
Citation: Qi, Y.; Feng, Y.; Wu, J.; Sun,

Z.; Bai, M.; Wang, C.; Wang, H.; Zhan,

X.; Zhang, J.; Liu, J.; et al. An Efficient

and Robust Partial Differential

Equation Solver by Flash-Based

Computing in Memory.

Micromachines 2023, 14, 901. https://

doi.org/10.3390/mi14050901

Academic Editor: Zhongrui Wang

Received: 30 March 2023

Revised: 17 April 2023

Accepted: 20 April 2023

Published: 22 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

An Efficient and Robust Partial Differential Equation Solver by
Flash-Based Computing in Memory
Yueran Qi 1,† , Yang Feng 1,†, Jixuan Wu 1,*, Zhaohui Sun 1, Maoying Bai 1, Chengcheng Wang 1, Hai Wang 1,
Xuepeng Zhan 1, Junyu Zhang 2, Jing Liu 3 and Jiezhi Chen 1,*

1 School of Information Science and Engineering, Shandong University, Qingdao 266237, China;
202132729@mail.sdu.edu.cn (Y.Q.); feng.yang@mail.sdu.edu.cn (Y.F.); sunzhaohui@mail.sdu.edu.cn (Z.S.);
maoy.bai@mail.sdu.edu.cn (M.B.); 202132732@mail.sdu.edu.cn (C.W.); 201800272037@mail.sdu.edu.cn (H.W.)

2 Neumem Co., Ltd., Hefei 241060, China
3 Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics of

Chinese Academy of Sciences, Beijing 100029, China
* Correspondence: jixuanwu@sdu.edu.cn (J.W.); chen.jiezhi@sdu.edu.cn (J.C.)
† These authors contributed equally to this work.

Abstract: Flash memory-based computing-in-memory (CIM) architectures have gained popularity
due to their remarkable performance in various computation tasks of data processing, including
machine learning, neuron networks, and scientific calculations. Especially in the partial differential
equation (PDE) solver that has been widely utilized in scientific calculations, high accuracy, processing
speed, and low power consumption are the key requirements. This work proposes a novel flash
memory-based PDE solver to implement PDE with high accuracy, low power consumption, and
fast iterative convergence. Moreover, considering the increasing current noise in nanoscale devices,
we investigate the robustness against the noise in the proposed PDE solver. The results show that
the noise tolerance limit of the solver can reach more than five times that of the conventional Jacobi
CIM solver. Overall, the proposed flash memory-based PDE solver offers a promising solution for
scientific calculations that require high accuracy, low power consumption, and good noise immunity,
which could help to develop flash-based general computing.

Keywords: computing in memory; flash memory; partial differential equations

1. Introduction

To break the bottleneck of traditional von Neumann architecture, computing-in-
memory (CIM) architectures have become a budding technology that can effectively reduce
the overhead caused by frequent data transmission between the memory unit and the
processing unit [1,2]. So far, most CIM is concentrated in the field of neural networks, such
as the edge detection of moving objects by implementing a convolutional neural network
(CNN) based on three-dimensional memristors [3], MNIST digit recognition realized on a
flash-based deep neural network [4], and an artificial olfactory inference system based on
memristive devices [5], while the applications in scientific computing are rarely studied.
Scientific computing, such as solving linear equations and partial differential equations
(PDE), is a crucial aspect of applied science, social science, and engineering [6–8]. Different
from neural networks, to implement scientific calculations like the PDE solver, the accuracy
and processing speed should be strictly controlled.

In previous work, a high-precision PDE solver in sliced small memristor crossbar
arrays was proposed by adopting the Jacobi iterative method and the precision-extension
technique [9]; for low-power calculations, mixed-precision architectures, such as the linear
equation solver [10] and the PDE solver [11], were proposed by processing high-precision
calculations in ALU units and low-precision calculations in CIM units. To enhance the
parallel processing speed of large matrix calculations, flash-based CIM as the PDE solver

Micromachines 2023, 14, 901. https://doi.org/10.3390/mi14050901 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14050901
https://doi.org/10.3390/mi14050901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0001-7156-3343
https://orcid.org/0000-0003-2996-1406
https://doi.org/10.3390/mi14050901
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14050901?type=check_update&version=1

Micromachines 2023, 14, 901 2 of 11

was proposed, and the high accuracy required to solve time-dependent PDE was demon-
strated [12]. Additionally, a 32-bit floating-point (FP) CIM architecture was realized on a
NOR flash CIM as a solution for general-purpose computation tasks [13]. However, all the
above studies used difference pairs or two arrays to handle positive and negative values
separately in the calculation. While this method could be effective in achieving the desired
outcome, it may also result in greater power consumption.

Different from the mathematical methods to solve PDE, the method that can be utilized
in CIM-based PDE solvers should take the hardware factors into account, such as the
properties of CIM devices, arrays, and peri-circuits. In these considerations, the Jacobi
iterative method was commonly adopted in previous studies because it is simple for the
design of CIM operations [14], by which the matrix weights are fixed without the necessity
for real-time data updating. However, a large number of iterations by the Jacobi iterative
method led to large power consumption and a serious time delay in computing tasks. More
importantly, with more iterations, the computing errors caused by the instability of devices
and arrays accumulate and seriously affect the final result [15–17]. Thereby, for future
applications of CIM chips, it is strongly required to optimize the CIM-oriented iteration
method and perform the co-optimizations of hardware (the CIM array) and soft strategies.

