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Abstract: Inspired by the two typical movement stages in the wingbeat cycle of a seagull in flight, a
bio-inspired bistable wing-flapping energy harvester is proposed in this paper to effectively convert
low-frequency, low-amplitude and random vibrations into electricity. The movement process of
this harvester is analyzed, and it is found that it can significantly alleviate the shortcomings of
stress concentration in previous energy harvester structures. A power-generating beam composed
of a 301 steel sheet and a PVDF (polyvinylidene difluoride) piezoelectric sheet with imposed limit
constraints is then modeled, tested and evaluated. The energy harvesting performance of the model
at low frequencies (1–20 Hz) is experimentally examined, where the maximum open-circuit output
voltage of the model reaches 11,500 mV at 18 Hz. With a 47 kΩ external resistance of the circuit, the
peak output power of the circuit reaches its maximum state of 0.734 mW (18 Hz). When a full bridge
circuit is employed to convert AC to DC, the 470 µF capacitor connected to it reaches 3000 mV at
peak voltage after 380 s of charging.

Keywords: low frequency; s-type; bistable; energy barrier

1. Introduction

The integration of self-powered sensors into the Internet of Things (IoT) environment
can have a profound impact [1]. Wireless sensing nodes are generally powered by batteries,
which have limited energy storage and require periodic replacement, limiting the use of
wireless sensors. As electronic devices have become increasingly energy-efficient, it has
become possible to convert energy from the environment into electricity in order to power
low-power devices. Vibrational energy, which has a high energy density, is ubiquitous and
easy to utilize, and is widely present in transportation, industrial equipment, and biological
motion, among others. Vibration energy, being widely present, is a potential source of
energy that could be harvested to power sensors [2–4]. The production of low-frequency
energy harvesters is essential, as the vibration sources in ambient conditions, such as
human walking, water flow, heartbeats, wind, or vehicle tires, tend to be in the range of
0–20 Hz [5,6]. This is of particular importance considering the development of wireless
self-powered sensors for the IoT.

Linear resonators can be used to enhance the response of energy harvesters. Therefore,
scholars have designed linear piezoelectric and electromagnetic energy-harvesting struc-
tures to improve the energy harvesting effect of mechanical equipment, wind, waves, and
other stimuli [7–9]. Song et al. [10,11] proposed a piezoelectric energy harvester consisting
of a vertical cylinder that generates vortex-induced vibration in the incoming flow and
drives a piezoelectric beam to oscillate back and forth. Due to the parallel connection of the
piezoelectric beam and the oscillator, a Type I structure is formed, effectively increasing the
vibration response of the harvester. Sun et al. [12] demonstrated through experiments that
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flow velocity and load resistance play vital roles in power harvesting. In addition to fluid–
structure interaction, the electromechanical coupling coefficient also significantly affects
the system’s damping. Molino et al. [13] proposed a double-pendulum piezoelectric energy
harvester, wherein the lower cylinder reduces the device’s natural frequency, making it
more susceptible to vortex-induced resonance in low-speed water flow and able achieve
large-scale oscillation. Test results showed that the energy harvesting efficiency was about
0.1%. Kim et al. [14] found that the impact of increasing or decreasing the oscillator’s
mass on the harvester performance is much greater than changing the cantilever beam
parameters, which reduces frequency and improves the energy harvesting efficiency.

However, linear energy collectors usually have a narrow bandwidth around the
resonance frequency, resulting in a lower harvesting efficiency. In general, the stimulus
frequency in the surrounding environment randomly changes within a certain bandwidth,
making it impossible to effectively capture energy outside the resonance frequency [15].
In order to broaden the energy harvesting bandwidth and improve the energy harvesting
efficiency, scholars have designed multiple cantilever beam arrays, L-shaped beams and
multi-degree-of-freedom beams, and have proposed passive, semi-active, and adaptive
methods [16–18]. The main principle is to increase multiple resonance frequency points in
the system to broaden the resonance frequency band. However, these methods increase
the mass and use space of the system, make the structural system too complex, and reduce
the energy harvesting efficiency per unit mass and volume. Additionally, the problem of
the narrow energy harvesting range under a single resonance frequency has not yet been
resolved [19–21].

