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Abstract: Resonant microcantilevers have the advantages of ultra-high heating rates, analysis speed,
ultra-low power consumption, temperature programming, and trace sample analysis when applied
in TGA. However, the current single-channel testing system for resonant microcantilevers can only
detect one sample at a time, and need two program heating tests to obtain the thermogravimetric
curve of a sample. In many cases, it is desirable to obtain the thermogravimetric curve of a sample
with a single-program heating test and to simultaneously detect multiple microcantilevers for testing
multiple samples. To address this issue, this paper proposes a dual-channel testing method, where a
microcantilever is used as a control group and another microcantilever is used as an experimental
group, to obtain the thermal weight curve of the sample in a single program temperature ramp
test. With the help of the LabVIEW’s convenient parallel running method, the functionality of
simultaneously detecting two microcantilevers is achieved. Experimental validation showed that
this dual-channel testing system can obtain the thermogravimetric curve of a sample with a single
program heating test and detect two types of samples simultaneously.

Keywords: resonant microcantilever; TGA; dual-channel; LabVIEW

1. Introduction

Thermogravimetric analysis (TGA) [1,2] is a classic characterization method widely used
in various fields such as new material development [3–7], chemistry [8,9], physics [10–12], and
energy [13–15]. The TGA method enables measurement of the material’s structure [16,17],
composition [8,18], thermal stability [3,19,20], and reaction kinetics [2,21,22], among other
information. The core of existing TGA instruments is a precision microbalance, which has
a mass detection sensitivity of sub-microgram levels and can thus record the mass loss
of milligram-level samples in real-time. However, with the rapid development of new
functional materials and related research fields, the technical limitations of existing TGA
methods and instruments are becoming increasingly prominent, and they are unable to
meet the requirements for accurate measurement [23–25]. It is worth noting that the modern
thermal balance instrument has a quality sensitivity at the sub-microgram level, while the
sample consumption is at the milligram level. Therefore, existing TGA instruments require
a large amount of sample, leading to significant waste of sample materials. In addition,
it is difficult to uniformly heat large volume samples during rapid heating, making it
difficult to obtain accurate results. Moreover, the analysis time is also very time consuming,
resulting in low efficiency of TGA experiments, which cannot meet the high-efficiency
development needs of new materials [26,27]. This is a technical challenge that cannot be
solved by existing TGA instruments. In addition, the large quantity of samples makes it
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too risky to analyze hazardous samples or substances containing energy (such as strong
oxidizers and explosives). Existing TGA instruments are prone to damage from exothermic
chemical reactions (such as explosions, strong oxidation, or corrosion) induced by heat
during the TGA process. Furthermore, commercial TGA instruments use bulky enclosed
furnaces to heat samples with relatively large volumes, making it difficult to achieve in
situ observation of material phase or structural evolution. It is also challenging to combine
them with other analytical techniques, such as Raman spectroscopy [28,29], to meet the
growing demand for real-time characterization [30]. Therefore, the application scope and
functional versatility of existing TGA instruments are severely limited.

Yao et al. [31] proposed an integrated silicon resonant microcantilever as an ultra-
sensitive micro-thermal analysis chip for next-generation thermogravimetric analysis (TGA)
characterization. This chip is called a micro-electromechanical system based TGA (MEMS-
based TGA or MEMS TGA). Compared to commercially available TGA instruments, the
MEMS TGA has a series of significant advantages, such as requiring a small demand for
trace samples, achieving ultra-high resolution mass measurement, ultra-high heating rate
and analysis speed, and ultra-low power consumption. The principle of the MEMS TGA
is to reflect the real-time mass change (∆m) by the resonance frequency change (∆f ) of
the resonant microcantilever [32,33]. Currently, the testing process of this MEMS TGA is
to perform two program heating cycles (one called the baseline and the other called the
weight loss curve) for each sample and obtain the corresponding TGA curve through the
corresponding algorithm. However, as only one microcantilever can be used for each test,
it is time consuming to perform consecutive two-program heating cycles, and the efficiency
is low since only one sample can be tested at a time.

