paliwal, A.; Kaya, I.C.; Hawash, Z.; Sessolo, M.; Moons, E.; Bolink, H.J. Intrinsic Organic Semiconductors as Hole Transport Layers in p–i–n Perovskite Solar Cells. Sol. RRL 2022, 6, 2100882. [Google Scholar] [CrossRef]
- Leijtens, T.; Prasanna, R.; Gold-Parker, A.; Toney, M.F.; McGehee, M.D. Mechanism of Tin Oxidation and Stabilization by Lead Substitution in Tin Halide Perovskites. ACS Energy Lett. 2017, 2, 2159–2165. [Google Scholar] [CrossRef]
- Hawash, Z.; Ono, L.K.; Qi, Y. Moisture and Oxygen Enhance Conductivity of LiTFSI-Doped Spiro-MeOTAD Hole Transport Layer in Perovskite Solar Cells. Adv. Mater. Interfaces 2016, 3, 1600117. [Google Scholar] [CrossRef] [Green Version]
- Juarez-Perez, E.J.; Leyden, M.R.; Wang, S.H.; Ono, L.K.; Hawash, Z.; Qi, Y.B. Role of the Dopants on the Morphological and Transport Properties of Spiro-MeOTAD Hole Transport Layer. Chem. Mater. 2016, 28, 5702–5709. [Google Scholar] [CrossRef] [Green Version]
- Calado, P.; Telford, A.M.; Bryant, D.; Li, X.; Nelson, J.; O’Regan, B.C.; Barnes, P.R. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 2016, 7, 13831. [Google Scholar] [CrossRef] [Green Version]
- Hawash, Z.; Ono, L.K.; Raga, S.R.; Lee, M.V.; Qi, Y. Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chem. Mater. 2015, 27, 562. [Google Scholar] [CrossRef]
- Yu, B.B.; Xu, L.; Liao, M.; Wu, Y.; Liu, F.; He, Z.; Ding, J.; Chen, W.; Tu, B.; Lin, Y. Synergy Effect of Both 2, 2, 2-Trifluoroethylamine Hydrochloride and SnF2 for Highly Stable FASnI3− xClx Perovskite Solar Cells. Sol. RRL 2019, 3, 1800290. [Google Scholar] [CrossRef]
- Cao, J.; Tai, Q.; You, P.; Tang, G.; Wang, T.; Wang, N.; Yan, F. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A 2019, 7, 26580–26585. [Google Scholar] [CrossRef]
- Yin, X.; Guo, Y.; Xie, H.; Que, W.; Kong, L.B. Nickel oxide as efficient hole transport materials for perovskite solar cells. Sol. RRL 2019, 3, 1900001. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, S.S.; Kim, Y.C.; Kim, D.; Ahn, T.K.; Noh, J.H.; Seo, J.; Seok, S.I. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 2016, 138, 3974–3977. [Google Scholar] [CrossRef] [PubMed]
- Milot, R.L.; Klug, M.T.; Davies, C.L.; Wang, Z.; Kraus, H.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv. Mater. 2018, 30, 1804506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.H.; Dharani, S.; Leong, W.L.; Boix, P.P.; Prabhakar, R.R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Gu, S.; Zhu, P.C.; Tang, M.Y.; Zhu, W.D.; Lin, R.X.; Chen, C.L.; Xu, W.C.; Yu, T.; Zhu, J. Tin-Based Perovskite with Improved Coverage and Crystallinity through Tin-Fluoride-Assisted Heterogeneous Nucleation. Adv. Opt. Mater. 2018, 6, 1700615. [Google Scholar] [CrossRef]
- Hartmann, C.; Gupta, S.; Bendikov, T.; Kozina, X.; Kunze, T.; Felix, R.; Hodes, G.; Wilks, R.G.; Cahen, D.; Bar, M. Impact of SnF2 Addition on the Chemical and Electronic Surface Structure of CsSnBr3. ACS Appl. Mater. Interfaces 2020, 12, 12353–12361. [Google Scholar] [CrossRef]
- Marshall, K.; Walker, M.; Walton, R.; Hatton, R. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 2016, 1, 16178. [Google Scholar] [CrossRef] [Green Version]
- Kayesh, M.E.; Chowdhury, T.H.; Matsuishi, K.; Kaneko, R.; Kazaoui, S.; Lee, J.-J.; Noda, T.; Islam, A. Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with hydrazinium chloride coadditive. ACS Energy Lett. 2018, 3, 1584–1589. [Google Scholar] [CrossRef]
- Li, F.; Zhang, C.; Huang, J.H.; Fan, H.; Wang, H.; Wang, P.; Zhan, C.; Liu, C.M.; Li, X.; Yang, L.M. A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 6688–6692. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L. Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. J. Mater. Chem. A 2016, 4, 17104–17110. [Google Scholar] [CrossRef]
