Double and Square Bessel–Gaussian Beams
Abstract
:1. Introduction
2. Bessel–Gaussian Beams and Modulated Bessel–Gaussian Beams
3. Square Bessel–Gaussian Beams
4. Product of Two Bessel–Gaussian Beams
5. Simulation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siegman, A.E. Lasers; University Science Books: Mill Valley, CA, USA, 1986. [Google Scholar]
- Gori, F.; Guattari, G.; Padovani, C. Bessel-Gauss beams. Opt. Commun. 1987, 64, 491–495. [Google Scholar] [CrossRef]
- Karimi, E.; Zito, G.; Piccirillo, B.; Marrucci, L.; Santamato, E. Hypergeometric-Gaussian modes. Opt. Lett. 2007, 32, 3053–3055. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, V.V.; Skidanov, R.V.; Khonina, S.N.; Soifer, V.A. Hypergeometric modes. Opt. Lett. 2007, 32, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Wünsche, A. Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry. J. Opt. Soc. Am. A 1989, 6, 1320–1329. [Google Scholar] [CrossRef]
- Chu, X.; Sun, Q.; Wang, J.; Lü, P.; Xie, W.; Xu, X. Generating a Bessel-Gaussian beam for the application in optical engineering. Sci. Rep. 2016, 5, 18665. [Google Scholar] [CrossRef]
- Yu, T.; Xia, H.; Xie, W.; Xiao, G.; Li, H. The generation and verification of Bessel-Gaussian beam based on coherent beam combining. Results Phys. 2019, 16, 102872. [Google Scholar] [CrossRef]
- Vasilyeu, R.; Dudley, A.; Khilo, N.; Forbes, A. Generating superpositions of higher-order Bessel beams. Opt. Express 2009, 17, 23389–23395. [Google Scholar] [CrossRef]
- Lukin, I.P. Coherence of Bessel-Gaussian Beams Propagating in a Turbulent Atmosphere. Atmos. Ocean. Opt. 2018, 31, 49–59. [Google Scholar] [CrossRef]
- Chen, B.; Pu, J. Propagation of Gauss–Bessel beams in turbulent atmosphere. Chin. Phys. B 2009, 18, 1033. [Google Scholar] [CrossRef]
- Yue, X.; Ge, X.; Lyu, Y.; Zhao, R.; Wang, B.; Han, K.; Zhang, W.; Man, Z.; Fu, S. Mean intensity of lowest order Bessel-Gaussian beams with phase singularities in turbulent atmosphere. Optik 2020, 219, 165215. [Google Scholar] [CrossRef]
- Eyyuboğlu, H.T.; Hardalaç, F. Propagation of modified Bessel-Gaussian beams in turbulence. Opt. Laser Technol. 2008, 40, 343–351. [Google Scholar] [CrossRef]
- Nelson, W.; Palastro, J.P.; Davis, C.C.; Sprangle, P. Propagation of Bessel and Airy beams through atmospheric turbulence. J. Opt. Soc. Am. A 2014, 31, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Birch, P.; Ituen, I.; Young, R.; Chatwin, C. Long-distance Bessel beam propagation through Kolmogorov turbulence. J. Opt. Soc. Am. A 2015, 32, 2066–2073. [Google Scholar] [CrossRef]
- Kulya, M.S.; Semenova, V.A.; Bespalov, V.G.; Petrov, N.V. On terahertz pulsed broadband Gauss-Bessel beam free-space propagation. Sci. Rep. 2018, 8, 1390. [Google Scholar] [CrossRef]
- Mazilu, M.; Stevenson, D.J.; Gunn-Moore, F.; Dholakia, K. Light beats the spread: “non-diffracting” beams. Laser Photonics Rev. 2010, 4, 529–547. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kotlyar, V.V.; Skidanov, R.V.; Soifer, V.A.; Jefimovs, K.; Simonen, J.; Turunen, J. Rotation of microparticles with Bessel beams generated by diffractive elements. J. Mod. Opt. 2004, 51, 2167–2184. [Google Scholar] [CrossRef]
- Jáuregui, R.; Hacyan, S. Quantum-mechanical properties of Bessel beams. Phys. Rev. A 2005, 71, 033411. [Google Scholar] [CrossRef]