In this paper, a novel PDE solver for the flash-based CIM array is proposed by adopting
the second refinement of the Jacobi (SRJ) iterative method [18], which can reduce the
iteration number effectively and optimize the calculation process with improved accuracy.
Based on 55 nm flash memory technology, the abilities to solve PDE are demonstrated
in different grid situations. In comparison to the standard Jacobi iterative method, faster
convergence speed, better anti-noise ability, and lower power consumption are achieved,
as well as improved accuracy. Moreover, the pre-processing approach is proposed to save
unnecessary array area waste and further suppress the total power consumption.

2. Materials and Methods
2.1. Architecture

It is widely acknowledged that data processing has become increasingly demanding in
practical applications. The conventional von Neumann architecture results in a significant
amount of energy being expended on data transmission between the memory unit and the
calculation unit, rather than on computing itself. This can be particularly problematic for
certain applications that contain lots of matrix–vector multiplication, such as solving partial
differential equations. In such cases, CIM architecture can offer a solution by reducing
unnecessary power consumption. Specifically, all the operation processes in this work
are littered with large-scale, high-precision multiplication and cumulation (MAC) that we
can implement via a one-shot read operation on a flash memory array that has mature
technology with capabilities of high bit-density and robust reliability in ultra-large arrays.
Figure 1a,b show the stacking structure diagram and the TEM image of one flash memory
cell of a 55 nm technology node. Depending on the current characteristics in the saturation
region, as shown in Figure 1c, each cell can be considered a variable conductance that can
be modulated by the settled gate bias. The entire schematic of the flash memory array as a
multiplier is also shown in Figure 1d. In the matrix to process multiplications, the iteration
matrix is mapped as the matrix of threshold voltage (Vth) in the flash memory array, while
the vectors are designed by the applied pulses, with pulse durations proportional to the
values at a fixed amplitude. In this work, the input (for example, x(k)1 , x(k)2 , . . . , x(k)n) is

applied to the word-line (WL), then the multiplication result (x(k+1)
1 , x(k+1)

2 , . . . , x(k+1)
n) is

achieved at the source side by integrating the current to obtain the amount of charge
according to Ohm’s law and Kirchhoff’s current law. Thereby, we can implement the
vector–matrix multiplications with peri-circuits, as presented in Figure 2a.

Micromachines 2023, 14, 901 3 of 11

Micromachines 2023, 14, x FOR PEER REVIEW 3 of 12

Kirchhoff’s current law. Thereby, we can implement the vector–matrix multiplications
with peri-circuits, as presented in Figure 2a.

(a) (b) (c)

(d)

Figure 1. (a) Schematic of the structure of a transistor, (b) TEM image of the cell’s cross-section, and
(c) the output characteristic curves are also shown for reference; (d) the flash-based PDE solver,
input as pulses with variable duration and output as the charge we collected.

(a) (b)

Figure 2. (a) Schematic of the system design of the solver; (b) the flow chart of the whole solution
process.

PDE contains multivariate unknown functions and their partial derivatives of several
orders. The Poisson equation is a particular kind of PDE and its main form is shown in

DAC
MUX

Digital adder

ADC

Decoder
Digital Input

Digital Output

…

SL
 co

nt
ro

lle
r

Sense
Amplifier...

Translate the problem into
matrix equations form

Map iterative matrices
into arrays

Apply as input to WLs

Collect output at BLs (ta
rg

et
ed

to

le
ra

nc
e l

im
it)

,
given initial values as

Calculate the difference
between and

Output as the result

Figure 1. (a) Schematic of the structure of a transistor, (b) TEM image of the cell’s cross-section, and
(c) the output characteristic curves are also shown for reference; (d) the flash-based PDE solver, input
as pulses with variable duration and output as the charge we collected.

Micromachines 2023, 14, x FOR PEER REVIEW 3 of 12

Kirchhoff’s current law. Thereby, we can implement the vector–matrix multiplications
with peri-circuits, as presented in Figure 2a.

(a) (b) (c)

(d)

Figure 1. (a) Schematic of the structure of a transistor, (b) TEM image of the cell’s cross-section, and
(c) the output characteristic curves are also shown for reference; (d) the flash-based PDE solver,
input as pulses with variable duration and output as the charge we collected.

(a) (b)

Figure 2. (a) Schematic of the system design of the solver; (b) the flow chart of the whole solution
process.

PDE contains multivariate unknown functions and their partial derivatives of several
orders. The Poisson equation is a particular kind of PDE and its main form is shown in

DAC
MUX

Digital adder

ADC

Decoder
Digital Input

Digital Output

…

SL
 co

nt
ro

lle
r

Sense
Amplifier...

Translate the problem into
matrix equations form

Map iterative matrices
into arrays

Apply as input to WLs

Collect output at BLs (ta
rg

et
ed

to

le
ra

nc
e l

im
it)

,
given initial values as

Calculate the difference
between and

Output as the result

Figure 2. (a) Schematic of the system design of the solver; (b) the flow chart of the whole solution process.

PDE contains multivariate unknown functions and their partial derivatives of several
orders. The Poisson equation is a particular kind of PDE and its main form is shown
in Equation (1) [19]. The Poisson Equation (2) exemplified in this work is solved by
the finite difference method (FDM), whose main principle is to make a direct difference

Micromachines 2023, 14, 901 4 of 11

approximation to the differential term in the equation, translating the differential equation
into the linear equation that is easier to be solved.

∇2u = f (1)

∇2u = −2π2 sin πx sin πy,

u(x, 0) = u(x, 2) = 0, 0 ≤ x ≤ 2,
u(0, y) = u(2, y) = 0, 0 ≤ y ≤ 2.