- Wang, T.; Tai, Q.; Guo, X.; Cao, J.; Liu, C.-K.; Wang, N.; Shen, D.; Zhu, Y.; Lee, C.-S.; Yan, F. Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Lett. 2020, 5, 1741–1749. [Google Scholar] [CrossRef]
- Xu, X.; Chueh, C.-C.; Yang, Z.; Rajagopal, A.; Xu, J.; Jo, S.B.; Jen, A.K.-Y. Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 2017, 34, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.I.J.; Khan, M.E.; Hawash, Z.; Lee, H.; Ono, L.K.; Qi, Y.; Kim, Y.-H.; Park, J.Y. Surface Termination-Dependent Nanotribological Properties of Single-Crystal MAPbBr3 Surfaces. J. Phys. Chem. C 2020, 124, 1484–1491. [Google Scholar] [CrossRef]
- Hawash, Z.; Raga, S.R.; Son, D.Y.; Ono, L.K.; Park, N.G.; Qi, Y. Interfacial Modification of Perovskite Solar Cells Using an Ultrathin MAI Layer Leads to Enhanced Energy Level Alignment, Efficiencies, and Reproducibility. J. Phys. Chem. Lett. 2017, 8, 3947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Wu, T.; Liu, X.; Wang, Y.; Meng, X.; Wu, J.; Noda, T.; Yang, X.; Moritomo, Y.; Segawa, H. Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A 2020, 8, 2760–2768. [Google Scholar] [CrossRef]
- Guarnera, S.; Abate, A.; Zhang, W.; Foster, J.M.; Richardson, G.; Petrozza, A.; Snaith, H.J. Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 2015, 6, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-Y.; Huang, W.-K.; Wu, J.-L.; Chang, Y.-C.; Lee, K.-T.; Chen, C.-T. Room-temperature solution-processed n-doped zirconium oxide cathode buffer layer for efficient and stable organic and hybrid perovskite solar cells. Chem. Mater. 2016, 28, 242–251. [Google Scholar] [CrossRef]
- Nishimura, K.; Hirotani, D.; Kamarudin, M.A.; Shen, Q.; Toyoda, T.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Relationship between lattice strain and efficiency for Sn-perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 31105–31110. [Google Scholar] [CrossRef]
- Sun, N.; Gao, W.; Dong, H.; Liu, X.; Chao, L.; Hui, W.; Xia, Y.; Ran, C.; Chen, Y. Bi-Linkable Reductive Cation as Molecular Glue for One Year Stable Sn-Based Perovskite Solar Cells. ACS Appl. Energy Mater. 2022, 5, 4008–4016. [Google Scholar] [CrossRef]
- Ono, L.K.; Hawash, Z.; Juarez-Perez, E.J.; Qiu, L.B.; Jiang, Y.; Qi, Y.B. The influence of secondary solvents on the morphology of a spiro-MeOTAD hole transport layer for lead halide perovskite solar cells. J. Phys. D Appl. Phys. 2018, 51, 294001. [Google Scholar] [CrossRef]
- Liu, C.; Fan, J.; Li, H.; Zhang, C.; Mai, Y. Highly Efficient Perovskite Solar Cells with Substantial Reduction of Lead Content. Sci. Rep. 2016, 6, 35705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.H.; Yan, K.; Tan, D.W.; Liang, X.; Zhang, H.M.; Huang, W. Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9%. ACS Energy Lett. 2018, 3, 2701–2707. [Google Scholar] [CrossRef]
- Liu, J.; Ozaki, M.; Yakumaru, S.; Handa, T.; Nishikubo, R.; Kanemitsu, Y.; Saeki, A.; Murata, Y.; Murdey, R.; Wakamiya, A. Lead-Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angew. Chem. 2018, 130, 13405–13409. [Google Scholar] [CrossRef]
- Liu, G.; Liu, C.; Lin, Z.; Yang, J.; Huang, Z.; Tan, L.; Chen, Y. Regulated crystallization of efficient and stable tin-based perovskite solar cells via a self-sealing polymer. ACS Appl. Mater. Interfaces 2020, 12, 14049–14056. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-Q.; Wang, J.-F.; Yang, B.; Yuan, Y.-B. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device. Front. Phys. 2019, 14, 53401. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Cao, D.H.; Clark, D.J.; Young, J.; Rondinelli, J.M.; Jang, J.I.; Hupp, J.T.; Kanatzidis, M.G. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 2016, 28, 2852–2867. [Google Scholar] [CrossRef]