To address the issue of single-channel testing in the current MEMS TGA, this paper
proposes a multi-channel testing technology that can simultaneously use multiple mi-
crocantilevers for testing. To achieve the detection of the resonance frequency signals of
multiple channels of microcantilevers, an interface circuit system is designed, and the core
of the system is a phase-locked loop (PLL) [34]. Due to the limitations of the analog circuit
phase-locked loop, this paper adopts a LabVIEW-based software phase-locked loop [35–38],
which can quickly and accurately track the changes in the resonance frequency and avoid
the complexity of the analog phase-locked loop.

To verify the feasibility of the multi-channel resonant microcantilever testing system,
and taking advantage of the parallel operation mode of LabVIEW which is conducive to im-
plementing multi-channel data acquisition [39–42], this paper developed a LabVIEW-based
dual-channel detection system for resonant microcantilevers. With only one measurement,
the dual-channel detection system can complete TGA testing (one channel as baseline, and
the other channel as detection). Furthermore, as two channels can simultaneously test two
different samples, this technology can greatly improve the testing efficiency of MEMS TGA
and be extended to more channels, demonstrating great potential for high-throughput
detection applications.

2. System Structure and Principle

The whole system is composed of a resonant microcantilever, a hardware circuit, and
software code. The three components’ functioning is explained in the following.

Figure 1 displays the structure of the entire system. LabVIEW on a PC can set parame-
ters in accordance with the needs of the experiment as the system’s control hub. The NI
data acquisition card then generates control words in accordance with the instructions and
sends them to the Direct Digital Frequency Synthesizer after receiving parameter instruc-
tions from LabVIEW. To drive the resonant microcantilever vibration, the Direct Digital
Frequency Synthesizer generates the appropriate excitation signal in accordance with the
control word. Excitation and reaction signals are gathered by the NI data acquisition card
and sent to LabVIEW on the PC for computation. The frequency of excitation pulses is then
modified in accordance with the information collected.
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2.1. The Operating Principle of a Resonant Microcantilever

The core of the MEMS TGA is the resonant microcantilever. The specific structure of
the microcantilever is shown in Figure 2. The resonant microcantilever mainly consists
of a fixed silicon base and a cantilevered plate-like structure, which can be regarded as a
resonator. This paper adopts the method of using electric heating to make the resonant
microcantilever work normally, and uses a circuit with piezo-resistive detection to collect
the vibration (pick-up) of the resonant microcantilever. The front end of the cantilever is
the sample area and the heating resistor. Before the heating resistor and the piezo-resistive
resistor, there is a specially designed square window, which can effectively prevent the heat
from the heating end from being conducted to the fixed end.

The resonant microcantilever utilizes the principle of mechanical energy conservation
during resonance to output a resonance frequency shift (∆f ) signal, representing real-
time mass changes (∆m). An electric resistance-based microheater is designed at the free
end of the vibrating beam for sample heating, achieving heating temperatures of up to
1200 ◦C. By using pre-calibrated metal heating resistors as temperature sensors to control
heating current, programmable temperatures can be achieved. The mass loss during the
programmed heating process is measured using a piezo-resistive Wheatstone bridge to
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read the frequency shift signal in real time. The piezo-resistive sensor element and the
thermoelastic resonant excitation element are both integrated on the microcantilever, with
resonance maintained through a phase-locked loop interface circuit. The weight loss
detection resolution of the resonant microcantilever can reach 1 pg (10−12 g), with only
nanogram-level (10−9 g) samples required for conventional MEMS TGA measurements.
The nanogram-level samples can be uniformly heated by the microheater located at the end
of the microcantilever. Compared to the non-uniform temperature distribution typically
required for milligram-level samples in traditional TGA, the trace samples in MEMS
TGA can always be uniformly heated, achieving lower thermal lag even at very high
heating rates.
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2.2. Design of Hardware Structures

The drive circuit and signal conditioning circuit are the major components of the
system’s hardware.

2.2.1. Drive Circuit

The Direct Digital Frequency Synthesizer and variable gain amplifier modules can be
separated into the system’s drive circuit.

