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Abstract: A nonlinear static analysis of a circular/annular nanoplate on the Winkler–Pasternak
elastic foundation based on the nonlocal strain gradient theory is presented in the paper. The
governing equations of the graphene plate are derived using first-order shear deformation theory
(FSDT) and higher-order shear deformation theory (HSDT) with nonlinear von Karman strains. The
article analyses a bilayer circular/annular nanoplate on the Winkler–Pasternak elastic foundation.
HSDT while providing a suitable distribution of shear stress along the thickness of the FSDT plate,
eliminating the defects of the FSDT and providing good accuracy without using a shear correction
factor. To solve the governing equations of the present study, the differential quadratic method (DQM)
has been used. Moreover, to validate numerical solutions, the results were compared with the results
from other papers. Finally, the effect of the nonlocal coefficient, strain gradient parameter, geometric
dimensions, boundary conditions, and foundation elasticity on maximum non-dimensional deflection
are investigated. In addition, the deflection results obtained by HSDT have been compared with the
results of FSDT, and the importance of using higher-order models has been investigated. From the
results, it can be observed that both strain gradient and nonlocal parameters have significant effects
on reducing or increasing the dimensionless maximum deflection of the nanoplate. In addition, it
is observed that by increasing load values, the importance of considering both strain gradient and
nonlocal coefficients in the bending analysis of nanoplates is highlighted. Furthermore, replacing a
bilayer nanoplate (considering van der Waals forces between layers) with a single-layer nanoplate
(which has the same equivalent thickness as the bilayer nanoplate) is not possible when attempting
to obtain exact deflection results, especially when reducing the stiffness of elastic foundations (or in
higher bending loads). In addition, the single-layer nanoplate underestimates the deflection results
compared to the bilayer nanoplate. Because performing the experiment at the nanoscale is difficult
and molecular dynamics simulation is also time-consuming, the potential application of the present
study can be expected for the analysis, design, and development of nanoscale devices, such as circular
gate transistors, etc.

Keywords: nonlinear static analysis; circular/annular nanoplate; nonlocal strain gradient theory;
FSDT; HSDT; DQM

1. Introduction

Due to their high stiffness and strength; elastic modulus (higher than 1 TPa); weight
ratio; and also outstanding mechanical, electrical, and chemical properties, nanostructures
have been applied in diverse domains, including nanoelectromechanical systems, as their
high sensitivity and low mass make them perfect for demands in different areas. such as
biosensors, medicine, computers, etc. [1–3].

The local elasticity model cannot prognosticate extremely small-sized effects on nanos-
tructures because of the deficiency in the nonlocal elasticity model. Because the material’s
length scale lacks a nonlocal parameter, the classical elasticity model cannot predict the
minuscule size role of nanostructures. Experiments and molecular dynamics simulations
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are time-consuming, high in cost, and laborious with respect to analyzing nanostructure
systems. Diverse theories of nonlocal elasticity, such as Eringen (nonlocal elasticity), strain
gradient, couple stress, and surface stress, have been utilized to make atypical plate models
in order to overcome this problem [4,5]. Using nonlocal elasticity theory, Su and Zhou [6]
perused the electromechanical coupling responses of flexoelectric nanostructures.

Recently, many researchers have focused on the mechanical behavior of structures
based on the nonlocal strain gradient theory [7–9]. For example, Penna et al. [10] studied
the bending analysis of porous FG nanobeams using the nonlocal strain gradient theory.
In another study, the nonlocal strain gradient model was used by Le et al. [11] for ex-
amining static and vibration investigations of the FG sandwich nanoplate. Karami and
his colleagues [12] employed the nonlocal strain gradient theory to analyze functionally
graded anisotropic nanoplates. Alghanmi [13] studied the bending of functionally graded
porous nanoplates using the nonlocal strain gradient model and concluded that deflection
is enhanced by reducing the length scale parameter. Gui and Wu [7] examined the buckling
of nanoshells exposed to the axial load by considering thermal, magnetic, and electric
conditions. Arefi et al. [14] perused the investigation of the bending of a porous sandwich
nanoplate with piezomagnetic properties based on the theory of nonlocal strain gradients.

It is known that the classical theory (which neglects shear effects) is the simplest
model for analyzing structures such as beams and plates [15]. However, this theory
underestimates deflection and overestimates natural frequencies/critical buckling loads.
In this regard, the FSDT was proposed, which provides more accurate results than the
former theory, and many researchers have used it in their analyses [16,17]. Using FSDT,
Nguyen and Phung [18] investigated the bending, buckling, and vibration of FGM plates.
Padawale et al. [19] examined the vibration of the annular plate (exposed to a temperature
at one edge) according to the FSDT. Qin et al. [20] investigated the bending and vibrations
of circular plates based on FSDT. He and his colleagues [21] perused the bending and free
vibration examination of ribbed plates based on FSDT.

However, FSDT needs a shear correction coefficient to rectify stress-free boundary
conditions. To solve this problem, the HSDT was proposed, and many researchers have
employed it in their analyses [15,22,23]. For example, Pavan et al. studied the statics, buck-
ling, and free vibration of composite beams using HSDT [24]. Rodrigues [25] perused the
bending of cross-ply laminates based on HSDT and a radial point interpolation technique.
Zghal and Dammak [26] perused the vibration of plates and shells with functionally graded
pores imperfections based on FSDT using the finite element method. Using modified
FSDT, Trabelsi et al. [27] perused the thermal post-buckling of functionally graded material
structures. Using an improved FSDT, Zghal et al. [28] analyzed the thermal-free vibrations
of functionally graded plates and panels. Based on FSDT, Zghal et al. [29] investigated the
functionality of graded carbon-nanotube-reinforced composite structures using the finite
element technique. Zghal et al. [30] carried out an analysis of the nonlinear bending of
graphene-nanotube-reinforced nanocomposites by utilizing the finite shell element and
membrane enhancement, which includes a high-order variation of the displacement field.