To enhance the efficiency of energy harvesting, amplitude/frequency amplification
technology and nonlinear dynamics technology are two popular approaches. Ampli-
tude/frequency amplification technology can improve the performance by increasing the
amplitude and frequency of the energy harvest. Umeda et al. [22] presented a method of
transforming the mechanical impact energy into electric energy via a piezoelectric trans-
ducer. Nonlinear harvesters with monostable [23–25], bistable [26,27], and multi-stable [28]
behaviors have also been developed to modify the potential form of the harvesters by sup-
plying pre-tightening forces or pre-deformation. For example, a clamped beam, designed
by She et al. [29], can switch between monostable and bistable states according to the load
applied to it. Leadenham et al. [30] and Yao et al. [31] adopted experimental [32] and
theoretical [33] methods to analyze the dynamic characteristics and working effectiveness
of a bistable vibration energy harvester, respectively. Kan et al. [34] proposed an improved
piezoelectric wind-induced vibration energy harvester through the interplay between a
cylindrical shell and diamond-shaped element. Wu et al. [20] put forward a novel bistable
piezoelectric energy harvester that is susceptible to snap-through events so as to harvest
wind energy from the environment. Additionally, Peng et al. [21] explored the impact of the
frequency up-conversion effect on piezoelectric stack generators to yield high-performance
energy harvests.

Moreover, bionic designs have been adopted to create piezoelectric energy harvesters [35].
Taking cues from the flight mechanism of dipterans, Zhou et al. [36] proposed a bionic
dipteran energy harvester to convert low-frequency vibration energy. In addition, Fu et al. [37]
designed a host–parasite vibration harvester by incorporating bistability and frequency
up-conversion to capture random low-frequency vibrations.

The present work proposes a novel bionic wing-flapping energy harvester for the
effective conversion of low-amplitude, low-frequency random vibration into electricity.
This paper is organized as follows. Section 2 explains the bionic design, mathematical
modeling, and FEM optimization of the harvester. Section 3 describes the model’s charac-
teristics in terms of stress concentration prevention. In Section 4, the experimental results
of the harvester’s energy performance in various conditions are discussed. Lastly, Section 5
concludes this paper with some remarks.
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2. Bio-Inspired Design and Mechanical Model
2.1. Bio-Inspired Design of the Wing-Flapping Energy Harvester

A good example of the effective external force obtained via low-frequency nonlinear
motion in nature is the flight of seagulls [38]. The frequency of the fluttering flight of large
birds such as seagulls is relatively low. During flight, because the wingspan determines the
flutter frequency, the wingbeat frequency of seagulls is about 5 Hz, with the lowest being
1–2 Hz [39]. Per observation, during the wingbeat process of seagulls, not only do the wings
beat up and down, but they also have a small amplitude of near-linear twist according to
the various air resistances formed up and down, with the largest twist amplitude being at
the tip of the wing and becoming lower closer to the body. This enables seagulls to obtain
enough lift whilst maintaining a low wing-flapping frequency.

A seagull in flight has two typical movement stages in the wingbeat cycle of its
wings: lower and upper wing states (Figure 1a). Inspired by the wing beat of seagulls, the
wing-flapping bionic energy harvester also has two steady states; when the harvester is
excited by the environment, it can perform either small-amplitude motions within a single
potential well (intra-well motion), or large-amplitude motions between the two potential
wells (inter-well motion). The occurrence of inter-well motions requires breaking through
potential energy barriers (snap-through), which constitutes a typical bistable structure.
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Figure 1. Schematic diagram of a bio-inspired bistable wing-flapping energy harvester: (a) two steady
states of the generator beam of the harvester; (b) the harvester design in 3D.