In 1971, American researchers J. Tierney et al. proposed the Direct Digital Frequency
Synthesizer (DDS) [43], a novel digital frequency synthesizer device. DDS is appropriate
for the system proposed in this study because it can carry out operations using rapid
frequency conversion, phase digital regulation, high resolution, cheap cost, and low power
consumption. To excite the resonant microcantilever, the PC-based LabVIEW program
synthesizes the AC signal of the required frequency and feeds it via the data acquisition
card to the DDS module. The AD9850 DDS chip is used in this paper. In Figure 3, the
circuit diagram is displayed. A 0.5 V sinusoidal signal is output through the Z_OUT pin in
Figure 3 using serial communication (pin W_CLK, FQ_UD, D7, and RESET).

2.2.2. Circuit for Signal Processing

The signal conditioning circuit includes a differential amplifier circuit and band-
pass filter module because the signal collected by the Wheatstone bridge on the resonant
microcantilever is very weak and prone to noise and interference. This means that in order
to extract the useful output signal, the signal must be amplified and filtered.
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In this paper, the precision instrument amplifier AD8422 is used. It is a type of
instrument amplifier that has excellent accuracy, minimal power usage, and minimal noise
from rail to rail. The AD8422 can vary gain from 1 to 100 with just one gain resistor, and has a
maximum static current of 330 µA and a maximum input voltage noise of 8 nV/Hz at 1 kHz,
making it perfect for conditioning piezo-resistive Wheatstone bridges. Figure 4 depicts the
operational amplifier circuit for the AD8422. The gain of the AD8422 can be adjusted by
crossing a gain resistor to the RG pin. The following is the gain calculation formula:

RG =
19.8 kΩ
G − 1

(1)

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 3. Circuit diagram of AD9850-based DDS. 

  

Figure 3. Circuit diagram of AD9850-based DDS.

The gain circuit can be calculated using the Formula (1) as RG = 2.2 kΩ, when G = 10.
After the AD8422 amplifies the resonant microcantilever’s output signal, a band-pass

filter filters out the noise brought on by resistance imbalance and temperature drift in
bridge. The operational amplifier OP37, which is low-noise, precise, and fast, is employed
in this paper to filter the noise. Figure 5 depicts the schematic diagram of this circuit.

2.3. Design of Software Structures

The computer serves as the system’s control center and is responsible for storing data
and transmitting commands to govern each module. This paper’s system is a graphical
control software created using LabVIEW. The user interface, information presentation,
parameter settings, and data storage and reading are among its primary features. The
ability to generate control words, open loop tests, closed loop tests, and data preservation
make up the entirety of the software.
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2.3.1. Generate Control Words Module

The DDS typically includes a phase accumulator, ROM, frequency reference source
(often a crystal oscillator), and a DAC. The phase accumulator accumulates the input
frequency control word (FCW) throughout each clock cycle to determine the proper phase
angle of the output sine wave [44]. The DDS’s output frequency is

fout = fclk ×
FCW

2N (2)

where N is the size of the phase accumulator, FCW is the input frequency control word,
and fclk is the clock frequency of the DDS.
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To generate the appropriate frequency control word to deliver to the DDS, LabVIEW
must send instructions to the NI data acquisition device. The control word generation
portion of the program displayed in Figure 6a is written based on the aforementioned
guidelines. Figure 6b shows that child VI of a is b. In this work, the system is chosen to
have a 125 MHz crystal oscillator, and N is chosen to have 32 bits.
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The system requires four digital pins for each channel. The pin out of the NI USB-6361
is shown in Figure 7, and eight digital pins from P0.0 to P0.7 have been chosen. The first
channel’s RESET, FQ_UD, CLK, and DATA ports are represented by pins P0.0 to P0.3. The
corresponding ports of the second channel are P0.4 through P0.7.

2.3.2. Open Loop Test

The objective of the open loop test is to determine the amplitude–frequency curve and
phase–frequency curve of the resonant microcantilever sensor that will be put to the test
using the method of sweeping frequency. This will allow for the accurate determination of
the two key parameters of resonant frequency and resonant phase difference for the closed
loop test. The procedure is described below.