- You, P.; Tang, G.; Cao, J.; Shen, D.; Ng, T.W.; Hawash, Z.; Wang, N.; Liu, C.K.; Lu, W.; Tai, Q.; et al. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light Sci. Appl. 2021, 10, 68. [Google Scholar] [CrossRef]
- Cao, D.H.; Stoumpos, C.C.; Farha, O.K.; Hupp, J.T.; Kanatzidis, M.G. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 2015, 137, 7843–7850. [Google Scholar] [CrossRef]
- Smith, I.C.; Hoke, E.T.; Solis-Ibarra, D.; McGehee, M.D.; Karunadasa, H.I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 2014, 53, 11232–11235. [Google Scholar] [CrossRef]
- Lin, Y.; Bai, Y.; Fang, Y.; Wang, Q.; Deng, Y.; Huang, J. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2017, 2, 1571–1572. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Yin, J.; Ho, K.-T.; Ouellette, O.; De Bastiani, M.; Murali, B.; El Tall, O.; Shen, C.; Miao, X.; Pan, J. Ultralow self-doping in two-dimensional hybrid perovskite single crystals. Nano Lett. 2017, 17, 4759–4767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Liu, H.; Zhou, W.; Yang, D.; Shang, Y.; Shi, Z.; Li, B.; Jiang, X.; Zhang, L.; Quan, L.N. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc. 2017, 139, 6693–6699. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, F.; Wei, Q.; Li, H.; Shang, Y.; Zhou, W.; Wang, C.; Cheng, P.; Chen, Q.; Chen, L. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 2020, 11, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Zhang, Z.; Cao, H.; Zhang, T.; Yu, H.; Du, J.; Shen, Y.; Zhang, X.-L.; Zhu, J.; Chen, P.; et al. Recent progress in inorganic tin perovskite solar cells. Mater. Today Energy 2022, 23, 100891. [Google Scholar] [CrossRef]
- Jeon, I.; Kim, K.; Jokar, E.; Park, M.; Lee, H.-W.; Diau, E.W.-G. Environmentally Compatible Lead-Free Perovskite Solar Cells and Their Potential as Light Harvesters in Energy Storage Systems. Nanomaterials 2021, 11, 2066. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 2021, 14, 1286–1325. [Google Scholar] [CrossRef]
- Yang, S.J.; Choi, J.; Song, S.; Park, C.; Cho, K. Enhancing air-stability and reproducibility of lead-free formamidinium-based tin perovskite solar cell by chlorine doping. Sol. Energy Mater. Sol. Cells 2021, 227, 111072. [Google Scholar] [CrossRef]
- Ye, T.; Wang, K.; Hou, Y.; Yang, D.; Smith, N.; Magill, B.; Yoon, J.; Mudiyanselage, R.; Khodaparast, G.A.; Wang, K.; et al. Ambient-Air-Stable Lead-Free CsSnI3 Solar Cells with Greater than 7.5% Efficiency. J. Am. Chem. Soc. 2021, 143, 4319–4328. [Google Scholar] [CrossRef]
- Mahmoudi, T.; Rho, W.-Y.; Kohan, M.; Im, Y.H.; Mathur, S.; Hahn, Y.-B. Suppression of Sn2+/Sn4+ oxidation in tin-based perovskite solar cells with graphene-tin quantum dots composites in active layer. Nano Energy 2021, 90, 106495. [Google Scholar] [CrossRef]
- Cho, S.; Pandey, P.; Park, J.; Lee, T.-W.; Ahn, H.; Choi, H.; Kang, D.-W. Phenylethylammonium-formamidinium-methylammonium quasi-2D/3D tin wide-bandgap perovskite solar cell with improved efficiency and stability. Chem. Eng. J. 2022, 446, 137388. [Google Scholar] [CrossRef]
- Yang, J.; Sheng, W.; Xiao, S.; Liu, G.; Lin, Z.; Tan, L.; Chen, Y. Directional Crystallization by Floating Self-Assembly for Efficient and Stable Tin-based Perovskite Solar Cells. Chem. Mater. 2021, 33, 4362–4372. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Wang, Y.; Liu, D.; Chen, H.; Zheng, H.; Peng, X.; Yuan, S.; Chen, Z.D.; Li, S. Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells. Nanoscale 2022, 14, 1219–1225. [Google Scholar] [CrossRef]