(2)

To solve PDEs, the first step of the FDM method is to transform the solution domain
into discrete grid blocks to obtain the differential approximation of each discrete point.
After changing the two-dimensional second-order partial derivatives of x and y into FDM
form, it is easy to derive the five-point difference format of the Laplace operator term as

∇2u =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2 (3)

where h is the step size we selected in the x-axis direction, i is the x-axis index of the current
grid point, and i− 1 and i + 1 are the indexes of adjacent grid points. It is the same of j as
the y-axis index. Similarly, we choose the same step size of h in the y-axis direction.

To facilitate understanding and determining the function values ui,j of each grid point,
we convert the five-point difference format of all inner nodes into a system of difference
equations. Then, the left side of Poisson Equation (1), discretized by 3× 3 grid points as an
example, can be transformed into grid form, as shown in Figure 3a.

Then, we can obtain its matrix equation form as Ax = b,

A =

−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

,

b =

h2 f1,1 + g1,0 + g0,1
h2 f2,1 + g2,0

h2 f3,1 + g3,0 + g4,1
h2 f1,2 + g0,2

h2 f2,2
h2 f3,2 + g4,2

h2 f1,3 + g0,3 + g1,4
h2 f2,3 + g2,4

h2 f3,3 + g3,4 + g4,3

, x =

u1,1
u2,1
u3,1
u1,2
u2,2
u3,2
u1,3
u2,3
u3,3

.

(4)

where f is the value of the function on the right side of the equation, g is the boundary
value given by the boundary conditions. Since we need to obtain the final exact solution
by iteration, x(k+1), obtained from the output value in the previous iteration, is used as
the new input in the next iteration. During the process of repeating the output as the next
input, the iteration is carried on. When the difference between the result of the previous
iteration and the result of the current iteration is below a set value which we call tolerance
(tl), the iterative action cuts off. In this case, the output of the last iteration is the final result
we obtain. The entire process is described in Figure 2b. In the following studies, we use
two different iterative methods for comparisons of their efficiency in obtaining the final
exact solution, the standard Jacobi iterative method and the SRJ iterative method.

Micromachines 2023, 14, 901 5 of 11

Micromachines 2023, 14, x FOR PEER REVIEW 4 of 12

Equation (1) [19]. The Poisson Equation (2) exemplified in this work is solved by the finite
difference method (FDM), whose main principle is to make a direct difference
approximation to the differential term in the equation, translating the differential equation
into the linear equation that is easier to be solved. 𝛻ଶ𝑢 = 𝑓 (1)

ቐ 𝛻ଶ𝑢 = −2𝜋ଶ sin 𝜋 𝑥 sin 𝜋𝑦 ,𝑢(𝑥, 0) = 𝑢(𝑥, 2) = 0,0 𝑥 2,𝑢(0, 𝑦) = 𝑢(2, 𝑦) = 0,0 𝑦 2. (2)

To solve PDEs, the first step of the FDM method is to transform the solution domain
into discrete grid blocks to obtain the differential approximation of each discrete point.
After changing the two-dimensional second-order partial derivatives of x and y into FDM
form, it is easy to derive the five-point difference format of the Laplace operator term as 𝛻ଶ𝑢 = 𝑢ାଵ, + 𝑢ିଵ,+𝑢,ାଵ+𝑢,ିଵ−4𝑢,ℎଶ (3)

where ℎ is the step size we selected in the 𝑥-axis direction, 𝑖 is the 𝑥-axis index of the
current grid point, and 𝑖 − 1 and 𝑖 + 1 are the indexes of adjacent grid points. It is the
same of 𝑗 as the 𝑦-axis index. Similarly, we choose the same step size of ℎ in the 𝑦-axis
direction.

To facilitate understanding and determining the function values 𝑢, of each grid
point, we convert the five-point difference format of all inner nodes into a system of
difference equations. Then, the left side of Poisson Equation (1), discretized by 3 × 3 grid
points as an example, can be transformed into grid form, as shown in Figure 3a.

(a)

Micromachines 2023, 14, x FOR PEER REVIEW 5 of 12

(b)

Figure 3. (a) The FDM flow (3 × 3 grid) and the point map obtained; (b) an example with
hexadecimal legend numbers of the SRJ iteration matrix in the case of 12 × 12 grid FDM. Top: the
zoomed upper left corner of the matrix is an example to show how the mapping works. Bottom: the
first diagonal and the last diagonal chosen as a demonstration are mapped into the array.

Then, we can obtain its matrix equation form as 𝐴𝑥 = 𝑏,

𝐴 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
−4 1 0 1 0 0 0 0 01 −4 1 0 1 0 0 0 00 1 −4 0 0 1 0 0 01 0 0 −4 1 0 1 0 00 1 0 1 −4 1 0 1 00 0 1 0 1 −4 0 0 10 0 0 1 0 0 −4 1 00 0 0 0 1 0 1 −4 10 0 0 0 0 1 0 1 −4⎦⎥⎥

⎥⎥⎥
⎥⎥⎤,

𝑏 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ℎଶ𝑓ଵ,ଵ + 𝑔ଵ, + 𝑔,ଵℎଶ𝑓ଶ,ଵ + 𝑔ଶ,ℎଶ𝑓ଷ,ଵ + 𝑔ଷ, + 𝑔ସ,ଵℎଶ𝑓ଵ,ଶ + 𝑔,ଶℎଶ𝑓ଶ,ଶℎଶ𝑓ଷ,ଶ + 𝑔ସ,ଶℎଶ𝑓ଵ,ଷ + 𝑔,ଷ + 𝑔ଵ,ସℎଶ𝑓ଶ,ଷ + 𝑔ଶ,ସℎଶ𝑓ଷ,ଷ + 𝑔ଷ,ସ + 𝑔ସ,ଷ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