Aghababaei and Reddy [31] utilized a nonlocal third-order shear deformation model to
analytically study the vibration-free bending of rectangular plates under a simply supported
boundary condition in order to obtain the natural frequency and deflection of plates.

Recently, advanced theories for the nonlinear examination of functionally graded
carbon-nanotube-reinforced composite plates and shells have been studied [32–34]. For
example, Zghal et al. [35] performed a static linear examination of functionally graded
carbon-nanotube-reinforced plates and shells. In their paper, they utilized a microme-
chanical model (extended rule of mixture) to define material properties. Frikha et al. [36]
investigated the nonlinear bending of functionally graded carbon-nanotube-reinforced com-
posite shells by utilizing the Kirchhoff shell model. Zghal et al. [37] carried out research on
the post-buckling of functionally graded carbon-nanotube-based structures. Zghal et al. [38]
investigated the buckling of functionally graded carbon-nanotube-reinforced composite
structures by employing a double director finite element shell theory.
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The vibration behavior of size-dependent structures using the non-local-strain gra-
dient theory or Eringen’s theory has been presented in some studies. For example,
Qaderi et al. [39] studied cracked graphene-platelet-reinforced composite plates sub-
jected to parametric excitation based on Eringen’s theory and the Line spring model.
Mahinzare et al. [40] studied the vibration of magnetically actuated viscoelastic function-
ally graded nanoshells based on the nonlocal strain gradient theory and FSDT. Rashid-
pour et al. [41] perused the dynamic analysis of the viscoelastic laminated composite
nanoplate using the nonlocal strain gradient theory and FSDT, applying the Galerkin
method. Ghorbani et al. [42] studied surface effects on the natural frequency of a func-
tionally graded cylindrical nanoshell using the nonlocal strain gradient theory via general-
ized DQM.

DQM is a powerful numerical method that has been used in many papers [43,44].
The basic goal of this technique is to apply Lagrange interpolation polynomials to field
coefficients and to solve the equations at discrete grid points. Improved accuracies can
be achieved by using more grid points. Han et al. [45] employed DQM to examine one-
electrode micro-resonators using a generalized 1-DOF model. Liu et al. [46] used DQM to
analyze the bending of FGM sandwich plates by considering the tunable auxetic core.

To our best knowledge, FSDT and HSDT with the nonlocal strain gradient theory
for the static analysis of circular/annular nanoplates via DQM have not been employed.
Furthermore, this paper analyzed a bilayer circular/annular nanoplate located on elastic
foundations. The effects of the non-local coefficient, strain gradient, geometric dimensions,
boundary conditions, and foundation elasticity on the results of the maximum nondimen-
sional deflection are investigated. Moreover, the deflection results obtained by HSDT have
been compared with the results of FSDT, and the importance of using higher-order models
has been highlighted. From the results, it can be concluded that both the strain gradi-
ent parameter and the nonlocal coefficient have notable effects with respect to reducing
(or enhancing) the dimensionless maximum deflection. Additionally, replacing a bilayer
nanoplate (considering van der Waals forces between layers) with a single-layer nanoplate
(with the same equivalent thickness) is not possible when obtaining exact deflection results.
In addition, the deflection of the single-layer nanoplate is lower than the deflection of a
bilayer nanoplate. At higher thickness-to-radius ratios, it is better to use HSDT to obtain
more accurate results than FSDT. As performing the experiment is difficult because a
nanoscale and molecular dynamics simulation is time-consuming, potential applications of
the present study can be expected for the analysis and design of nanoscale devices. The
results of this paper can be useful for the development of nanostructured devices, such as
circular gate transistors, etc.

2. The Governing Equations
2.1. The Governing Equations for the Axisymmetric Single-Layer Circular/Annular Nanoplate

In this section, equilibrium equations have been derived by employing the energy
method for the nonlinear analysis of single-layer circular/annular nanoplates under bend-
ing. To derive the equilibrium equations by the energy method, a displacement field using
the HSDT and the nonlinear strain components with von Karman’s assumptions have been
considered. Figure 1 demonstrates a graphene annular plate on the Winkler (kw) and Paster-
nak (kp) elastic foundations with ri (internal radius) and ro (outer radius). Additionally,
Figure 2 shows the schematic of the annular plate under bending loads.

Taking into account the HSDT and adding a special function called g(z), the displace-
ment field will be in the form of the following equations which are in the r, θ, and z
directions defined by U, V, and W, respectively.

U(r, θ, z) = u0(r)− z dw0(r)
dr + g(z)φ(r)

V(r, θ, z) = 0
W(r, θ, z) = w0(r)

(1)
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Figure 1. The graphene annular plate on elastic foundations.
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Figure 2. The annular plate under bending loads.

u0, v0, and w0 are the displacement components of the midplane in the r, θ, and z
directions, respectively. Also, φ and ψ are the rotation components around the θ and r axes,
respectively. The function g(z) is defined as follows.

g(z) = f (z) + zy∗ (2)

f (z) and y* are considered different functions used in various references and are listed

in Table 1 (for example, the Ambartsumian [47] model can be considered as −1
6

z3︸ ︷︷ ︸
f (z)

+
h2

8︸︷︷︸
y∗

z).