- Xu, R.; Dong, H.; Li, P.; Cao, X.; Li, H.; Li, J.; Wu, Z. Formamidine Acetate Induces Regulation of Crystallization and Stabilization in Sn-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 33218–33225. [Google Scholar] [CrossRef]
- Chen, M.; Dong, Q.; Xiao, C.; Zheng, X.; Dai, Z.; Shi, Y.; Luther, J.M.; Padture, N.P. Lead-Free Flexible Perovskite Solar Cells with Interfacial Native Oxide Have >10% Efficiency and Simultaneously Enhanced Stability and Reliability. ACS Energy Lett. 2022, 7, 2256–2264. [Google Scholar] [CrossRef]
- Sanchez-Diaz, J.; Sánchez, R.S.; Masi, S.; Kreĉmarová, M.; Alvarez, A.O.; Barea, E.M.; Rodriguez-Romero, J.; Chirvony, V.S.; Sánchez-Royo, J.F.; Martinez-Pastor, J.P.; et al. Tin perovskite solar cells with >1300 h of operational stability in N2 through a synergistic chemical engineering approach. Joule 2022, 6, 861–883. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, K.; Qi, H.; Zhang, Y.; Wang, T.; Tong, Y.; Wang, H. Mitigating Voc Loss in Tin Perovskite Solar Cells via Simultaneous Suppression of Bulk and Interface Nonradiative Recombination. ACS Appl. Mater. Interfaces 2022, 14, 41086–41094. [Google Scholar] [CrossRef]
- Cui, D.; Liu, X.; Wu, T.; Lin, X.; Luo, X.; Wu, Y.; Segawa, H.; Yang, X.; Zhang, Y.; Wang, Y.; et al. Making Room for Growing Oriented FASnI3 with Large Grains via Cold Precursor Solution. Adv. Funct. Mater. 2021, 31, 2100931. [Google Scholar] [CrossRef]
- Qin, M.; Li, Y.; Yang, Y.; Chan, P.F.; Li, S.; Qin, Z.; Guo, X.; Shu, L.; Zhu, Y.; Fan, Z.; et al. Regulating the Crystallization Kinetics and Lattice Strain of Lead-Free Perovskites with Perovskite Quantum Dots. ACS Energy Lett. 2022, 7, 3251–3259. [Google Scholar] [CrossRef]
- Wang, S.; Yan, L.; Zhu, W.; Cao, Z.; Zhou, L.; Ding, L.; Hao, F. Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells. Nano Energy 2022, 99, 107416. [Google Scholar] [CrossRef]
- Liu, G.; Zhong, Y.; Feng, W.; Yang, M.; Yang, G.; Zhong, J.-X.; Tian, T.; Luo, J.-B.; Tao, J.; Yang, S. Multidentate Chelation Heals Structural Imperfections for Minimized Recombination Loss in Lead-Free Perovskite Solar Cells. Angew. Chem. 2022, 134, e202209464. [Google Scholar]
- Zhu, Z.; Jiang, X.; Yu, D.; Yu, N.; Ning, Z.; Mi, Q. Smooth and Compact FASnI3 Films for Lead-Free Perovskite Solar Cells with over 14% Efficiency. ACS Energy Lett. 2022, 7, 2079–2083. [Google Scholar] [CrossRef]
- Jiang, X.; Li, H.; Zhou, Q.; Wei, Q.; Wei, M.; Jiang, L.; Wang, Z.; Peng, Z.; Wang, F.; Zang, Z.; et al. One-Step Synthesis of SnI2·(DMSO)x Adducts for High-Performance Tin Perovskite Solar Cells. J. Am. Chem. Soc. 2021, 143, 10970–10976. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 2021, 33, 2102055. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Di, H.; Chang, B.; Yin, R.; Fu, L.; Zhang, Y.-N.; Yin, L. Efficient Passivation Strategy on Sn Related Defects for High Performance All-Inorganic CsSnI3 Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2007447. [Google Scholar] [CrossRef]
- Chen, M.; Kapil, G.; Wang, L.; Razey Sahamir, S.; Baranwal, A.K.; Nishimura, K.; Sanehira, Y.; Zhang, Z.; Akmal Kamarudin, M.; Shen, Q.; et al. High performance wide bandgap Lead-free perovskite solar cells by monolayer engineering. Chem. Eng. J. 2022, 436, 135196. [Google Scholar] [CrossRef]
- Hu, M.; Nie, R.; Kim, H.; Wu, J.; Chen, S.; Park, B.-w.; Kim, G.; Kwon, H.-W.; Seok, S.I. Regulating the Surface Passivation and Residual Strain in Pure Tin Perovskite Films. ACS Energy Lett. 2021, 6, 3555–3562. [Google Scholar] [CrossRef]