By learning and mimicking the wingbeat cycle of a seagull in flight, which consists
of two typical movement stages, a bio-inspired bistable wing-flapping energy harvester
was proposed to effectively convert low-frequency, low-amplitude, random vibrations into
electricity (as shown in Figure 1b). Piezoelectric polyvinylidene fluoride films (IPS-17020,
Zhimei-Kang Co., Ltd, Shenzhen, China) were attached to the root of a seagull-shaped
power-generating beam to convert mechanical energy into electrical energy. A suitable
environmental stimulus triggers snap-through, causing the beam to change from one stable
state to the other. This process creates a large amplitude of oscillation and a local high-
frequency vibration, allowing the harvester to output greater electrical energy.
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2.2. Mechanical Model

The abovementioned dynamic characteristics of the harvester may be simplified as a
piezoelectric vibrator supported by an inclined spring, as shown in Figure 2a. Considering
the influence of gravity, according to Newton’s second law and Kirchhoff’s law [31,32], the
dynamic control equation of the piezoelectric spring mass system can be written as follows:{

MX′′ + CX′ + 2KX( L√
l2+X2 − l) + ΘV + Mg = MZ′′

CPV ′ + V
R −ΘX′ = 0

(1)

where M is the mass of the piezoelectric vibrator (the mass block sliding up and down
along the limit rod in the middle of the power generation beam), X is the amplitude of the
generator beam, K is the equivalent stiffness, C is the damping coefficient, l is the length of
the generator beam, g is the gravitational acceleration constant, µ(t) is the displacement of
the external vibration source as a function of time, V is the output voltage of the piezoelectric
sheet, Θ is electromechanical coupling coefficient, and Cp is the equivalent capacitance.
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(b) the force curve of the mass block during one-time inter-well motion.

The dimensionless parameter cv, x = Lx, u = La, V = cvv, τ =
√

2K/Mt, is
introduced when the spring is compressed, α 6= 0. The irrational item is Taylor expanded

at X = 0, α′′ = f cos(wτ), f = A
L , w = Ω

√
M
2K ; thus, the above equation is rewritten

as follows: {
x′′ + 2ξx′ + (1− 1

α )x + x3

2α3 + ρ + θυ = f cos(ωτ)

υ′ + λυ− βx′ = 0
(2)

Transforming x′ = y, Equation (2) can be transformed into an equation of state:
x′ = y
y′ = −2ξy + α1x + α2x2 + α3x3 − θv + f cos(ωτ)
υ′ = −λυ + βy

(3)
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Based on the above model, the stress state of the bistable generator beam of the
energy harvester during a period of motion (inter well motion) was calculated, as shown in
Figure 2b. As the generator beam of the energy harvester moved from the lower steady
state to the upper steady state, the force on the mass block changed from −3460 N/m2 to
3460 N/m2. It is obvious from the figure that the force on the mass block changes when the
snap-through occurs (the generator beam breaks through the potential energy barrier).

2.3. FEM Optimization Design

To analyze and optimize the structure of the wing-flapping bionic energy harvester,
we conducted finite element method (FEM) simulations using COMSOL Multiphysics
5.3 (Table 1 and Figure 3). Using built-in solvers of the frequency domain, the optimum
mass parameters were determined by simulating and analyzing the movement process of
the middle mass block of the generation beam at different weights (5 g, 10 g and 15 g). As
shown in Figure 4, h1 represents the maximum distance between the middle mass block
of the generation beam and the centerline (the connecting line between the two ends of
the generation beam); h2 represents the shortest distance of the middle mass block of the
generation beam above the centerline; and h3 represents the maximum distance of the
middle mass block of the generation beam below the centerline.

Table 1. Simulation parameters of bionic gull wing harvester with single degree of freedom.

Material Property

Stainless steel sheet Density ρ = 7850 kg/m3; Young’s Modulus E = 190 Gpa;
Poisson’s ratio ν = 0.30;Width b1 = 20 mm;Thickness h1 = 0.1 mm

PVDF
Density ρ = 1780 kg/m3; Relative permittivity {epsilonrS11,
epsilonrS22, epsilonrS33} {7.4 9.3 7.6}; Width b2 = 20 mm;Thickness
h2 = 0.1 mm
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Using software, fixed constraints were applied at both ends of the bistable wing-
flapping power generation beam, and a mass block was added at the middle. A low-
frequency vertical excitation (0–20Hz) was then applied to the beam using COMSOL 5.3.
The motion states of the power generation beam were analyzed in different mass block
weights (5 g, 10 g, and 15 g) in order to determine the optimal height and geometric shape
of the potential well. To clearly demonstrate the motion states of the beam under different
geometric sizes, the cloud diagram data was normalized; the legend values represent the
relative motion states of the power generation beam at different extreme positions.