Table 1. Some of the suggested functions for HSDT in different references.

Model g(z) Function

Ambartsumian [47] − 1
6 z3 + h2

8 z

Reddy [48] − 4
3h2 z3 + z

Reissner [49] − 5
3h2 z3 + 5

4 z

Touratier [50] h
π sin

(
πz
h
)

Soldatos [51] hsinh
( z

h
)
− z cosh

(
1
2

)
Aydogdu [52] ze−2( z

h )
2

Mantari [53] h
π

(
sin
(

πz
h
)
em cos ( πz

h ) + m π
h z
)

, m ≥ 0

The nonlinear strain components, taking into account von Karman’s assumptions, are
as follows.

εr =
dU
dr

+
1
2
(

dW
dr

)
2
=

du0

dr
− z

d2w0

dr2 + g(z)
dφ

dr
+

1
2

(
dw0

dr

)2
(3)
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εθ =
U
r
=

1
r

(
u0 − z

dw0

dr
+ g(z)φ

)
(4)

γrθ = 0 (5)

γrz =
dW
dr

+
dU
dz

= φ
dg(z)

dz
(6)

γθz = 0 (7)

The force and momentum resultants in the nonlocal form (NL) are defined as follows:

{Nr, Nθ , Qr}NL =
∫ h

2

− h
2

{σr, σθ , σrz}NLdz (8)

{Mr, Mθ}NL =
∫ h

2

− h
2

{σr, σθ}NLzdz (9)

{Rr, Rθ}NL =
∫ h

2

− h
2

{σr, σθ}NL f (z)dz (10)

RNL
rz =

∫ h
2

− h
2

σNL
rz f ′(z)dz (11)

2.2. Derivation of Equilibrium Equations Based on the Energy Method

The potential energy of the system can be defined as the sum of the strain energy
caused by the work of internal forces and the potential energy caused by external forces:

Π = U + Ω (12)

Π is the potential energy of the entire system, U is the strain energy of the system,
and Ω is the potential energy of external forces. According to the principle of minimum
potential energy, for a system in equilibrium, the variation in the potential energy is zero:

δΠ = δU + δΩ = 0 (13)

To write the variations of the strain energy of the system, the integral over the volume
of strain energy density should be obtained. The strain energy density is as follows:

δuv = σijδεij (14)

Therefore, for strain energy variations, we have the following:

δU =
y

V

δuvdV =
y

V

σijδεijdV (15)

Therefore,
δU =

y

V

(σrδεr+σθδεθ + σrzδγrz)dV (16)

Moreover,
δΩ = −

x

A

(
q− kww0 + kp∇2w0

)
rδw0drdθ (17)



Micromachines 2023, 14, 1052 6 of 21

where kw and kp illustrate the Winkler and Pasternak elastic foundation coefficients, respec-
tively. Therefore,

δΠ = δΩ + δU = −
2π∫
0

r∫
0

(
q− kww0 + kp∇2w0

)
rδw0drdθ + δU = 0 (18)

By setting δΠ to zero, the coefficients of δu0, δw0, and δφ should be zero, and the
Euler–Lagrange equations are obtained as follows. All results are nonlocal. Therefore, they
are denoted with superscript NL.

δu0 : NNL
r + r

dNNL
r

dr
− NNL

θ = 0 (19)

δw0 : r d2 MNL
r

dr2 + 2 dMNL
r

dr −
dMNL

θ
dr + dw0

dr

(
NNL

r + dNNL
r

dr r
)
+ rNNL

r
d2w0
dr2 +(

q− kww0 + kp∇2w0
)
r = 0

(20)

δφ : y∗
(

r
dMNL

r
dr

+ MNL
r −MNL

θ − rQNL
r

)
+ RNL

r + r
dRNL

r
dr
− RNL

θ − rRNL
rz = 0 (21)

Additionally, the third equilibrium equation can be written as follows:

δw0 : r d2 MNL
r

dr2 + 2 dMNL
r

dr −
dMNL

θ
dr + dw0

dr NNL
θ + rNNL

r
d2w0
dr2

+
(
q− kww0 + kp∇2w0

)
r = 0

(22)

The theory of the nonlocal strain gradient (which can be considered as a combination
of the nonlocal stress field and strain gradient model) has been derived by Lim et al. [54]
and can be expressed as follows:

(1− µ2∇2)σij = Cijkl(1− l2∇2)εkl ,∇2 =
d2

dr2 +
1
r

d
dr

(23)

It should be noted that in Equation (23), µ, Cijkl , and l signify nonlocal, elastic, and
strain gradient (or internal material length scale) coefficients, respectively. Furthermore,
the stress–strain constitutive equation in the nanoscale can be illustrated as follows [55]:

(1− µ2∇2)

 σr
σθ

σrz

 = (1− l2∇2)

 Q11 Q12 0
Q12 Q22 0

0 0 G13

 εr
εθ

γrz

,{
Q11 = E1

1−ν12ν21
, Q22 = E2

1−ν12ν21

Q12 = ν12E2
1−ν12ν21

, G13 = E1
2(1+v12)

(24)

It is noted that in Equation (24), E1 and E2 denote the Young’s modulus along the 1
and 2 directions. Additionally, v12 and v21 are Poisson’s ratio in the mentioned directions,
and G13 is the shear modulus.