- Li, F.; Hou, X.; Wang, Z.; Cui, X.; Xie, G.; Yan, F.; Zhao, X.-Z.; Tai, Q. FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 40656–40663. [Google Scholar] [CrossRef]
- Chen, B.; Wang, S.; Zhang, X.; Zhu, W.; Cao, Z.; Hao, F. Reducing the interfacial voltage loss in tin halides perovskite solar cells. Chem. Eng. J. 2022, 445, 136769. [Google Scholar] [CrossRef]
- Shih, C.C.; Wu, C.G. Synergistic Engineering of the Conductivity and Surface Properties of PEDOT:PSS-Based HTLs for Inverted Tin Perovskite Solar Cells to Achieve Efficiency over 10. ACS Appl. Mater. Interfaces 2022, 14, 16125–16135. [Google Scholar] [CrossRef]
- Cao, J.-J.; Lou, Y.-H.; Yang, W.-F.; Wang, K.-L.; Su, Z.-H.; Chen, J.; Chen, C.-H.; Dong, C.; Gao, X.-Y.; Wang, Z.-K. Multifunctional potassium thiocyanate interlayer for eco-friendly tin perovskite indoor and outdoor photovoltaics. Chem. Eng. J. 2022, 433, 133832. [Google Scholar] [CrossRef]
- Zhang, Z.; Kamarudin, M.A.; Baranwal, A.K.; Wang, L.; Kapil, G.; Sahamir, S.R.; Sanehira, Y.; Chen, M.; Shen, Q.; Hayase, S. Indent-Free Vapor-Assisted Surface Passivation Strategy toward Tin Halide Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 36200–36208. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Liu, X.; Luo, X.; Segawa, H.; Tong, G.; Zhang, Y.; Ono, L.K.; Qi, Y.; Han, L. Heterogeneous FASnI3 Absorber with Enhanced Electric Field for High-Performance Lead-Free Perovskite Solar Cells. Nano-Micro Lett. 2022, 14, 99. [Google Scholar] [CrossRef]
- Zhou, J.; Hao, M.; Zhang, Y.; Ma, X.; Dong, J.; Lu, F.; Wang, J.; Wang, N.; Zhou, Y. Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter 2022, 5, 683–693. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Li, H.; Chang, B.; Pan, L.; Xie, Z.; Yin, L. Pseudohalide Anions to Suppress Oxidative Degradation for Efficient Formamidinium-Based Sn–Pb Halide Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2022, 14, 18302–18312. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, N.; Bobba, R.S.; Gurung, A.; Reza, K.M.; Laskar, M.A.R.; Lamsal, B.S.; Emshadi, K.; Pathak, R.; Afroz, M.A.; Chowdhury, A.H.; et al. Mitigating Open-Circuit Voltage Loss in Pb–Sn Low-Bandgap Perovskite Solar Cells via Additive Engineering. ACS Appl. Energy Mater. 2021, 4, 1731–1742. [Google Scholar] [CrossRef]
- Liu, H.; Sun, J.; Hu, H.; Li, Y.; Hu, B.; Xu, B.; Choy, W.C.H. Antioxidation and Energy-Level Alignment for Improving Efficiency and Stability of Hole Transport Layer-Free and Methylammonium-Free Tin-Lead Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2021, 13, 45059–45067. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J.W.; Han, G.R.; Kim, S.K.; Oh, J.H. Synergistic Effects of Cation and Anion in an Ionic Imidazolium Tetrafluoroborate Additive for Improving the Efficiency and Stability of Half-Mixed Pb-Sn Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2008801. [Google Scholar] [CrossRef]
- Jiang, T.; Xu, X.; Lan, Z.; Chen, Z.; Chen, X.; Liu, T.; Huang, S.; Yang, Y. Efficient MA-free Pb-Sn alloyed low-bandgap perovskite solar cells via surface passivation. Nano Energy 2022, 101, 107596. [Google Scholar] [CrossRef]