Figure 8 describes the open loop test flow. After setting the test parameters, the NI data
acquisition card receives instructions from LabVIEW and generates control words, which
are then transmitted to the DDS. Based on the time interval ∆f and the received control
word, the DDS generates an incentive signal from fstart to fend. The computer determines
the value of ∆f and the precision threshold by starting with the frequency that corresponds
to the highest value of the current frequency interval, or f 0. If ∆f is less than or equal
to the precision threshold, f 0 is the resonant frequency and LabVIEW records f 0, φ0 and
the frequency–phase difference coefficient k, and φ0 is ready to enter the closed loop test.
The parameter is altered if ∆f is bigger than the precision threshold, and the formula is
as follows:

fstart = f0 − fend− fstart
20

fend = f0 +
fend− fstart

20

∆ f = ∆ f
10

(3)
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Repeat the previous steps until is below or equal to the precision level. The program
diagram’s open loop test section is displayed below.

The program in Figure 9a performs the function of extracting the frequency value f 0
(resonant frequency) corresponding to the highest value in a frequency interval of each
channel and the accompanying phase p0. The variables “Harmonic Analysis-C1” and
“Harmonic Analysis-C2” represent the harmonic information for each channel, and their
data including frequency, amplitude, and phase difference can be extracted using the
“Index Array” control. The amplitude maximum and its corresponding index position can
be found using the “Array MAX&MIN” control, and the frequency and phase difference
corresponding to this index position can be matched and obtained. The program’s purpose
in Figure 9b is to establish ∆f and the precision threshold, as well as modify the sweep test
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parameters. Initially, a “Case Structure” is employed to determine whether ∆f is less than
or equal to the accuracy threshold. If not, a “Stacked Sequence Structure” is used, which
is responsible for the implementation of the variable calculation based on Equation (3) as
depicted in the figure.
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2.3.3. Closed Loop Test

The resonant microcantilever and the software phase-locked loop are used in the
closed loop test to track the resonant frequency in real time.

Software phase-locked loops are at the heart of closed loop testing. Excitation signal
modification and phase difference extraction using the DFT algorithm make up the software
phase-locked loop. The goal is to maintain a consistent phase difference between the two
signals by synchronizing the DDS excitation signal’s frequency and phase with the resonant
microcantilever’s output signal [45].
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The diagram below depicts the closed loop test’s flow. The first excitation frequency
used to generate the resonant microcantilever vibration is the resonant frequency f 0 dis-
covered during the open loop test. Then use the DFT method with the gathered response
and excitation signals to determine the phase different φ. Next, determine the difference
between the open loop test’s phase difference φ0 and resonant phase difference φ. Then
the new resonant frequency is computed using the phase difference–frequency relation
coefficient k discovered during the open loop test. This realizes the tracking frequency
function in real time.

The primary flow of closed loop testing is depicted in Figure 11a. The software
phase-locked loop computation excitation signal program block diagram is in (b); the
phase difference between the excitation signal and the response signal is calculated using a
software phase-locked loop block diagram (c). The “Array” variable retrieves information
about the resonant frequency of the simulated signal during closed-loop testing, and
then generates the corresponding waveform using “Build Waveform”. The waveform
information is then written to the “Compute Phase Difference” sub-VI in (c), where the
phase difference is calculated using the DFT algorithm. The resulting phase difference
is then used to calculate the frequency shift by subtracting the resonant phase difference
obtained from open-loop testing, denoted by φ0. This calculation is performed using the
phase difference–frequency coefficient k obtained from open-loop testing, which yields the
resonant frequency.
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Figure 12 shows the UI for closed loop testing, which primarily comprises frequency–
time plots of two channels and real-time display of various data.

2.3.4. Data Preservation

The data preservation module is mainly responsible for the real-time storage of the
frequencies collected from two channels during testing. Its main program architecture is
shown in Figure 13.