The nonlocal form is described as follows:(
1− µ∇2

)
{Nr, Nθ , Qr}NL =

∫ h
2

− h
2

(
1− µ∇2

)
{σr, σθ , σrz}NLdz (25)

The force and moment resultants in the local form are as follows:

{Nr, Nθ , Qr}L =
∫ h

2

− h
2

{σr, σθ , σrz}Ldz (26)
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{Mr, Mθ}L =
∫ h

2

− h
2

{σr, σθ}Lzdz (27)

{Rr, Rθ}L =
∫ h

2

− h
2

{σr, σθ}L f (z)dz (28)

Rrz
L =

∫ h
2

− h
2

σrz
L f ′(z)dz (29)

Additionally, the resultants in terms of displacements are obtained in the follow-
ing forms:

NL
r = (1− l2∇2){ 1

1−ν12ν21
(E1h

(
du0
dr + 1

2

(
dw0
dr

)2
)
+ ν12E2h 1

r u0

+
(

E1
dφ
dr + ν12E2

1
r φ
) h

2∫
− h

2

f (z)dz)}
(30)

NL
θ = (1− l2∇2){ 1

1−ν12ν21
(ν12E2h

(
du0
dr + 1

2

(
dw0
dr

)2
)
+ E2h 1

r u0+(
ν12E2

dφ
dr + E2

1
r φ
) h

2∫
− h

2

f (z)dz)}
(31)

ML
r = (1− l2∇2){ 1

1−ν12ν21
(E1

h3

12

(
− d2w0

dr2 + y∗ dφ
dr

)
+

ν12E2
h3

12

(
− 1

r
dw0
dr + y∗ 1

r φ
)
+
(

E1
dφ
dr + ν12E2

1
r φ
) h

2∫
− h

2

z f (z)dz)}
(32)

ML
θ = (1− l2∇2){ E2

1−ν12ν21
(ν12

h3

12

(
− d2w0

dr2 + y∗ dφ
dr

)
+

h3

12

(
− 1

r
dw0
dr + y∗ 1

r φ
)
+
(

ν12
dφ
dr + 1

r φ
) h

2∫
− h

2

z f (z)dz)}
(33)

RL
r = (1− l2∇2){ 1

1−ν12ν21

((
E1

(
du0
dr + 1

2

(
dw0
dr

)2
)
+ ν12E2

1
r u0

)∫ h
2
− h

2
f (z)dz

+
(

ν12E2

(
− 1

r
dw0
dr + y∗ 1

r φ
)
+ E1

(
− d2w0

dr2 + y∗ dφ
dr

))∫ h
2
− h

2
z f (z)dz+(

E1
dφ
dr + ν12E2

1
r φ
)∫ h

2
− h

2
( f (z))2dz

)
}

(34)

RL
θ = (1− l2∇2){ E2

1−ν12ν21

((
ν12

(
du0
dr + 1

2

(
dw0
dr

)2
)
+ 1

r u0

)∫ h
2
− h

2
f (z)dz+(

ν12

(
− d2w0

dr2 + y∗ dφ
dr

)
+
(
− 1

r
dw0
dr + y∗ 1

r φ
))∫ h

2
− h

2
z f (z)dz+(

ν12
dφ
dr + 1

r φ
)
(
∫ h

2
− h

2
( f (z))2dz)}

(35)

QL
r = (1− l2∇2){G13φy∗h + G13φ

∫ h
2

− h
2

(
f ′(z) + y∗

)
dz} (36)

RL
rz = (1− l2∇2){G13φ

∫ h
2

− h
2

(
f ′(z)

)2dz + G13y∗φ
∫ h

2

− h
2

f ′(z)dz} (37)
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The equilibrium equations for a single-layer axisymmetric annular/circular nanoplate
on a Winkler–Pasternak elastic foundation are locally expressed in the form of the follow-
ing equations:

δu0 : NL
r + r

dNL
r

dr
− NL

θ = 0 (38)

δw0 : r d2 ML
r

dr2 + 2 dML
r

dr −
dML

θ
dr +

(
1− µ∇2)((q− kww0 + kp∇2w0

)
r

+NL
θ

dw0
dr + rNL

r
d2w0
dr2

)
+ µr

((
∇2NL

r
) d2w0

dr2 +
(
∇2NL

θ

)( 1
r

dw0
dr

))
= 0

(39)

δφ : y∗
(

r
dML

r
dr

+ ML
r −ML

θ − rQL
r

)
+ RL

r + r
dRL

r
dr
− RL

θ − rRL
rz = 0 (40)

2.3. Equilibrium Equations of the Bilayer Axisymmetric Circular/Annular Nanoplate

Graphene sheets have low bending strengths, and to solve this issue, several layers of
graphene can be used. In this way, graphene sheets are placed on top of each other and are
connected via weak van der Waals bonds, creating layers of graphene [47]. Figure 3 shows
the schematic of the bilayer nanoplate under bending load (q) on the elastic foundations. A
circular bilayer plate with radius ro and constant thickness h is considered. k0 is the van
der Waals stiffness coefficient between two layers, and kw and kp are the coefficients of the
Winkler and Pasternak elastic foundations, respectively.
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Figure 3. A bilayer nanoplate under bending loads on the Winkler–Pasternak elastic foundation
considering the van der Waals force between the layers.