- McLaren, M.; Mhlanga, T.; Padgett, M.J.; Roux, F.S.; Forbes, A. Self-healing of quantum entanglement after an obstruction. Nat. Commun. 2014, 5, 3248. [Google Scholar] [CrossRef]
- Zhu, L.; Xin, X.; Chang, H.; Wang, X.; Tian, Q.; Zhang, Q.; Gao, R.; Liu, B. Security enhancement for adaptive optics aided longitudinal orbital angular momentum multiplexed underwater wireless communications. Opt. Express 2022, 30, 9745–9772. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Wang, J. Propagation of Asymmetric Bessel Mode in Turbulent Atmosphere. IEEE Photonics J. 2022, 14, 7354106. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Soifer, V.A. Asymmetric Bessel modes. Opt. Lett. 2014, 39, 2395–2398. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, V.V.; Kovalev, A.A.; Skidanov, R.V.; Soifer, V.A. Asymmetric Bessel–Gauss beams. J. Opt. Soc. Am. A 2014, 31, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Caron, C.F.R.; Potvliege, R.M. Bessel-modulated Gaussian beams with quadratic radial dependence. Opt. Commun. 1999, 164, 83–93. [Google Scholar] [CrossRef]
- Belafhal, A.; Dalil-Essakali, L. Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system. Opt. Commun. 2000, 177, 181–188. [Google Scholar] [CrossRef]
- Bandres, M.A.; Lopez-Mago, D.; Gutiérrez-Vega, J.C. Higher-order moments and overlaps of rotationally symmetric beams. J. Opt. 2010, 12, 015706. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Kozlova, E.S.; Savelyeva, A.A.; Stafeev, S.S. New type of vortex laser beams: Squared Laguerre-Gaussian beam. Optik 2022, 270, 169916. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Abramochkin, E.G.; Kovalev, A.A.; Savelyeva, A.A. Product of Two Laguerre–Gaussian Beams. Photonics 2022, 9, 496. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 2. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: Special Functions; Gordon and Breach Science Publishers: New York, NY, USA, 1986; Volume 2, ISBN 2-88124-090-9. [Google Scholar]
- Zhang, S.; Elsayed, M.; Peng, R.; Chen, Y.; Zhang, Y.; Peng, J.; Li, W.; Chamberlain, M.D.; Nikitina, A.; Yu, S.; et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun. 2021, 12, 5349. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Yan, S.; Zhang, Y.; Yao, B. Enatioselective Rotation of Chiral Particles by Azimuthally Polarized Beams. Adv. Photonics Res. 2022, 3, 2200117. [Google Scholar] [CrossRef]
- Mazilu, M.; Dholakia, K. Trapping and Rotation of Particles in Light Fields with Embedded Optical Vortices. In Twisted Photons: Applications of Light with Orbital Angular Momentum; Torres, J.P., Torner, L., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramochkin, E.G.; Kotlyar, V.V.; Kovalev, A.A. Double and Square Bessel–Gaussian Beams. Micromachines 2023, 14, 1029. https://doi.org/10.3390/mi14051029
Abramochkin EG, Kotlyar VV, Kovalev AA. Double and Square Bessel–Gaussian Beams. Micromachines. 2023; 14(5):1029. https://doi.org/10.3390/mi14051029
Chicago/Turabian StyleAbramochkin, Eugeny G., Victor V. Kotlyar, and Alexey A. Kovalev. 2023. "Double and Square Bessel–Gaussian Beams" Micromachines 14, no. 5: 1029. https://doi.org/10.3390/mi14051029
APA StyleAbramochkin, E. G., Kotlyar, V. V., & Kovalev, A. A. (2023). Double and Square Bessel–Gaussian Beams. Micromachines, 14(5), 1029. https://doi.org/10.3390/mi14051029