, 𝑥 =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡
𝑢ଵ,ଵ𝑢ଶ,ଵ𝑢ଷ,ଵ𝑢ଵ,ଶ𝑢ଶ,ଶ𝑢ଷ,ଶ𝑢ଵ,ଷ𝑢ଶ,ଷ𝑢ଷ,ଷ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤

(4)

where 𝑓 is the value of the function on the right side of the equation, 𝑔 is the boundary
value given by the boundary conditions. Since we need to obtain the final exact solution
by iteration, 𝑥(ାଵ), obtained from the output value in the previous iteration, is used as
the new input in the next iteration. During the process of repeating the output as the next

Figure 3. (a) The FDM flow (3× 3 grid) and the point map obtained; (b) an example with hexadecimal
legend numbers of the SRJ iteration matrix in the case of 12 × 12 grid FDM. Top: the zoomed upper
left corner of the matrix is an example to show how the mapping works. Bottom: the first diagonal
and the last diagonal chosen as a demonstration are mapped into the array.

2.2. SRJ Iterative Method

The standard Jacobi iterative method is a generally used method with the format (5)
to solve linear equations in the form of A · x = b,

x(k+1) = BJ x(k) + f J (5)

where BJ = D−1(L + U), f J = D−1b, D is a diagonal matrix with a non-zero diagonal; L
and U are the upper triangular matrix and lower triangular matrix of A, respectively; and
A = D− L−U. x(k) is the kth the iterative result, while x(k+1) is the (k + 1)th.

Micromachines 2023, 14, 901 6 of 11

In this work, considering the convergence speed, we use a new modified algorithm of
Jacobi instead: the second-refinement of Jacobi (SRJ) iterative method. The iteration format
of SRJ is

x(k+1) =
[

D−1(L + U)
]3

x(k) +
[

I + D−1(L + U) + (D−1(L + U))
2]

D−1b (6)

and the simplified form can be expressed as

x(k+1) = BJ
3x(k) +

(
I + BJ + BJ

2
)

f J (7)

where I is an n-dimensional identity matrix.
To accelerate the iterative process, we can use the result x(k+1) twice in Formula (5) to

obtain the final optimized iterative Formula (7), then the results of three Jacobi iterations can
be achieved in a single SRJ iteration process. It is critical for CIM-based PDE solvers that the
increase in the number of iterations inevitably leads to an increase in power consumption.
In order to reduce the power consumption, the tradeoff between accuracy and the number
of iterations needs to be taken into consideration to ensure the optimal CIM PDE solver
solution with low power consumption and latency.

2.3. Pre-Processing

Although the values of the iteration matrix are all positive, there is a tendency that
intermediate results during the iteration, that is, the input of the next iteration, could have
negative values, which is contrary to the requirement that input values cannot be negative
due to the physical significance of flash memory. To fix this problem, we normalize the
input value to a positive value with the form of (8) instead of using two different flash
arrays to handle negative and positive values, respectively. This can reduce the array area
to half. The pre-processing part is implemented in the software and applied to the arrays by
DAC operation to make sure that all values in the array are positive to match the physical
requirements of the flash memory.

xnew =
xoriginal − xmin

xmax − xmin
(8)

Then, the original output result can be easily obtained by calculating the output result
gained by pre-processing via the inverse normalization formula (9),

yoriginal = (xmax − xmin) · ynew − D · xmin (9)

where ynew is the output after pre-processing, yoriginal is the correct result that should
have been obtained, and D is the matrix value stored in the array. Additionally, the
inverse normalized output, that is, the actual solution yoriginal during this iteration, can be
reconstructed after ADC transforms the output of integrators into digital form. Then, if the
iteration does not converge, that is the solution does not reach a stable state, the solution
would be reapplied as the input of the next iteration to achieve the final result.

2.4. Mapping Method

Since the SRJ iterative matrices and Jacobi iterative method are both characterized by
their large and sparse identity, the zero elements predominate in the matrix. Therefore, we
can use a partition method as indicated in Figure 3b to map the matrix to a flash memory
array rather than mapping all elements with large amounts of zero elements that will
cause excessive area waste. To pull all the non-zero diagonals into columns and fill in the
zeros above or below, according to the corresponding positional relationship, this method
maximizes array utilization while reducing array area and prevents most invalid zero
weights in the flash array. Therefore, in large-scale computing with high-sparsity data,

Micromachines 2023, 14, 901 7 of 11

adapting this mapping method can significantly improve system performance and ensure
that the memory array operates efficiently and effectively.

3. Results

Based on the aforementioned optimization methods, we studied the performances of
the Jacobi method, which has been widely applied in previous studies, and the new SRJ
iterative methods in solving PDEs in 32-bit fixed-point precision. Here, the flash model we
used to simulate is the commercial 55 nm NOR flash, which has a native 4-bit precision.
To overcome this limitation, the final solution is computed by digital adders according to
the precision-extension technique [9]. To verify the influence of the grid number on the
accuracy, 12× 12 is used as the number of grid points to solve the equation by two different
iterative methods. The tolerance (tl) that is described as the iteration break condition in
Figure 2b is 1× 10−3 in the simulation. The results obtained by Jacobi and SRJ are plotted
in the top part of Figure 4a. As a comparison, we selected denser grid points (30× 30) to
obtain more accurate results, and the results are plotted in the bottom part of Figure 4a. It
is noticed that the iteration number by SRJ is just one-third of that by Jacobi, which can
bring a reduction in power consumption.