Equilibrium equations for the bilayer circular/annular nanoplate on the Winkler–
Pasternak elastic foundation are obtained almost in the same way as for the single-layer
nanoplate. The displacement fields for the axisymmetric bilayer circular/annular nanoplate
are as follows: index i = 1 represents the first layer, and i = 2 represents the second layer.

Ui(r, θ, z) = ui(r)− z
dwi(r)

dr
+ g(z)φi(r) , i = 1, 2 (41)

Vi(r, θ, z) = 0 , i = 1, 2 (42)

Wi(r, θ, z) = wi(r) , i = 1, 2 (43)

The strain equations are similar to those obtained for the single-layer circular/annular
nanoplate. Only the energy equation, when using the minimum potential energy principle
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to obtain the equilibrium equations and boundary conditions for the upper and lower
layers, is different according to the following equations:

δΩ1 =
∫ ro

ri

∫ τ

0
(q + ko(w2 − w1))δw1rdrdθ (44)

δΩ2 =
∫ ro

ri

∫ τ

0

(
−ko(w2 − w1)− kww2 + kp∇2w2

)
δw2rdrdθ (45)

δU =
y

v
σ1

NL
ij δε1ijdv +

y

v
σ2

NL
ij δε2ijdv i, j = r, θ (46)

δΠ = δU + δΩ1 + δΩ2 = 0 (47)

where the upper layer and the lower layer are numbered 1 and 2, respectively. The
equilibrium equations in terms of local stresses for the first layer (i = 1) and the second
layer (i = 2) are described as follows.

δui:NiL
r + r

dNiL
r

dr
− NiL

θ = 0 , i = 1, 2 (48)

δw1:r d2 M1
L
r

dr2 + 2 dM1
L
r

dr −
dM1

L
θ

dr +
(
1− µ∇2)((q + k0(w2 − w1))r+

N1
L
θ

dw1
dr + rN1

L
r

d2w1
dr2

)
+ µr

((
∇2NL

1r
) d2w1

dr2 +
(
∇2NL

1θ

) 1
r

dw1
dr

)
= 0

(49)

δw2:r d2 M2
L
r

dr2 + 2 dM2
L
r

dr −
dM2

L
θ

dr +
(
1− µ∇2)((−k0(w2 − w1)− kww2 + kp∇2w2

)
r+

N2
L
θ

dw2
dr + rN2

L
r

d2w2
dr2

)
+ µr

((
∇2NL

2r
) d2w2

dr2 +
(
∇2NL

2θ

)( 1
r

dw2
dr

))
= 0

(50)

δφi:y∗
(

r
dMiL

r
dr

+ MiL
r −MiL

θ − rQiL
r

)
+ RiL

r + r
dRiL

r
dr
− RiL

θ − rRiL
rz = 0, i = 1, 2 (51)

2.4. Boundary Conditions

The boundary conditions of the circular/annular plate are as follows:
Simply supported (S):

u = w = Mr = Rr = 0 (52)

Clamped (C):

u = w = φ =
dw
dr

= 0 (53)

Free (F):
Nr = Mr = Rr = Qr = 0 (54)

2.5. Dimensionless Assumptions

Due to the small values in the nanoscale and for the simplicity of calculations, the fol-
lowing relations are used to make the governing equations of the nanoplate dimensionless:

u∗ = u0
h ; w∗ = w0

ro
; φ∗ = φ ; ψ∗ = ψ; N∗r = Nr

E1h ; N∗θ = Nθ
E1h ;

Q∗r = Qr
E1h ; Q∗θ = Qθ

E1h ; M∗r = Mr
E1h2 ; M∗θ = Mθ

E1h2 ; ∇∗2 = d2

dr∗2 +
1
r∗

d
dr∗ ;

R∗r = Rr
E1h2 ; R∗θ = Rθ

E1h2 ; R∗rz =
Rrz
E1h ; r∗ = r

ro
; z∗ = z

h ;

δ = h
ro

; µ∗ = µ

r2
o

; l∗ = l
ro

; q∗ = q
E1

; k∗w = kwro
E1

; k∗p =
kp

E1ro

(55)
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3. Numerical Solution Method

The differential quadrature technique is one of the high-accuracy numerical methods,
and it is derived from the quadratic integration method. In the quadratic integration
method, the integral at one point along the domain depends on all points along that
direction. The value of dependency is determined by weight coefficients.

∫ b

a
f (r)dr =

n

∑
k=1

wk fk (56)

In the above equation, w1, w2, . . . , wn are weight coefficients and f1, f2, . . . , fn are
function values at discrete points. Regarding quadratic integration, Belman et al. [56]
suggested that the derivative at one point of the function domain depends on the function
values at all points of the domain by weight coefficients:

d f
dr

∣∣∣∣
ri

=
N

∑
j=1

Aij f
(
rj
)

, i = 1, 2, . . . , N (57)

In the above equation, Aij is the weight coefficient, and N is the total number of nodes
in the direction of r. The weighting coefficients for the first-order derivative are obtained as
follows:

A(1)
ij =

P(ri)(
ri − rj

)
P
(
rj
) (58)

P(ri) =
N

∏
j=1

(
ri − rj

)
, i 6= j (59)

A(1)
ii = −

N

∑
k=1

A(1)
ik , i 6= k (60)

Additionally, higher-order derivatives are obtained as follows:

d(n) f
dr(n)

∣∣∣∣∣
ri

=
N

∑
j=1

A(n)
ij f (rj) , i = 1, . . . , N (61)