- Hou, X.; Li, F.; Zhang, X.; Shi, Y.; Du, Y.; Gong, J.; Xiao, X.; Ren, S.; Zhao, X.-Z.; Tai, Q. Reducing the Energy Loss to Achieve High Open-circuit Voltage and Efficiency by Coordinating Energy-Level Matching in Sn–Pb Binary Perovskite Solar Cells. Sol. RRL 2021, 5, 2100287. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Li, R.; Shi, B.; Wang, P.; Zhao, Y.; Zhang, X. Modulated Crystallization and Reduced VOC Deficit of Mixed Lead–Tin Perovskite Solar Cells with Antioxidant Caffeic Acid. ACS Energy Lett. 2021, 6, 2907–2916. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.W.; Han, G.R.; Kim, Y.J.; Kim, S.H.; Kim, S.K.; Kwak, S.K.; Oh, J.H. Highly Efficient Hole Transport Layer-Free Low Bandgap Mixed Pb–Sn Perovskite Solar Cells Enabled by a Binary Additive System. Adv. Funct. Mater. 2022, 32, 2110069. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, J.; Zheng, Y.; Wu, X.; Wang, J.; Huang, Y.; Yang, Y.; Zhou, Z.; Wang, L.; Kong, L.; et al. Balancing crystallization rate in a mixed Sn–Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency. J. Mater. Chem. A 2021, 9, 17830–17840. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, Q.; Song, Y.; Chi, D.; Huang, S.; He, G. Grain Boundary Passivation with Dion–Jacobson Phase Perovskites for High-Performance Pb–Sn Mixed Narrow-Bandgap Perovskite Solar Cells. Sol. RRL 2021, 5, 2000681. [Google Scholar] [CrossRef]
- Zhang, K.; Späth, A.; Almora, O.; Le Corre, V.M.; Wortmann, J.; Zhang, J.; Xie, Z.; Barabash, A.; Hammer, M.S.; Heumüller, T.; et al. Suppressing Nonradiative Recombination in Lead–Tin Perovskite Solar Cells through Bulk and Surface Passivation to Reduce Open Circuit Voltage Losses. ACS Energy Lett. 2022, 7, 3235–3243. [Google Scholar] [CrossRef]
- Sahamir, S.R.; Kamarudin, M.A.; Ripolles, T.S.; Baranwal, A.K.; Kapil, G.; Shen, Q.; Segawa, H.; Bisquert, J.; Hayase, S. Enhancing the Electronic Properties and Stability of High-Efficiency Tin–Lead Mixed Halide Perovskite Solar Cells via Doping Engineering. J. Phys. Chem. Lett. 2022, 13, 3130–3137. [Google Scholar] [CrossRef]
- Li, Z.; Chang, Z.; Wang, K.; Bai, D.; Liu, L.; Yang, Y.; Wang, L.; Wang, S.; Liu, S. 4-Hydrazinobenzoic-Acid Antioxidant for High-Efficiency Sn–Pb Alloyed Perovskite Solar Cells. Energy Technol. 2022, 10, 2200217. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, X.; Harvey, S.P.; Ni, Z.; Chen, B.; Chen, S.; Yao, C.; Xiao, X.; Xu, S.; Yang, G.; et al. Gradient Doping in Sn–Pb Perovskites by Barium Ions for Efficient Single-Junction and Tandem Solar Cells. Adv. Mater. 2022, 34, 2110351. [Google Scholar] [CrossRef]
- Guo, T.; Wang, H.; Han, W.; Zhang, J.; Wang, C.; Ma, T.; Zhang, Z.; Deng, Z.; Chen, D.; Xu, W.; et al. Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy 2022, 98, 107298. [Google Scholar] [CrossRef]
- Peng, C.; Li, C.; Zhu, M.; Zhang, C.; Jiang, X.; Yin, H.; He, B.; Li, H.; Li, M.; So, S.K.; et al. Reducing Energy Disorder for Efficient and Stable Sn−Pb Alloyed Perovskite Solar Cells. Angew. Chem. 2022, 134, e202201209. [Google Scholar] [CrossRef]
- Tong, J.; Jiang, Q.; Ferguson, A.J.; Palmstrom, A.F.; Wang, X.; Hao, J.; Dunfield, S.P.; Louks, A.E.; Harvey, S.P.; Li, C.; et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 2022, 7, 642–651. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Z.; Astridge, D.D.; Ni, Z.; Zhao, L.; Chen, B.; Wang, M.; Zhou, Y.; Yang, G.; Dai, X.; et al. Carbazole-Based Hole Transport Polymer for Methylammonium-Free Tin–Lead Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Energy Lett. 2022, 7, 3353–3361. [Google Scholar] [CrossRef]
- Kapil, G.; Bessho, T.; Sanehira, Y.; Sahamir, S.R.; Chen, M.; Baranwal, A.K.; Liu, D.; Sono, Y.; Hirotani, D.; Nomura, D.; et al. Tin–Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers. ACS Energy Lett. 2022, 7, 966–974. [Google Scholar] [CrossRef]
- Shuaifeng, H.; Kento, O.; Richard, M.; Tomoya, N.; Minh Anh, T.; Takumi, Y.; Taketo, H.; Kazuhiro, M.; Kyohei, N.; Atsushi, S.; et al. Optimized Carrier Extraction at Interfaces for 23.6% Efficient Tin–Lead Perovskite Solar Cells. Nat. Portf. 2022, 15, 2096–2107. [Google Scholar] [CrossRef]