From Figure 4a, it can be seen that when the weight of the mass block was 5 g,
only the in-well movement of the generation beam could occur, which could not break
through the potential barrier. The mass block movement ranges was between h1 (0.81 cm)
and h2 (0.26 cm) (Figure 4d). When the weight of the mass block was increased to 10 g
(Figure 3b), the movement process of the power generation beam broke through the
potential barrier and changed from the original in-well motion to the inter-well motion.
The amplitude of the power generation beam was remarkably large. When snap-through
occurred, it was accompanied by the local high-frequency vibration of the generation
beam. Correspondingly, the mass block movement range was between h1 (1.10 cm) and h3
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(−1.01 cm) (Figure 4d). Further, when the weight of the mass block was 15 g (Figure 3c), the
beam could only move in the well, and the mass block motion ranged between h1 (1.02 cm)
and h2 (0.03 cm) (see Figure 4d).
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3. Relief of Stress Concentration

Currently, the generator design based on the bistable (multi-stable) principle mostly
extends the power generation structure based on the cantilever beam Figure 5a (I) or
arch beam Figure 5a (II). This structure has certain limitations in terms of fatigue life
and spatial utilization. However, the root of the cantilever beam is prone to fatigue
fracture after long-term large-amplitude vibration, and the root cause is the long-term
stress concentration produced by this type of structure during the motion of the energy
collector; similarly, the dynamic device of the arch beam also has stress concentration areas
during the motion process, cannot fully utilize the material strength, and has premature
fatigue failure problems.
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well motion).

This work was based on the seagull-inspired design of the power generation beam,
which can effectively improve the uniformity of stress during the motion of the power
generation beam and alleviate stress concentration phenomena compared to the first
two devices (Figure 5a (III)), thus effectively extending the material’s service life. The finite
element method was used to compare the stress changes (same potential well height, i.e.,
H1 = H2 = H3; geometric dimension: 90 mm × 20 mm × 1 mm; end mass: 10 g) during the
motion of the seagull-inspired beam proposed in this paper and the typical cantilever and
arch beams (the two ends of the arch beam are non-rigidly connected).

When the three types of power generation beams reached their respective resonance
frequencies, the maximum stress curve of the beams during the motion could be obtained,
as shown in Figure 5b. The cantilever beam and arch beam showed obvious stress con-
centration areas during the motion process; even if the beam was moved, the position of
the stress concentration remained unchanged. In contrast, the peak stress position of the
seagull-inspired beam proposed in this paper continuously moved with the variation in the
motion process (from steady state 1 to steady state 2), and could fully utilize materials and
avoid the stress concentration that causes the premature fatigue failure of materials. In ad-
dition, in terms of peak stress, the peak stress of the seagull-inspired beam was 41.2% lower
than that of the cantilever beam and 27.5% lower than that of the arch beam, indicating the
huge potential of the seagull-inspired beam to improve the material fatigue failure.

4. Experiments and Analysis
4.1. Prototype Fabrication and Experimental Setup

As shown in Figure 6, a prototype was made and tested under different vibration
conditions to evaluate its energy harvesting performance. The electricity-generating part
of the harvester was composed of two generator beams placed in between the embedded
limit module, which were constructed using piezoelectric polyvinylidene fluoride films
(IPS-17020, size: 13 mm × 25 mm; wideband 0.001 Hz–1000 MHz; high sensitivity; accu-
racy: 1.4 V/g~16 V/g; operating temperature range: 0~70 ◦C) adhered on the steel plate
(material: 301; thickness 0.1 mm) [3]. The limit module was composed of 10 g of resin
block made of poly methyl methacrylate (PMMA), which could move up and down along
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the steel bar fixed on the base. Furthermore, the two ends of the generator beam were
connected to the base through two square column embedments. The power generation
beam was embedded into the column body through a groove that was reserved on the
side of the square column. Once the embedding was completed, the groove was injected
with glue to completely fix the connection, which could be considered a rigid connection.
The distance between the two square columns made the generator beam undergo bionic
pre-deformation that was similar to the shape of a gull wing.
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The environmental excitation of the prototype was provided by an SA-JZ020 shaker
(Wuxi Shiao Technology Co., Ltd., Shenzhen, China). The bottom plate of the model was
fixed to the top rod of the exciter with screws. An SA-SG030 signal generator, which
generated an input signal, was amplified by an SA-PA080 amplifier (Wuxi Shiao Co., Ltd.,
Shenzhen, China) and fed to the shaker [3]. The parameters of the equipment were as
follows: maximum exciting force of 200 N, maximum acceleration of 30 g, force constant of
14.3 N/A, maximum amplitude of ±10 mm, and frequency range of 0–2000 Hz [3]. The
displacement of the generator beam was measured using an HG-C1200 laser displacement
meter (the measurement center distance and measurement range of the laser displacement
sensor were 30 ± 5 mm, and the repetition accuracy was 10 µm. The beam diameter was
50 µm), which was fixed above the test bench.