The weighting coefficients for derivatives of the second and higher orders are intro-
duced in the form of the following equations:

A(n)
ij = n

A(1)
ij A(n−1)

ii −
A(n−1)

ij(
ri − rj

)
 , i 6= j (62)

A(n)
ii = −

N

∑
j=1, 6=i

A(n)
ij , i, j = 1 . . . N (63)

In this paper, the distribution of grid points based on Chebyshev–Gauss–Lubato points
is used, which enhances the convergence speed of the solution and is described in the
following form:

ri =
ri + ro

2
− cos

((
i− 1
N − 1

)
π

)(
ro − ri

2

)
, i = 1 . . . N (64)

In the above equation, ri and ro are the points at the beginning and end of the function,
respectively.
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4. Results and Discussion

In this section, different factors are investigated to observe how they influence the
deflections of the circular/annular nanoplate based on FSDT and HSDT, and the nonlocal
strain gradient model is considered via DQM. In addition, to validate the solution method,
the present results (in the case of the circular/annular nanoplate subjected to bending
loading loads) are compared with the results of references.

Figure 4 shows the effect of the number of nodes used in the differential quadratic
method on the results of the present study (the maximum dimensionless deflection of
the circular/annular nano plate). As observed, after nine nodes, proper convergence is
achieved. In this research study, the number of 11 nodes is used to calculate the results.
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Figure 4. The variation of dimensionless maximum deflection versus the number of nodes.

To validate the current research and solution method, the results obtained have been
compared with reference [57], and the results can be observed in Figure 5 for clamped (C)
and simply supported (S) boundary conditions. In this reference, the FSDT is used, and the
following values are considered:

E1 = 1060(GPa) , E2 = 1060(GPa) , ν12 = 0.3 , ν21 = 0.3, q = 0.1 (GPa) , k∗w = 0.004717 ,
k∗p = 0 , h = 0.34 (nm) , ro = 5 (nm) , ri = 1 (nm). (65)

Based on Figure 5, it can be observed that the results of the present paper are in good
agreement with the reference. Furthermore, this figure illustrates that the flexibility of the
nanoplate decreases with an increasing non-local coefficient [57].

Table 2 compares the deflection of the circular nanoplate with refs. [57–60] by consid-
ering the following assumptions:

E1 = E2 = 2× 106Pa, µ = 0, ν12 = ν21 = 0.3, R∗ =
r0

h
= 10 (66)

As can be compared, the results of the present study are in good harmony with the
results of the references.

Tables 3 and 4 compare the dimensionless maximum deflection obtained from FSDT
and HSDT by assuming different functions for a circular nanoplate in clamped and simply
supported boundary conditions using different thickness-to-radius ratios (α = h/ro) and
non-local coefficients µ and considering the following:

k∗w = 1.13× 109; k∗p = 1.13× 109, E1 = 1765 GPa, E2 = 1588 GPa,
ν12 = 0.3, ν21 = 0.27, h = 0.34 nm, q∗ = 1× 109 (67)
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Table 2. Comparison of the non-dimensional deflection obtained from the present study with the
other references for the circular plate.

q* Ref. [58] Ref. [60] Ref. [59]
DQM

Ref. [57]
SAPM

Ref. [57]
Present
(FSDT)

Present
(g1)

Present
(g2)

Present
(g3)

Present
(g4)

Present
(g5)

0.0001 0.1678 0.1687 0.1706 0.168 0.1685 0.1685 0.1732 0.1801 0.1793 0.1789 0.1801
0.0003 0.4583 0.4655 0.5119 0.4588 0.4642 0.4642 0.471 0.4863 0.4843 0.4835 0.4863
0.001 1.0509 1.0937 1.7069 1.0514 1.0557 1.0557 1.0708 1.0929 1.0899 1.0887 1.0929

Table 3. Comparison of the dimensionless maximum deflection obtained from FSDT with HSDT
(considering different functions) for a circular nanoplate under the clamped boundary condition.

α = h/ro Theory µ = 0 µ = 1 µ = 2 µ = 3 µ = 4

0.05

FSDT 0.09482 0.08832 0.08238 0.07706 0.07231

HSDT-g1(z) 0.09413 0.08754 0.08145 0.07603 0.07125

HSDT-g2(z) 0.09413 0.08753 0.08145 0.07603 0.07126

HSDT-g3(z) 0.09412 0.08752 0.08144 0.07604 0.0713

HSDT-g4(z) 0.09413 0.08754 0.08145 0.07604 0.07128

HSDT-g5(z) 0.09413 0.08754 0.08145 0.076 0.07126

0.1

FSDT 0.06384 0.05277 0.04528 0.03973 0.03541

HSDT-g1(z) 0.06310 0.05157 0.04403 0.03855 0.03433

HSDT-g2(z) 0.06311 0.05156 0.04402 0.03855 0.03432

HSDT-g3(z) 0.06312 0.05157 0.04403 0.03854 0.03433

HSDT-g4(z) 0.06310 0.05156 0.04401 0.03855 0.03432

HSDT-g5(z) 0.06311 0.05155 0.044 0.03854 0.03433

0.3

FSDT 0.00515 0.00429 0.00368 0.00323 0.00287

HSDT-g1(z) 0.00494 0.00386 0.00316 0.00268 0.00232

HSDT-g2(z) 0.00494 0.00385 0.00316 0.00268 0.00233

HSDT-g3(z) 0.00495 0.00386 0.00317 0.00267 0.00231

HSDT-g4(z) 0.00493 0.00385 0.00315 0.00266 0.00234

HSDT-g5(z) 0.00495 0.00386 0.00317 0.00268 0.00233
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Table 4. Comparison of the dimensionless maximum deflection obtained from FSDT with HSDT
(considering different functions) for a circular nanoplate in the simply supported boundary condition.