Structure | Additive | PCE (%) | Eg (eV) | Stability (Period, Conditions, Percentage from Original Efficiency) | |
---|---|---|---|---|---|
ITO/PEDOT a/FA0.92PEA0.08SnI3/PCBM/Al | MACl | 7.1 | 1.42 | 42 days, encapsulated, 100+% 6 h, air, 60% | [138] |
FTO/c-TiO2/mp-TiO2/CsSnI3/P3HT/Au * | MBAA b | 7.5 | 1.3 | 60 days, nitrogen, 60% 5 days, air, 76.5% 5 days, 1 sun, 58.4% | [139] |
ITO/PEDOT/FASnI3/C60/BCP/Ag ** | FM+ t | 7.7% | 1.4 | 367 days, nitrogen, 100% | [120] |
FTO/SnO2/Al2O3-Gr c/FA0.8MA0.2SnI3/spiro d/Au * | rGO e | 7.7 | 1.27 | 30 days air, 42% 30 days, 85%, dry argon | [140] |
ITO/PEDOT/FA0.75MA0.10SnI2Br/PCBM/BCP/Ag | PEA+ f | 8.0 | 1.66 | 63 days, nitrogen, 100% 13 days, air, 100% | [141] |
ITO/PEDOT//PCBM/PCB/Ag | F-PDI s | 9.5 | 1.42 | 125 days, 1 sun, nitrogen, 80% | [142] |
ITO/PEDOT/MASnI3/PCBM/BCP/Ag | EABr g | 9.6 | 1.3 | 30 days, nitrogen, 93% | [143] |
FTO/PEDOT/FASnI3/C60/BCP/Ag | FAAc h | 10.0 | NA | 67 days, 1 sun, nitrogen, 82% | [144] |
PET/ITO/NiOx/FASnI3/4AMPI2 i/PCBM/BCP/Ag *** | Ge/GeO2 | 10.4 | 1.38 | 29 days, 1 sun, nitrogen, MPP, 80% 2500 bending cycles, R = 5 mm, 80% | [145] |
ITO/PEDOT/FASnI3/C60/BCP/Ag ** | DipI j and NaBH4 k | 10.6 | 1.38 | 54 days, nitrogen, MPP, 96% | [146] |
ITO/PEDOT/FASnI3/PCBM/BCP/Ag | EABr g | 10.8 | 1.48 | 84 days, nitrogen, 82% | [147] |
ITO/PEDOT/FASnI3/PAI l/C60/BCP/Ag | PEA+ f | 12.1 | 1.4 | 21 days, 1 sun, MPP, encapsulated, 94% | [148] |
ITO/PEDOT/MASnI3/ICBA/BCP/Ag | CsPbI3 QDs m | 12.5 | 1.3 | 40 days, nitrogen, 96% 23 days, 1 sun, 62% | [149] |
ITO/PEDOT/FASnI3/ICBA/BCP/Ag | CsPbI3 QDs | 13.0 | 1.4 | 40 days, nitrogen, 83% 23 days 1 sun, 64% | [149] |
ITO/PEDOT/FASnI3+PHCl-Br/C60/BCP/Ag | PhNHNH3+ and Ph-Cl− Br− n | 13.4 | 1.4 | 14 days, 1 sun, 82% 200 days, nitrogen, 91%. | [69] |
ITO/PEDOT/FASnI3/ICBA/BCP/Ag | 4A3HA o | 13.4 | 1.4 | 83 days, nitrogen, 98% 42 days, at 82 °C, 80% | [150] |
ITO/PEDOT/PEAFASn(IBr)3/ICBA/BCP/Ag | GAA p | 13.7 | NA | 50 days, nitrogen, 93% | [151] |
ITO/PEDOT/FASnI3/BCP-ICBA/Ag | 3T q | 14.0 | 1.4 | 30 days, nitrogen, 100% 9 h, air, 85% | [152] |
ITO/PEDOT/FASnI3/ICBA/BCP/Ag **** | PEA f Br | 14.6 | NA | 100 days, nitrogen, 96% | [153] |
ITO/PEDOT/FASnI3/ICBA/BCP/Al | FPEABr r | 14.8 | 1.43 | 19 days, nitrogen, 80% | [154] |
Structure | Treatment | PCE (%) | Eg (eV) | Stability (Period, Conditions, Percentage from Original Efficiency) | |
---|---|---|---|---|---|
ITO/PEDOT a/CsSnI3/C60/BCP/Cu | TSC b on SnI2 | 8.2 | N.A. | 21 days, 1 sun, encapsulated, 71% | [155] |
ITO/PTAA/FASnI3/C60/BCP/Ag | PEAI c on PTAA | 8.3 | 1.4 | 83 days, nitrogen, 87% | [56] |
FTO/PEDOT/EDA0.01(GA0.06(FA0.8Cs0.2)0.94)0.98SnI2Br/C60/BCP/Ag | 2PACzd on PEDOT | 8.7 | 1.62 | 70 days, nitrogen, 75% | [156] |
FTO/bl-TiO2/mp-TiO2/Cs0.1FA0.9SnI3/PTAA/Au * | ThMAI e on PVSK | 9.1 | 1.45 | 35 days, nitrogen, 92%, 6 days, air, 62% | [157] |
ITO/NiOx/FASnI3/PCBM/BCP/Ag | FAAc f on PVSK | 9.1 | N.A. | 55 days, nitrogen, 80% | [158] |
ITO/PEDOT/FA0.75MA0.25SnI2.75Br0.25/PCBM/BCP/Ag | CF3PEAI g on pvsk | 10.4 | 1.45 | 52 days, nitrogen, 80%, 4 days, air, 80% | [159] |
ITO/PEDOT/FA0.98EDA0.01SnI3/C60/Ag | SA h + PEDOT on PEDOT | 10.5 | 1.33 | 83 days, nitrogen, 95% | [160] |
FTO/PEDOT/FA0.75MA0.25SnBrI2/ICBA/Bphene i/Ag ** | KSCN j on PEDOT | 11.2 | 1.63 | 42 days, nitrogen, 80% | [161] |
FTO/PEDOT/FASnI3/C60/BCP/Ag | vapor of EDA k on PVSK. | 11.3 | 1.42 | 40 days, nitrogen, 85% | [162] |
ITO/PEDOT/FASnI3/C60/BCP/Ag *** | PAI l on PVSK | 12.1 | 1.4 | 21 days, 1 sun, MPP, encapsulated, 94% | [148] |
ITO/PEDOT/FASnI3/C60/BCP/Ag | PMMA m on PVSK | 13.8 | 1.41 | 42 days, 1 sun, encapsulated, MPP, 94% | [163] |