The sequential numbering of the frequencies collected from two channels is achieved
through the use of a shift with a “while loop” and a “+1” control. The “while loop” contains
a flat sequential structure, in which the first frame writes the frequencies of the two channels
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to the corresponding paths in a text file, while the second frame provides a delay function
that determines the time delay based on the user-defined variable “save count”.

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 12. Closed loop testing of the user interface. 

2.3.4. Data Preservation 

The data preservation module is mainly responsible for the real-time storage of the 

frequencies collected from two channels during testing. Its main program architecture is 

shown in Figure 13. 

 

Figure 13. Partial program code of the data preservation module. 

The sequential numbering of the frequencies collected from two channels is achieved 

through the use of a shift with a “while loop” and a “+1” control. The “while loop” con-

tains a flat sequential structure, in which the first frame writes the frequencies of the two 

channels to the corresponding paths in a text file, while the second frame provides a delay 

function that determines the time delay based on the user-defined variable “save count”. 

3. Results and Discussion 

The dual-channel test system for resonant microcantilever is designed in this study 

using LabVIEW in accordance with the aforementioned guidelines, and two experiments 

are designed: (1) To confirm that the system can perform difference control, in channel 

one, a resonant microcantilever without any sample (bare beam) is mounted; in channel 

two, a resonant microcantilever with CaC2O4·H2O (sample beam) is used. They are heated 

simultaneously. Finally, the weight loss rate is determined by integrating the information 

Figure 12. Closed loop testing of the user interface.

Micromachines 2023, 14, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 12. Closed loop testing of the user interface. 

2.3.4. Data Preservation 

The data preservation module is mainly responsible for the real-time storage of the 

frequencies collected from two channels during testing. Its main program architecture is 

shown in Figure 13. 

 

Figure 13. Partial program code of the data preservation module. 

The sequential numbering of the frequencies collected from two channels is achieved 

through the use of a shift with a “while loop” and a “+1” control. The “while loop” con-

tains a flat sequential structure, in which the first frame writes the frequencies of the two 

channels to the corresponding paths in a text file, while the second frame provides a delay 

function that determines the time delay based on the user-defined variable “save count”. 

3. Results and Discussion 

The dual-channel test system for resonant microcantilever is designed in this study 

using LabVIEW in accordance with the aforementioned guidelines, and two experiments 

are designed: (1) To confirm that the system can perform difference control, in channel 

one, a resonant microcantilever without any sample (bare beam) is mounted; in channel 

two, a resonant microcantilever with CaC2O4·H2O (sample beam) is used. They are heated 

simultaneously. Finally, the weight loss rate is determined by integrating the information 

Figure 13. Partial program code of the data preservation module.

3. Results and Discussion

The dual-channel test system for resonant microcantilever is designed in this study
using LabVIEW in accordance with the aforementioned guidelines, and two experiments
are designed: (1) To confirm that the system can perform difference control, in channel
one, a resonant microcantilever without any sample (bare beam) is mounted; in channel
two, a resonant microcantilever with CaC2O4·H2O (sample beam) is used. They are heated
simultaneously. Finally, the weight loss rate is determined by integrating the information
from the sample beam and bare beam. (2) To evaluate the accuracy of the system, a resonant
microcantilever containing CaC2O4·H2O samples was used for each of the two channels
and then heated at the same time. The samples’ rates of weight loss are then calculated,
and the results from the two sets of data are contrasted.
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3.1. Experiment 1

This test is designed to determine whether differential comparison can be utilized to
derive the thermogravimetric curves of two resonant cantilevers. The following actions are
specific to the test performed.

(1) To burn out contaminants on the empty beam, the two channels’ empty beams are
heated simultaneously from ambient temperature to 800 ◦C for 5 min.

(2) Measure the frequency of the beams under empty conditions, and calculate the channel
with a hollow beam using two empty beam frequencies’ difference, remembering to
consider ∆F.

(3) Run a temperature ramp program on the empty beam of channel two with the fol-
lowing parameters: starting temperature of 50 ◦C, ending temperature of 800 ◦C,
heating rate of 20 ◦C/min. After the temperature ramp program is completed, save
the frequency file as a validation baseline for later use.