α = h/ro Theory µ = 0 µ = 1 µ = 2 µ = 3 µ = 4

0.05

FSDT 0.09956 0.09710 0.09365 0.08989 0.08610

HSDT-g1(z) 0.09960 0.09703 0.09338 0.08945 0.08557

HSDT-g2(z) 0.09959 0.09703 0.09337 0.08941 0.08556

HSDT-g3(z) 0.09961 0.09702 0.09338 0.08944 0.08565

HSDT-g4(z) 0.09960 0.09703 0.09337 0.08945 0.08556

HSDT-g5(z) 0.09961 0.097 0.09336 0.08556 0.08945

0.1

FSDT 0.09391 0.08401 0.07546 0.06814 0.06190

HSDT-g1(z) 0.09389 0.08352 0.07493 0.0677 0.06176

HSDT-g2(z) 0.0939 0.08353 0.07492 0.06778 0.06177

HSDT-g3(z) 0.09389 0.0835 0.07493 0.06778 0.06177

HSDT-g4(z) 0.0938 0.08352 0.07494 0.06824 0.06178

HSDT-g5(z) 0.09389 0.08351 0.07493 0.06778 0.06177

0.3

FSDT 0.01623 0.01309 0.01079 0.00918 0.00806

HSDT-g1(z) 0.01597 0.01274 0.0106 0.00912 0.00801

HSDT-g2(z) 0.01598 0.01274 0.01063 0.0091 0.008

HSDT-g3(z) 0.01599 0.01273 0.01064 0.00913 0.00801

HSDT-g4(z) 0.01596 0.01272 0.01062 0.00912 0.00799

HSDT-g5(z) 0.01598 0.01274 0.01063 0.00913 0.008

It can be observed in Tables 3 and 4 that by increasing the nonlocal elasticity parameter,
the nondimensional deflection is reduced. Moreover, it can be discerned that, by increasing
the thickness-to-radius ratio, deflection decreases. It can be observed that for different
nonlocal coefficients and thickness-to-radius ratios, the FSDT overestimates the results in
comparison with the HSDT.

In this comparison, several different functions have been used as a function to dis-
tribute the shear stress along the thickness. These functions are as follows:

g1(z) =
h
π

sin
(πz

h

)
(68)

g2(z) = −
4

3h2 z3 + z (69)

g3(z) = hsinh
( z

h

)
− z cosh

(
1
2

)
(70)

g4(z) = ze−2( z
h )

2
(71)

g5(z) = −
5

3h2 z3 +
5
4

z (72)

As observed in Tables 3 and 4, the results of using these functions in the HSDT have
very little difference when compared to each other, and it can be concluded that using
these various functions interchangeably does not result in a significant difference when
calculating nanoscale bending. In fact, compared to other parameters (such as the effect of
the nonlocal parameter or strain gradient coefficient), using various g(z) interchangeably
has insignificant effects on the results. These functions assume the distribution of the shear
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stress along the thickness of the plate and satisfy the boundary condition of the shear
stress at the top and bottom of the plate. Additionally, unlike the FSDT, there is no need
to use a shear correction factor. From the tables, it is observed that deflection decreases
with an increase in the order of the theory. At small thicknesses, the difference between
the maximum dimensionless deflection of the FSDT and HSDT is almost negligible. As
the ratio of the thickness to radius (h/r) increases, the difference between the results of
the two theories increases. This significant difference indicates that, on thick plates, more
accurate results are obtained by using HSDT. On the other hand, as the nonlocal coefficient
is enhanced, the difference between the results of the two theories increases (but this factor
is not more significant than the effect of h/r).

Figures 6 and 7 illustrate the results of the nondimensional maximum deflection
(obtained from HSDT) versus the strain gradient parameter for the circular nanoplate at the
clamped and simply supported boundary conditions, respectively. It can be observed that
with the enhancement of the strain coefficient, the maximum deflection of the nanoplate
decreases. This can be persuaded: by increasing the strain coefficient, the stiffness of the
nanoplate is enhanced, so as a result, the deflection of the plate is reduced, which is in
agreement with the results in paper [14].
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Figure 6. The maximum nondimensional deflection of the circular nanoplate versus the strain
gradient parameter (l) in the clamped boundary condition.

Table 5 compares the results of FSDT with the average results obtained from HSDT in
the clamped boundary condition. It can be seen that by increasing the nonlocal elasticity, the
maximum deflection of the nanoplate decreases [57]. Additionally, the results considering
different shape functions are almost the same.

Table 5. Comparison of different shape functions at the maximum deflection of the circular nanoplate.

µ g1 (HSDT) g2 (HSDT) g3 (HSDT) g4 (HSDT) g5 (HSDT)

0 0.00488 0.00488 0.00487 0.00487 0.00488
1 0.00379 0.0038 0.0038 0.00378 0.00379
2 0.00311 0.00311 0.0031 0.0031 0.00309
3 0.00263 0.00263 0.0026 0.00262 0.00263
4 0.00227 0.00228 0.00228 0.00229 0.00228
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Figure 7. The maximum nondimensional deflection of the circular nanoplate versus the strain
parameter (l) in the simply supported boundary condition.