In addition to the aforementioned statement, we proceeded to perform a comparative
analysis of the two methods, focusing on three key aspects: precision, robustness perfor-
mance to noise, and power dissipation. The results are presented in the following section.

3.1. Accuracy Analysis

The mean absolute error (MAE) values of each iteration are recorded during the
solving process and made into trend graphs, as shown in Figure 4b. The exact solution of
this equation is given by the MATLAB internal solver. It is revealed by the trend graph
that the MAE value of the SRJ decreases extremely fast at the beginning of the iteration,
regardless of whether the case is a 12× 12 grid or a 30× 30 grid. These phenomena indicate
that the SRJ solver converges rapidly in all cases, demonstrating the efficiency of the SRJ
method in achieving accurate results with fewer iterations. This means that much more
power consumption can be effective by adopting the SRJ method for scientific computing
tasks. It is noticed that the precision of the Jacobi solver decreases dramatically when the
grid mesh becomes dense, even more so than the results of the SRJ solver in a rough grid
situation, contrary to the assumption that a finer mesh should be closer to the exact solution.
Nevertheless, the SRJ solver fits well with the idea regardless of the case, showing that the
MAE value approaches zero as the mesh becomes finer. Thus, we can conclude that the
SRJ solver can perform better with denser grid conditions; in other words, it will be better
when the target solution is closer to the true value.

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 12

the iteration does not converge, that is the solution does not reach a stable state, the
solution would be reapplied as the input of the next iteration to achieve the final result.

2.4. Mapping Method
Since the SRJ iterative matrices and Jacobi iterative method are both characterized by

their large and sparse identity, the zero elements predominate in the matrix. Therefore,
we can use a partition method as indicated in Figure 3b to map the matrix to a flash
memory array rather than mapping all elements with large amounts of zero elements that
will cause excessive area waste. To pull all the non-zero diagonals into columns and fill in
the zeros above or below, according to the corresponding positional relationship, this
method maximizes array utilization while reducing array area and prevents most invalid
zero weights in the flash array. Therefore, in large-scale computing with high-sparsity
data, adapting this mapping method can significantly improve system performance and
ensure that the memory array operates efficiently and effectively.

3. Results
Based on the aforementioned optimization methods, we studied the performances of

the Jacobi method, which has been widely applied in previous studies, and the new SRJ
iterative methods in solving PDEs in 32-bit fixed-point precision. Here, the flash model
we used to simulate is the commercial 55 nm NOR flash, which has a native 4-bit precision.
To overcome this limitation, the final solution is computed by digital adders according to
the precision-extension technique [9]. To verify the influence of the grid number on the
accuracy, 12 × 12 is used as the number of grid points to solve the equation by two
different iterative methods. The tolerance (tl) that is described as the iteration break
condition in Figure 2b is 1 × 10ିଷ in the simulation. The results obtained by Jacobi and
SRJ are plotted in the top part of Figure 4a. As a comparison, we selected denser grid
points (30 × 30) to obtain more accurate results, and the results are plotted in the bottom
part of Figure 4a. It is noticed that the iteration number by SRJ is just one-third of that by
Jacobi, which can bring a reduction in power consumption.

In addition to the aforementioned statement, we proceeded to perform a comparative
analysis of the two methods, focusing on three key aspects: precision, robustness
performance to noise, and power dissipation. The results are presented in the following
section.

(a) (b)

Figure 4. Cont.

Micromachines 2023, 14, 901 8 of 11Micromachines 2023, 14, x FOR PEER REVIEW 8 of 12

(c) (d)

(e) (f) (g)

Figure 4. (a) Image of the approximate solution of Poisson Equation (2) from the flash memory
solver using the Jacobi iterative method (left top) and the SRJ iterative method (right top) with a 12
× 12 grid; and the Jacobi iterative method (left bottom) and the SRJ iterative method (right bottom)
with a 30 × 30 grid. (b) Trend graphs of the MAE values in solving (a) PDEs with 12 × 12 grid and
(b) PDEs with 30 × 30 grid. The orange/blue stands for Jacobi/SRJ, respectively. 𝑢௫ in the formula
is the exact result by MATLAB, and 𝑢 is the approximate iterative solution. The iteration
termination condition for both methods is the tolerance of 1 × 10ିଷ. (c) The current summary of
current variations in different tests. (d) The variation of accuracy with the average current
disturbance increasing. (e) Estimated area, (f) latency, and (g) power by Jacobi CIM and SRJ CIM
when solving Poisson’s equation with a 12 × 12 grid.

3.1. Accuracy Analysis
The mean absolute error (MAE) values of each iteration are recorded during the

solving process and made into trend graphs, as shown in Figure 4b. The exact solution of
this equation is given by the MATLAB internal solver. It is revealed by the trend graph
that the MAE value of the SRJ decreases extremely fast at the beginning of the iteration,
regardless of whether the case is a 12 × 12 grid or a 30 × 30 grid. These phenomena
indicate that the SRJ solver converges rapidly in all cases, demonstrating the efficiency of
the SRJ method in achieving accurate results with fewer iterations. This means that much
more power consumption can be effective by adopting the SRJ method for scientific
computing tasks. It is noticed that the precision of the Jacobi solver decreases dramatically
when the grid mesh becomes dense, even more so than the results of the SRJ solver in a
rough grid situation, contrary to the assumption that a finer mesh should be closer to the
exact solution. Nevertheless, the SRJ solver fits well with the idea regardless of the case,
showing that the MAE value approaches zero as the mesh becomes finer. Thus, we can
conclude that the SRJ solver can perform better with denser grid conditions; in other
words, it will be better when the target solution is closer to the true value.

