Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morley, J.W.; Goodwin, A.W.; Darian-Smith, I. Tactile discrimination of gratings. Exp. Brain Res. 1983, 49, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.R.; Packard, W.J.; Cutkosky, M.R. Utilizing sensed incipient slip signals for grasp force control. In Proceedings of the Symposium on Rexible Automation, San Francisco, CA, USA, 13–15 July 1992; pp. 1237–1243. [Google Scholar]
- Turrell, Y.N.; Li, F.X.; Wing, A.M. Estimating the minimum grip force required when grasping objects under impulsive loading conditions. Behav. Res. Methods Instrum. Comput. 2001, 33, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Donlon, E.; Dong, S.; Liu, M.; Li, J.; Adelson, E.; Rodriguez, A. GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Madrid, Spain, 1–5 October 2018; pp. 1927–1934. [Google Scholar] [CrossRef]
- Taylor, I.H.; Dong, S.; Rodriguez, A. Gel Slim 3.0: High-Resolution Measurement of Shape, Force and Slip in a Compact Tactile-Sensing Finger. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 10781–10787. [Google Scholar]
- Alspach, A.; Hashimoto, K.; Kuppuswarny, N.; Tedrake, R. Soft-bubble: A highly compliant dense geometry tactile sensor for robot manipulation. In Proceedings of the RoboSoft 2019–2019 IEEE International Conference on Soft Robotics, Seoul, Republic of Korea, 14–18 April 2019; pp. 597–604. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Atkeson, C.G. Combining Finger Vision and Optical Tactile Sensing: Reducing and Handling Errors While Cutting Vegetables. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016. [Google Scholar]
- Bauza, M.; Valls, E.; Lim, B.; Sechopoulos, T.; Rodriguez, A. Tactile Object Pose Estimation from the First Touch with Geometric Contact Rendering, no. CoRL. 2020. Available online: http://arxiv.org/abs/2012.05205 (accessed on 27 January 2023).
- Kuppuswamy, N.; Alspach, A.; Uttamchandani, A.; Creasey, S.; Ikeda, T.; Tedrake, R. Soft-bubble grippers for robust and perceptive manipulation. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 9917–9924. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Atkeson, C.G. Implementing tactile behaviors using FingerVision. In Proceedings of the IEEE-RAS International Conference on Humanoid Robots, Birmingham, UK, 15–17 November 2017; pp. 241–248. [Google Scholar] [CrossRef]
- Ma, D.; Donlon, E.; Dong, S.; Rodriguez, A. Dense tactile force estimation using gelslim and inverse FEM. In Proceedings of the IEEE International Conference on Robotics and Automation, Montreal, QC, Canada, 20–24 May 2019; pp. 5418–5424. [Google Scholar] [CrossRef]
- Dong, S.; Ma, D.; Donlon, E.; Rodriguez, A. Maintaining Grasps within Slipping Bounds by Monitoring Incipient Slip. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 3818–3824. [Google Scholar] [CrossRef]
- Muhammad, H.B.; Oddo, C.M.; Beccai, L.; Recchiuto, C.; Anthony, C.J.; Adams, M.J.; Carrozza, M.C.; Hukins, D.W.L.; Ward, M.C.L. Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger. Sens. Actuators A Phys. 2011, 165, 221–229. [Google Scholar] [CrossRef]
- Chang, Y.; Zuo, J.; Zhang, H.; Duan, X. State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems. Nanotechnol. Precis. Eng. 2020, 3, 43–52. [Google Scholar] [CrossRef]
- Oddo, C.M.; Beccai, L.; Muscolo, G.G.; Carrozza, M.C. A biomimetic MEMS-based tactile sensor array with fingerprints integrated in a robotic fingertip for artificial roughness encoding. In Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Guilin, China, 19–23 December 2009; pp. 894–900. [Google Scholar] [CrossRef]
- Makihata, M.; Tanaka, S.; Muroyama, M.; Matsuzaki, S.; Yamada, H.; Nakayama, T.; Yamaguchi, U.; Mima, K.; Nonomura, Y.; Fujiyoshi, M.; et al. Integration and packaging technology of MEMS-on-CMOS capacitive tactile sensor for robot application using thick BCB isolation layer and backside-grooved electrical connection. Sens. Actuators A Phys. 2012, 188, 103–110. [Google Scholar] [CrossRef]
- Wang, F.F.; Shen, J.J.; Wu, Y.Y. Passive tactile sensor for measuring elastic modulus of soft material: Continuum-mechanics model and experiment. Sens. Actuators A Phys. 2018, 283, 291–297. [Google Scholar] [CrossRef]
- Mei, T.; Li, W.J.; Ge, Y.; Chen, Y.; Ni, L.; Chan, M.H. An integrated MEMS three-dimensional tactile sensor with large force range. Sens. Actuators A Phys. 2000, 80, 155–162. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Tanii, R.; Takahata, T.; Shimoyama, I. Development of a single-chip elasticity sensor using MEMS-based piezoresistive cantilevers with different tactile properties. Sens. Actuators A Phys. 2019, 285, 362–368. [Google Scholar] [CrossRef]
- Wettels, N.; Santos, V.J.; Johansson, R.S.; Loeb, G.E. Biomimetic tactile sensor array. Adv. Robot. 2008, 22, 829–849. [Google Scholar] [CrossRef]
- Noda, K.; Hoshino, K.; Matsumoto, K.; Shimoyama, I. A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material. Sens. Actuators A Phys. 2006, 127, 295–301. [Google Scholar] [CrossRef]
- Choi, E.; Hwang, S.; Yoon, Y.; Seo, H.; Lee, J.; Yeom, S.; Ryu, G.; Yang, H.; Kim, S.; Sul, O.; et al. Highly Sensitive Tactile Shear Sensor Using Spatially Digitized Contact Electrodes. Sensors 2019, 19, 1300. [Google Scholar] [CrossRef] [PubMed]
- Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C.F. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors 2014, 14, 5296–5332. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Chung, K.; Tian, F.; Ku, P.-C. A tensorial shear stress sensor based on light-emitting GaN nanopillars. Appl. Phys. Lett. 2019, 115, 021103. [Google Scholar] [CrossRef]
- Dvořák, N.; Chung, K.; Mueller, K.; Ku, P.C. Ultrathin Tactile Sensors with Directional Sensitivity and a High Spatial Resolution. Nano Lett. 2021, 21, 8304–8310. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, N.A.; Ku, P.C. Low-Profile Shear Force Tactile Sensor Based on Optical Methods. IEEE Electron Device Lett. 2022, 43, 1081–1084. [Google Scholar] [CrossRef]
- Zheng, Q.; Peng, M.; Liu, Z.; Li, S.; Han, R.; Ouyang, H.; Fan, Y.; Pan, C.; Hu, W.; Zhai, J.; et al. Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array. Sci. Adv. 2021, 7, 7738–7764. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dvořák, N.; Fazeli, N.; Ku, P.-C. Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. Micromachines 2023, 14, 916. https://doi.org/10.3390/mi14050916
Dvořák N, Fazeli N, Ku P-C. Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. Micromachines. 2023; 14(5):916. https://doi.org/10.3390/mi14050916
Chicago/Turabian StyleDvořák, Nathan, Nima Fazeli, and Pei-Cheng Ku. 2023. "Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor" Micromachines 14, no. 5: 916. https://doi.org/10.3390/mi14050916
APA StyleDvořák, N., Fazeli, N., & Ku, P. -C. (2023). Direct Shear Stress Mapping Using a Gallium Nitride LED-Based Tactile Sensor. Micromachines, 14(5), 916. https://doi.org/10.3390/mi14050916