Figure 8 shows the variation of Rh (the ratio of the maximum dimensionless deflection
obtained from FSDT to HSDT) in terms of α and β ratios for a circular nanoplate with the
clamped boundary condition. Rh can be defined as follows:

Rh =
w∗FSDT
w∗HSDT

(73)

where w∗FSDT and w∗HSDT are the ratios of the maximum dimensionless deflection obtained
from FSDT and HSDT, respectively.
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In the diagram, α is defined when thickness h is considered constant (h = 0.34 nm)
and the radius changes; moreover, β is assumed when the radius is considered constant
(r = 7 nm) and the thickness changes as follows:

α =
h
r

, h constant (74)
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β =
h
r

, r constant (75)

From the graph, it can be discerned that Rh increases as the ratio of the thickness-to-
radius increases; that is, the difference between the results of the two theories (FSDT and
HSDT) is enhanced with an increasing thickness-to-radius ratio. It can be observed that at
the same values of h/r, the differences between these theories are obtained with various α
and β ratios. In other words, with the same h/r, the effect of changing the radius on the
difference between the results of the two theories is greater than the effect of changing
the thickness.

Figure 9 reveals the nondimensional maximum deflection versus dimensionless bend-
ing loads for different nonlocal and strain gradient parameters in the clamped boundary
condition. It can be concluded that both the strain gradient and nonlocal parameters have
notable effects in reducing or increasing the dimensionless maximum deflection of the
nanoplate. In addition, it is observed that with increasing load values, the importance
of considering both strain gradient and nonlocal coefficients in the bending analyses of
nanoplates is highlighted.
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Figure 9. Nondimensional deflection of the circular nanoplate versus different load values.

Additionally, Figures 10 and 11 depict the nondimensional deflection of the annular
nanoplate by considering certain nonlocal elasticity and strain gradient coefficients at
simply supported (S), clamped (C), and free (F) boundary conditions and by considering
the following assumptions:

E1 = 1765 (GPa), E2 = 1588 (GPa), ν12 = 0.3, ν21 = 0.27, ro = 5 (nm), ri = 0.2ro, kp = 1.13 (Pa ·m),
kw = 1.13 (GPa/nm), h = 0.34 (nm), Ko = 45 (GPa/nm)

(76)
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Figure 10. Nondimensional deflection of the annular bilayer nanoplate.
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Figure 11. The nondimensional maximum deflection of the annular bilayer nanoplate.

It can be observed that an increase in the nondimensional radius results in a reduction
in the nondimensional deflection at all boundary conditions for both layers. Additionally, it
can be observed that in the simply supported condition, the deflection is more significantly
reduced than in the clamped condition. In other words, the slope of the curve (of the
deflection) decreases with decreasing plate flexibility.

Figure 12 shows the variation of the maximum dimensionless deflection in terms of the
Winkler and Pasternak elastic coefficients for the circular bilayer nanoplate (the thickness
of each layer is 0.34 nm) and the single-layer nanoplate (with a thickness of 0.68 nm) for
the clamped boundary condition by considering r = 5 nm, and q = 1 GPa.
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Figure 12. The variation of the nondimensional maximum deflection for the circular nanoplate for
single-layer and bilayer nanoplates.

In fact, this figure examines the possibility of replacing a bilayer nanoplate with a
single-layer nanoplate. It is clear from the diagram that it is not possible to replace a
bilayer nanoplate with a single-layer nanoplate (with the same thickness as the bilayer). In
addition, the deflection of the single-layer nanoplate is lower than the deflection of a bilayer
nanoplate. In this paper, the interaction between two monolayers of graphene plates is
considered a result of the van der Waals interaction. The interpretation (of Figure 12) can
be justified as the van der Waals interaction is a relatively weak force. If the bending loads
(applied to the plate) are high enough, the molecules break free of the van der Waals forces
that hold them together, so the results of a monolayer plate are not the same as the bilayer
plate, especially under higher bending loads.

Additionally, it can be observed that, by increasing the stiffness of the elastic founda-
tions, the results converge. In other words, increasing the stiffness of the elastic foundation
(or reducing the bending loads) can lead to more similarities between the results obtained
from the single-layer plate and the bilayer plate.

5. Conclusions

The nonlinear bending of the axisymmetric circular/annular nanoplate using the
nonlocal strain gradient model with FSDT and HSDT is studied. Additionally, a bilayer
circular/annular nanoplate is analyzed. To solve governing equations, DQM was used
for the circular/annular nanoplate. For validation, the results were compared with other
references. Some of the important results of this paper are as follows:

∗ Deflection decreases with the increasing order of the theory. In other words, FSDT
overestimates the deflection results, especially at higher thickness-to-radius ratios, so
it is better to use HSDT models in those cases.

∗ The ratio of the maximum dimensionless deflection obtained from FSDT to HSDT is
enhanced as the ratio of the thickness-to-radius increases.

∗ With the increase in the strain gradient parameter, the nondimensional maximum
deflection of the nanoplate decreases.

∗ Replacing a bilayer nanoplate (considering van der Waals forces between layers) with
a single-layer nanoplate (which has the same equivalent thickness as the bilayer plate)
is not possible when obtaining exact deflection results, especially when reducing
the stiffness of the elastic foundations (or in higher bending loads). In addition, the
single-layer nanoplate underestimates the deflection results of the bilayer nanoplate
(with the same equivalent thickness as the single-layer nanoplate).
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