3.2. Robustness Performance to Noise
The current variation is the key factor determining computing accuracy, which is

affected by external conditions and devices. To evaluate the impact of current variations,

0

5E-10

1E-09

1.5E-09

2E-09

2.5E-09

0.001

0.002

0

Jacobi SRJ

0.
00
20
7

0.
00
21
7

Area()

0

001

002

003

004

005

4

2

0

Latency()
4.46

2.01

0

5E-09

1E-08

1.5E-08

2E-08

Power()

10

5

15

20

0

16.7

6.7

Figure 4. (a) Image of the approximate solution of Poisson Equation (2) from the flash memory
solver using the Jacobi iterative method (left top) and the SRJ iterative method (right top) with
a 12 × 12 grid; and the Jacobi iterative method (left bottom) and the SRJ iterative method (right
bottom) with a 30× 30 grid. (b) Trend graphs of the MAE values in solving (a) PDEs with 12× 12 grid
and (b) PDEs with 30× 30 grid. The orange/blue stands for Jacobi/SRJ, respectively. uex in the
formula is the exact result by MATLAB, and uapp is the approximate iterative solution. The iteration
termination condition for both methods is the tolerance of 1× 10−3. (c) The current summary of
current variations in different tests. (d) The variation of accuracy with the average current disturbance
increasing. (e) Estimated area, (f) latency, and (g) power by Jacobi CIM and SRJ CIM when solving
Poisson’s equation with a 12× 12 grid.

3.2. Robustness Performance to Noise

The current variation is the key factor determining computing accuracy, which is
affected by external conditions and devices. To evaluate the impact of current variations,
aspects of reality that affect flash memory reliability, including retention, read disturb,
and telegraph noise (TN), are summarized in Figure 4c. The average current drifts after
1× 104 s of retention both at 25 ◦C and 85 ◦C are smaller than read disturbance and TN.
However, the current variations remain under control, indicating the capability of flash
memory to construct the large array system.

To explore the stability of the architecture, the effects of the current disturbance on
the accuracy are tested. Figure 4d shows the comparison of the Jacobi solver and the SRJ
solver in a 12× 12 grid condition. When the average current disturbance reaches 0.04 µA,
the accuracy of the Jacobi solver dropped down to 80%, which is fatal for functions that
need a high accuracy, such as solving PDEs, while at the same time, the SRJ solver still
performs well even at 0.2 µA, which is five times the tolerance limit of the Jacobi solver,
and the accuracy is maintained above 80%. It is noticed that current variations remain in a
controlled range without accuracy loss, according to Figure 4d. Thus, the SRJ solver can
achieve a better robustness compared to the traditional Jacobi solver.

Micromachines 2023, 14, 901 9 of 11

3.3. Power Dissipation

To analyze the power dissipation of the CIM architecture, the iteration number and
precision of this PDE solver architecture are evaluated by making a comparison between
two iterative methods. The simulation results show that only 16 iterations are needed by
the SRJ method when processing PDE with a 12× 12 grid, which is much lower than the
40 iterations by the Jacobi method. Similar results are also obtained in the PDE with a
30× 30 grid. The iteration number of the SRJ method and the Jacobi method are 67 and 147,
respectively. The MAE of the SRJ architecture with a 30× 30 grid is 0.005, much smaller
than the MAE of the Jacobi architecture (0.019). More nonzero values in the SRJ method
make the array power dissipation of the SRJ architecture larger than the Jacobi architecture,
which is 30 pJ and 15 pJ, respectively, in one PDE solution with a 12× 12 grid.

Moreover, the power dissipation containing peripheral circuits must also be consid-
ered [20]. The traditional peripheral circuit of the PDE solver can be directly used in
the proposed PDE solver without any modification, and the specific peripheral circuit
parameters refer to [21]. The switch matrix controls multiple word lines (WLs) and bit
lines (BLs), and the read circuit is used to convert analog current to digital output. An
adder and subtractor are also needed to realize the entire computing process. Similar to
other CIM applications, write pulses much shorter than traditional write operation are
required to tune the memory states with higher accuracy. The results of peripheral circuits
in Figure 4e–g are simulated results based on the NeuroSim simulation tool [21], which
can be utilized for the estimations of recognition accuracy and power consumption [22,23].
As shown in Figure 4e–g, although the area of the array and peripheral circuit in the SRJ
architecture is slightly larger than the Jacobi architecture because the iteration matrix of the
SRJ method is somewhat larger, the simulation results shown in Figure 4e confirm that the
latency of the Jacobi method is over two times higher than that of the SRJ method when
solving a Poisson equation. This provides evidence that the SRJ mapping scheme exhibits
exceptional performance, with an operating speed that is more than twice as fast as that of
the Jacobi method. Simultaneously, the power consumption can also be well suppressed by
the reduction of iteration numbers.