4.2. The Snap-Through Phenomenon

The flapping wing bionics energy harvester is a bistable energy capture structure. As
shown in Figure 7a and steady state 1 and steady state 2, there are two stable states of the
energy harvester. When the external excitation is insufficient to make the power generation
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beam break through the potential energy barrier, the beam can only move in the well, that
is, vibration occurs appears as shown in Figure 4a or Figure 4c.
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When the external excitation conditions change, a sudden snap-through phenomenon
occurs in the power generation beam, which changes from the movement in the well to the
movement between the wells (i.e., vibration occurs between the states shown in Figure 4b.
The voltage signal output by the power generation beam is shown in Figure 7a. The peak
voltage range jumped from 3500~3900 mV to 11,000~11,500 mV due to the influence of
the sudden bounce snap-through phenomenon). In the case of snap-through, the system
dynamics are illustrated in Figure 7b. In a continuous time process, the motion track of
the energy harvester generator beam suddenly jumps from a track center at the 3.5 cm
displacement coordinate to a track center at the 1.5 cm displacement coordinate. The
instantaneous migration of the whole motion track is realized.

4.3. Voltage Frequency Response Analysis

In order to comprehensively evaluate the working performance of the energy harvester
at the low-frequency state, the low-frequency excitation of 5~20 Hz was applied to the
energy harvester model, as shown in Figure 8. With the increase in the excitation frequency,
the amplitude of the generator beam moving in the well increased, and the peak value of
the output voltage also increased (Figure 8a). When the excitation frequency increased to
8 Hz, the output voltage of the generator beam moving in the well reached the maximum
value (output voltage is −7800~7400 mV). Furthermore, with a further increase in the
excitation frequency, the motion state of the power generation beam tended to be irregular,
but it was always unable to break through the potential energy barrier and was trapped in
the well vibration. However, when the frequency reached 11 Hz, this state was completely
changed. At this time, the power generation beam broke through the potential energy
barrier and a snap-through occurred (11~13 Hz); this changed from the in-well motion to
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the inter-well motion. When the excitation frequency was between 13 and 14.5 Hz, the
motion state of the generator beam changed to the in-well motion again. However, with
the increase in the excitation frequency to 14.5~15 Hz and 17.5~20 Hz, the generator beam
continued to snap-through and changed to cross-well motion in this frequency range.
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When the external excitation load was applied to the model from high to low (20~5 Hz),
the power generation beam showed a change in the law of motion state that was roughly
opposite to the forward sweep excitation (5~20 Hz). However, the difference was that the
power generation beam had a snap-through in the range of 18.5 Hz, 17 Hz and 13~15 Hz,
respectively, from in-well motion to inter-well motion

The typical waveforms of the output voltage varying with time are shown in Figure 9.
When the external excitation frequency was 12 Hz, the changes in the output voltage signal
of the generator beam with time and the fast Fourier transform (FFT) could be discerned,
as shown in Figure 9a. It was found that there was a sharp jump in the output voltage
signal that was caused by the snap-through phenomenon occurring on the generator beam;
however, this is rare and irregular. As the excitation frequency increased to 14 Hz, it can be
seen from Figure 9b that the density of the output peak voltage signal increased, but no
snap-through phenomenon occurred. When the excitation frequency was further increased
to 16 Hz (Figure 9c), it can be seen that part of the voltage signal reached the critical state
at which the generator beam experiences a snap-through phenomenon. Until the external
excitation frequency of 18 Hz was applied to the model (Figure 9d), the sharp rise in the
output voltage signal caused by the snap-through phenomenon frequently occurred. The
signal output characteristics of the generator beam with these typical excitation frequencies
show the same change rule as the sweep excitation.
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4.4. Output Performance of the Designed Harvester