(4) Add the CaC2O4·H2O sample to the empty beam of channel two and bake in an 80 ◦C
oven for 10 min.

(5) Take out the baked sample beam from the oven and insert it into the device, then
simultaneously perform a heating program with the following parameters: starting
temperature of 50 ◦C, ending temperature of 800 ◦C, heating rate of 20 ◦C/min. After
the heating program is completed, save each frequency file separately.

(6) Use the frequency file of the empty beam in channel one as the baseline; then, add ∆F
to each moment’s frequency F in the frequency file to the sample beam in channel two,
save it as a new frequency file, and use it as the sample weight loss frequency line.

(7) Combine the baseline from channel one with the sample weight loss frequency line
calculated from channel two to compute the sample thermal gravimetric curve, and
compare it against the standard.

Experiment 1 was primarily conducted to validate the accuracy of the dual-channel
testing method proposed in this study. Figure 14a shows the thermogravimetric curves
obtained from the single-channel and dual-channel testing methods, revealing that both
curves exhibit approximately 12.9%, 20.6%, and 27.2% weight loss in the first, second,
and third stages, respectively, resulting in a total weight loss of approximately 60.7%.
Figure 14b illustrates the error between the thermogravimetric curves obtained using the
dual-channel testing method and those obtained using the single-channel testing method,
with a difference of less than 0.1%. The experimental results demonstrate that the system
designed in this study is capable of differentially controlling the reference and test channels
and accurately measuring the results obtained from both channels.
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3.2. Experiment 2

The following steps are performed for testing after the experimental tools and samples
are prepared:

(1) To burn out contaminants on the empty beam, the two channels’ empty beams are
heated simultaneously from ambient temperature to 800 ◦C for 5 min.

(2) Two empty beams simultaneously experience their predetermined temperature rise.
The following are the details of the temperature rise: starting temperature of 50 ◦C,
ending temperature of 800 ◦C, heating rate of 20 ◦C/min. The frequency files are
saved as their baselines after the application has been heated.

(3) Samples of CaC2O4·H2O should be added to the two empty beams before being baked
for 10 min at 80 ◦C.

(4) Two sample beams are removed and set up to increase in temperature. The following
are the parameters for the temperature rise: starting temperature of 50 ◦C, ending
temperature of 800 ◦C, heating rate of 20 ◦C /min. The frequency files are preserved
as their weightless frequency lines once the application has heated them up.

(5) The two resonant microcantilevers’ TG curves are calculated and evaluated separately.

Figure 15 shows the thermalgravimetric curves of two channels. As can be seen from
the curves, both channels lost about 12.5% in the first stage; 20.9% in the second stage;
27.9% in the third stage; and about 61.3% in total. The experimental results demonstrate
that the dual-channel system designed in this study is capable of simultaneously testing
two samples.
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Figure 15. Double-channel thermogravimetric curve of CaC2O4·H2O.

4. Conclusions

This article mainly discusses the principles, implementation process, and experimental
verification of the double-channel testing system for the resonant microcantilever.

This study proposes a dual-channel testing method in response to the limitations of
the current resonant microcantilever system’s single-channel testing. The method mainly
employs differential control, with one channel acting as the control group and the other
as the experimental group. From experiment 1, it can be observed that the proposed dual-
channel testing method is feasible and provides a 50% increase in efficiency compared to
the single-channel testing method. As the testing process can be completed with only one
program heating cycle, the longer the required program heating time, the more time can be
saved by this method. At minimum, a 50% reduction in time can be achieved. Moreover,
the microcantilever in the control group can be reused, reducing device consumption. It
is worth nothing that the dual-channel testing method can synchronize the baseline and
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sample weight loss curves in identical environments, providing more rigorous experimental
data. Experiment 2 demonstrates that the designed dual-channel system can simultaneously
test two microcantilevers with samples, greatly improving testing efficiency. In fact, in
some respects, compared to the single-channel method, the dual-channel testing method
can obtain test results for two samples in the same amount of time, resulting in an efficiency
increase of approximately 100%, and laying the foundation for the implementation of more
channels, with the potential for high-throughput detection applications.
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