4. Discussion

So far, several PDE solvers has been proposed with the CIM architecture for efficient
computing. Compared with the previously proposed method to solve the matrix equation in
one step by sacrificing the accuracy [24], our architecture accelerates computation processes
with the premise of maintaining calculation accuracy. Especially for the high-precision
required by PDE solvers, accuracy and reliability are the most important concerns. While
taking the feasibility for large-matrix processing into account, the noise immunity, array size,
power dissipation, as well as the convergence speed are all important and co-optimizations
are strongly required. Therefore, the proposed flash-based PDE solver could provide a
feasible approach because flash memory is a mature technology with capabilities of high
bit density in ultra-large arrays and robust reliability that can carry out large-scale high-
precision computing tasks. By adopting flash technology, we need to design the processing
approach for the triple-terminal cell and optimize the operation schemes to the unique
properties and array designs of flash memory, as described in Figures 1 and 2. Moreover, in
this work, we propose to solve PDEs by using the SRJ method, which makes a distinction
between our work and other related work. Table 1 shows the comparison between our
work and other prior CIM solvers. Specifically, the algorithm in [9,13,25] is the Jacobi
method, in [8,11] it is the residual method, and in [26] it is the fourth order Runge–Kutta
method. Different algorithms lead to different results. As can be seen, the proposed PDE
solver can maintain a high accuracy and low residual norm errors together with a low
power dissipation.

Micromachines 2023, 14, 901 10 of 11

Table 1. Comparison with the state of the art.

CIM Device Power
Dissipation Accuracy Residual

Norm Error Latency

This Work NOR Flash (55 nm) 6.7 nJ 98.78% 2× 10−8 2.01 µs

Gallo [10] PCM (90 nm) <1− 100 fJ
per device — ∼ 1× 10−6 <100 ns

Zidan [9] RRAM — >97.3% — 1 µs

Chen [25] SRAM (180 nm) — — — 90 ns
Feng [13] NOR Flash (65 nm) — 100% — —

Ensan [26] RRAM (65 nm) — 97% — 25 ns

Yang [11] RRAM (22-nm)
&CPU/GPU 30 mJ — 8× 10−15 —

5. Conclusions

To sum up, we propose a flash-based CIM architecture as the PDE solver by adopting
the SRJ iterative method. Due to the fast operation speed and large storage capacity of
flash memory, high-speed data processing and high-precision computing results can be
achieved in a large-scale flash memory array. Moreover, an efficient iterative algorithm,
SRJ, is proposed to minimize iteration times and accelerate the solving process. Compared
with the standard PDE solver using the Jacobi iterative method, this architecture can largely
suppress power consumption with much improved calculation accuracy and current noise
tolerance. The influence of the array size (grid points) on the computing accuracy is also
investigated, showing the ability of the SRJ architecture to achieve high-accuracy solutions
for fine grids. Furthermore, the analysis of peripheral circuits in the system indicates that co-
optimizations of CIM hardware (the memory cells and the array) with the soft architectures
are the key to developing general-purpose CIM applications. This work provides a feasible
flash-based CIM that has great potential to overcome the limitations of traditional von
Neumann architectures and enable a high-precision and high-performance PDE solver.
This could help pave the way for the further development of CIM in general computing.

Author Contributions: The work presented here was completed in collaboration between all authors.
Conceptualization, Y.Q. and Y.F.; methodology, Y.Q.; software, Y.Q. and Y.F.; validation, Y.Q., Y.F.
and H.W.; formal analysis, Y.Q.; investigation, Y.F., J.W. and C.W.; resources, Y.F., Z.S. and M.B.;
writing—original draft, Y.Q. and Y.F.; writing—review and editing, J.C.; supervision, J.C.; project
administration, J.C.; funding acquisition, J.W., X.Z., J.Z., J.L. and J.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Nos.
62034006, 92264201, 91964105), the Natural Science Foundation of Shandong Province (Nos. ZR2020JQ28,
ZR2020KF016), and the Program of Qilu Young Scholars of Shandong University.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nair, R. Evolution of Memory Architecture. Proc. IEEE 2015, 103, 1331–1345. [CrossRef]
2. Yu, S.; Sun, X.; Peng, X.; Huang, S. Compute-in-memory with emerging nonvolatile-memories: Challenges and prospects. In

Proceedings of the Custom Integrated Circuits Conference (CICC), Boston, MA, USA, 22 March 2020.
3. Lin, P.; Li, C.; Wang, Z.; Li, Y.; Jiang, H.; Song, W.; Rao, M.; Zhuo, Y.; Upadhyay, N.K.; Barnell, M.; et al. Three-dimensional

memristor circuits as complex neural networks. Nat. Electron. 2020, 3, 225–232. [CrossRef]
4. Xiang, Y.C.; Huang, P.; Zhou, Z.; Han, R.Z.; Jiang, Y.N.; Shu, Q.M.; Su, Z.Q.; Liu, Y.B.; Liu, X.Y.; Kang, J.F. Analog Deep Neural

Network Based on NOR Flash Computing Array for High Speed/Energy Efficiency Computation. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019.

https://doi.org/10.1109/JPROC.2015.2435018
https://doi.org/10.1038/s41928-020-0397-9

Micromachines 2023, 14, 901 11 of 11

5. Wang, T.; Huang, H.; Wang, X.; Guo, X. An artificial olfactory inference system based on memristive devices. InfoMat 2021, 3,
804–813. [CrossRef]

6. Wang, H.; Yamamoto, N. Using A Partial Differential Equation with Google Mobility Data to Predict COVID-19 in Arizona. Math.
Biosci. Eng. 2020, 17, 4891–4904. [CrossRef] [PubMed]

7. Dumitrescu, F.; McCaskey, J.; Hagen, G.; Jansen, R.; Morris, D.; Papenbrock, T.; Pooser, C.; Dean, J.; Lougovski, P. Cloud quantum
computing of an atomic nucleus. Phys. Rev. Lett. 2018, 120, 210501. [CrossRef] [PubMed]

8. Al Asaad, B.; Erascu, M. A Tool for Fake News Detection. In Proceedings of the International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), Timisoara, Romania, 20 September 2018.