The performance of the designed energy-harvesting device was evaluated based on
the average output power of the harvester under different testing conditions. The curves of
the output voltage and power of the harvester under different circuit loading conditions
are shown in Figure 10 (the curves on which the solid points are located correspond to the
voltage signal (on the left y-axis), and the curves on which the hollow points are located
correspond to the average output power (on the right y-axis)).
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The results of this study showed that the external resistance has an important impact
on the output voltage and power of the energy harvester. As shown in Figure 10a, the peak
output voltage increased as the load resistance increased, while the peak output power
displayed an increasing trend and then a decreasing trend. When the external resistance
of the circuit was 47 kΩ, the peak output power reached its maximum value of 0.734 mW
(18 Hz). Thus, the average output voltage and power exhibited a similar behavior to
that of the variation in the load resistance, which is due to the close relation between the
optimal load resistance of the piezoelectric energy generator and the resonance frequency
of the structure, as well as the capacitance of the piezoelectric element. The average power

Pavg is calculated as Pavg = V2
rms

R , where Vrms =
√

1
T2−T1

∫ T2
T1

V2dt (V: the voltage, R: the
resistance) denotes the root mean square (RMS) voltage (V) [3,9]. The results showed that
the output power firstly increased, then decreased, and reached its maximum when the
external resistance was 47 KΩ.

To verify the energy-harvesting capabilities of the model, a 470 µF capacitor was used
to gather the electrical energy when the excitation frequency was 18 Hz. A full bridge
circuit was used to change the alternating current (AC) to a direct current (DC), as shown
in Figure 11. The charging continued for about 380 s and the maximum voltage of the
capacitor reached 3000 mV. Furthermore, it was found that in the first 100 s, the charging
speed increased rapidly with the increase in time, and the charging speed slowed down
significantly compared with the previous period of time in 100~380 s.
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This work was based on the bionic principle and used a bistable nonlinear mechanism
to design an energy harvester that comprised inexpensive and easily available manufactur-
ing materials; thus, it had the advantages of a low manufacturing cost and good application
prospects. In addition, a performance comparison with several typical energy harvesters
was performed reported (Table 2). Through comparison, it was found that the energy
trap proposed in this article has the characteristics of a low resonant frequency (18 Hz),
moderate internal resistance, and a high energy capture efficiency (0.734 mW).

Table 2. Performance comparison of various energy harvesters in previous reports.

References Operation Mechanism Material Central Frequency (Hz) Power
(µW) Impedance (Ω)

Zhang et al. [40] Piezoelectric PZT-5H 21, 31 700, 530 60 k, 29 k
Cai et al. [41] Piezoelectric PVDF 24 129.4 600 k
Fu et al. [42] Electromagnetic Magnet, coil 1~3 8 N/A

Tian et al. [43] Electromagnetic Magnet, coil 12.8 133 N/A
This work Bi-stability Steel and PVDF 18 734 47 k

5. Conclusions

In conclusion, a bio-inspired bistable energy harvester has been designed, prototyped
and tested to assess its ability to energy from broadband vibrations. The following are the
most crucial outcomes of this study:

1. When the mass of the middle beam of the energy harvester is 10 g, snap-through is
observed when the motion of the power generator (the movement range in the mass
block is between h1 (1.10 cm) and h3 (−1.01 cm)) changes from the original in-well
motion to the inter-well motion, exceeding the potential barrier (snap-through).

2. The peak stress position of the seagull-inspired beam proposed in this paper can
fully utilize materials and the avoid stress concentration that causes the premature
fatigue failure of materials. In addition, in terms of peak stress, the peak stress of
the seagull-inspired beam is 41.2% lower than that of the cantilever beam and 27.5%
lower than that of the arch beam, indicating the huge potential of the seagull-inspired
beam to improve material fatigue failure.

3. When the external resistance of the circuit is set to 47 kΩ, the peak output power
of the circuit achieves the maximum state of 0.734 mW (18 Hz). As a consequence,
when the full bridge circuit that converts AC to DC is sent to a 470 µF capacitor, the
maximum voltage of the capacitor can reach 3000 mV after 380 s of charging.
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