ITO/PEDOT/FAMASnI3/C60/BCP/Ag | FACl on PVSK | 14.7 | 1.42 | 42 days, nitrogen, 92% | [164] |
Structure | Additive/Treatment | PCE (%) | Eg (eV) | Stability (Period, Conditions, Percentage from Original Efficiency) | |
---|---|---|---|---|---|
ITO/PEDOT a/FASn0.5Pb0.5I3/C60/BCP/Ag | K-SCN b additive | 14.5 | 1.25 | 5 days, air, 55% | [165] |
ITO/PEDOT/FA0.8MA0.15Cs0.05Pb0.5Sn0.5I3/C60/BCP/Ag | PEAI c additive | 17.3 | 1.25 | 33 h, air, 85% 45 days, nitrogen, 87% | [166] |
ITO/FA0.85Cs0.15Sn0.5Pb0.5I3/PCBM/PCB/Cu * | FSA d additive and PEAI c in toluene on PVSK | 17.4 | 1.27 | 20 days, air, 81% | [167] |
ITO/PEDOT/FA0. 5MA0.5Pb0.5Sn0.5I3/PCBM/C60/BCP/Ag | IMBF4 e additive | 19.1 | 1.25 | 42 days, nitrogen, 90% 2 days, 1 sun, 80% | [168] |
ITO/PEDOT/FA0.83Cs0.17Pb0.5Sn0.5I3/C60/BCP/Ag | PEAI c on PVSK | 19.1 | NA | 4 days, nitrogen, 1 sun, MPP 82% | [169] |
ITO/NiOx/FA0.5MA0.5Sn0.5Pb0.5I3/PC61BM/BCP/Ag | PFN f on NiOx | 19.8 | 1.26 | 20 days, air, 68% | [170] |
ITO/PEDOT/FA0.7MA0.3Pb0.5Sn0.5I3/PCBM/BCP/Cu. | CA g additive | 19.9 | 1.26 | 21 days, nitrogen, 90% | [171] |
ITO/Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3/PCBM/C60/BCP/Ag * | Cu-SCN b and GlyHCl h on ITO | 20.1 | 1.21 | 42 days, nitrogen, 90% 4 days, 1 sun, MPP, 72% | [172] |
ITO/PEDOT/FA0.7MA0.3Pb0.5Sn0.5I3/PCBM/BCP/Ag | [PNA]BF4 i on PEDOT | 20.1 | NA | 10 days, nitrogen, 85 °C, 80% 50 days, nitrogen, 90.8% | [173] |
ITO/PEDOT/FA0.7MA0.3Pb0.5Sn0.5I3/C60/BCP/Ag | PhDMADI j additive | 20.5 | 1.25 | 29 days, nitrogen, 95% | [174] |
ITO/PEDOT/MA0.3FA0.7Pb0.5Sn0.5I3/PCBM/BCP/Ag | GUA k additive and HAI l on PVSK | 20.5 | 1.27 | 6 days nitrogen, 1 sun, 60% | [175] |
FTO/PEDOT/Cs0.025FA0.475MA0.5Sn0.5Pb0.5I2.925Br0.075/PCBM/C60/BCP/Ag | RbI additive | 21.0 | 1.28 | 6 days, nitrogen, at 85 °C, 75% 30 days, nitrogen, 99% | [176] |
ITO/PEDOT/FA0.5MA0.5Pb0.5Sn0.5I3/C60/BCP/Ag | HZBA m additive | 21.1 | 1.26 | 8 days, nitrogen, 90% | [177] |
ITO/PEDOT/Cs0.2FA0.8Pb0.5Sn0.5I3/C60/BCP/Cu | BaI2 additive | 21.2 | 1.21 | 15 days, encapsulated, 1 sun, MPP, 95% | [178] |
FTO/PEDOT/FA0.6MA0.4Sn0.6Pb0.4I3/C60/BCP/Ag | N,Cl-GQDs o at PEDOT | 21.5 | 1.25 | 42 days, nitrogen, 90% | [179] |
ITO/PEDOT/Cs0.05FA0.7MA0.25Sn0.5Pb0.5I3/C60/BCP/Ag | BBMS n + SnF2 | 22.0 | 1.22 | 111 days, nitrogen, 60 °C, 98 % | [180] |
ITO/PEDOT/FA0.6MA0.4Sn0.6Pb0.4I3/C60/BCP/Ag. | PEAI c and guanidinium-SCN b | 22.1 | 1.25 | 76 days, nitrogen, MPP, 82% | [181] |
ITO/CzAnp/PMMA/FA0.8Cs0.2Sn0.5Pb0.5I3/PCBM/C60/BCP/Cu | CzAn p HTM and BHC q on PVSK | 22.6 | 1.22 | 7 days, encapsulated, MPP, 1 sun, 90% 42 days, encapsulated, 96% | [182] |
FTO/Cs0.025FA0.475MA0.5Sn0.5Pb0.5I2.925Br0.075/EDA r/PCBM/C60/BCP/Ag * | 2PACz s and MPA t at FTO | 23.3 | 1.25 | 42 days, nitrogen, 1 sun, 100% | [183] |
FTO/PEDOT/Cs0.1FA0.6MA0.3Sn0.5Pb0.5I3/C60/BCP/Ag | EDAI2 u on PVSK and GlyHCl v at PEDOT | 23.6 | 1.24 | 8 days, nitrogen, 1 sun, MPP, 80% | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaydah, W.; Raddad, E.; Hawash, Z. Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines 2023, 14, 806. https://doi.org/10.3390/mi14040806
Ayaydah W, Raddad E, Hawash Z. Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines. 2023; 14(4):806. https://doi.org/10.3390/mi14040806
Chicago/Turabian StyleAyaydah, Wafa’, Eman Raddad, and Zafer Hawash. 2023. "Sn-Based Perovskite Solar Cells towards High Stability and Performance" Micromachines 14, no. 4: 806. https://doi.org/10.3390/mi14040806
APA StyleAyaydah, W., Raddad, E., & Hawash, Z. (2023). Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 14(4), 806. https://doi.org/10.3390/mi14040806