9. Zidan, M.A.; Jeong, Y.; Lee, J.; Chen, B.; Huang, S.; Kushner, M.J.; Lu, W.D. A general memristor-based partial differential
equation solver. Nat. Electron. 2018, 1, 411–420. [CrossRef]

10. Gallo, M.L.; Sebastian, A.; Mathis, R.; Manica, M.; Giefers, H.; Tuma, T.; Bekas, C.; Curioni, A.; Eleftheriou, E. Mixed-Precision
In-Memory Computing. Nat. Electron. 2018, 1, 246–253. [CrossRef]

11. Yang, H.; Huang, P.; Zhou, Z.; Zhang, Y.; Han, R.; Liu, X.; Kang, J. Mixed-Precision Partial Differential Equation Solver Design
Based on Nonvolatile Memory. IEEE Trans. Electron Devices 2022, 69, 3708–3715. [CrossRef]

12. Feng, Y.; Zhan, X.; Chen, J. Flash Memory based Computing-In-Memory to Solve Time-dependent Partial Differential Equations.
In Proceedings of the IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 13–14 June 2020.

13. Feng, Y.; Chen, B.; Liu, J.; Sun, Z.; Hu, H.; Zhang, J.; Zhan, X.; Chen, J. Design-Technology Co-Optimizations (DTCO) for
General-Purpose Computing In-Memory Based on 55nm NOR Flash Technology. In Proceedings of the IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021.

14. Ames, W.F. Numerical Methods for Partial Differential Equations, 3rd ed.; Academic Press: San Diego, CA, USA, 2014.
15. Fantini, P.; Ghetti, A.; Marinoni, A.; Ghidini, G.; Visconti, A.; Marmiroli, A. Giant Random Telegraph Signals in Nanoscale

Floating-Gate Devices. IEEE Trans. Electron Devices 2007, 28, 1114–1116. [CrossRef]
16. Wang, R.; Guo, S.; Ren, P.; Luo, M.; Zou, J.; Huang, R. Too noisy at the nanoscale?—The rise of random telegraph noise (RTN) in devices

and circuits. In Proceedings of the IEEE International Nanoelectronics Conference (INEC), Chengdu, China, 9–11 May 2016.
17. Spinelli, A.S.; Malavena, G.; Lacaita, A.L.; Monzio, C. Compagnoni. Random Telegraph Noise in 3D NAND Flash Memories.

Micromachines 2021, 12, 703. [CrossRef] [PubMed]
18. Eneyew, T.K.; Awgichew, G.; Haile, E.; Abie, G.D. Second Refinement of Jacobi Iterative Method for Solving Linear System of

Equations. IJCSAM 2019, 5, 41–47. [CrossRef]
19. Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 1977;

Volume 224.
20. Chen, P.Y.; Peng, X.; Yu, S. NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online

learning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 37, 3067–3080. [CrossRef]
21. Chen, P.Y.; Peng, X.; Yu, S. NeuroSim+: An integrated device-to-algorithm framework for benchmarking synaptic devices and array

architectures. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017.
22. Choi, Y.; Oh, S.; Qian, C. Vertical organic synapse expandable to 3D crossbar array. Nat. Commun. 2020, 11, 1–9. [CrossRef]

[PubMed]
23. Kazemi, A.; Rajaei, R.; Ni, K.; Datta, S.; Niemier, M.; Hu, X.S. A Hybrid FeMFET-CMOS Analog Synapse Circuit for Neural

Network Training and Inference. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Seville,
Spain, 12–14 October 2020.

24. Sun, Z.; Pedretti, G.; Ambrosi, E. Solving matrix equations in one step with cross-point resistive arrays. Proc. Natl. Acad. Sci. USA
2019, 116, 4123–4128. [CrossRef] [PubMed]

25. Chen, T.; Botimer, J.; Chou, T.; Zhang, Z. A 1.87-mm 2 56.9-GOPS Accelerator for Solving Partial Differential Equations. IEEE
J. Solid-State Circuits 2020, 55, 1709–1718. [CrossRef]

26. Ensan, S.S.; Ghosh, S. ReLOPE: Resistive RAM-Based Linear First-Order Partial Differential Equation Solver. IEEE Trans. VLSI
Syst. 2021, 29, 237–241. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/inf2.12196
https://doi.org/10.3934/mbe.2020266
https://www.ncbi.nlm.nih.gov/pubmed/33120533
https://doi.org/10.1103/PhysRevLett.120.210501
https://www.ncbi.nlm.nih.gov/pubmed/29883142
https://doi.org/10.1038/s41928-018-0100-6
https://doi.org/10.1038/s41928-018-0054-8
https://doi.org/10.1109/TED.2022.3177391
https://doi.org/10.1109/LED.2007.909835
https://doi.org/10.3390/mi12060703
https://www.ncbi.nlm.nih.gov/pubmed/34208725
https://doi.org/10.12962/j24775401.v5i2.4311
https://doi.org/10.1109/TCAD.2018.2789723
https://doi.org/10.1038/s41467-020-17850-w
https://www.ncbi.nlm.nih.gov/pubmed/32929064
https://doi.org/10.1073/pnas.1815682116
https://www.ncbi.nlm.nih.gov/pubmed/30782810
https://doi.org/10.1109/JSSC.2019.2963591
https://doi.org/10.1109/TVLSI.2020.3035769

	Introduction
	Materials and Methods
	Architecture
	SRJ Iterative Method
	Pre-Processing
	Mapping Method

	Results
	Accuracy Analysis
	Robustness Performance to Noise
	Power Dissipation

	Discussion
	Conclusions
	References

