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Abstract: Microfabricated electroacoustic transducers with perforated moving plates used as micro-
phones or acoustic sources have appeared in the literature in recent years. However, optimization
of the parameters of such transducers for use in the audio frequency range requires high-precision
theoretical modeling. The main objective of the paper is to provide such an analytical model of a
miniature transducer with a moving electrode in the form of a perforated plate (rigid elastically
supported or elastic clamped at all boundaries) loaded by an air gap surrounded by a small cavity.
The formulation for the acoustic pressure field inside the air gap enables expression of the coupling of
this field to the displacement field of the moving plate and to the incident acoustic pressure through
the holes in the plate. The damping effects of the thermal and viscous boundary layers originating
inside the air gap, the cavity, and the holes in the moving plate are also taken into account. The
analytical results, namely, the acoustic pressure sensitivity of the transducer used as a microphone,
are presented and compared to the numerical (FEM) results.

Keywords: analytical modeling; electroacoustic transducers; MEMS microphones; perforated plate

1. Introduction

Currently, the vast majority of MEMS microphones production, increasing rapidly in
recent years, uses the electrostatic principle of electroacoustic transduction [1] (although
piezoelectric types exist [2]). Such devices consist of moving electrodes of circular [3],
square [4,5], or other [6] shapes and perforated single [3] or double backplates [7,8]. Note
that such MEMS structures can be employed in other domains than audio, such as energy
transfer, energy harvesters, and resonators [9–11]. However, new designs presenting
technological advances have been proposed recently in the literature, such as a microphone
with moving microbeam [12], or transducers (sources and microphones) with perforated
moving electrodes. The mean motivation for the work presented herein is the latter case
with electrodes in the form of elastic perforated plates clamped at all boundaries [13] or
rigid elastically supported perforated plates [14–17]. Although these experimental studies
contain approximate theoretical models, mainly based on the lumped elements approach,
the precise analytical modeling is still of high interest.

In order to provide high-precision results on sensitivity and bandwidth, the models of
electroacoustic transducers (miniaturized or not) should take into account the damping
effects of the viscous and thermal boundary layers originating in the narrow regions such
as the air gap between the moving and fixed electrodes. The strong coupling between the
displacement field of the moving electrode and the acoustic field inside the transducer
should be also accounted for when appropriate. In addition to these effects, the model
of the transducer with a perforated moving electrode has to deal with the acoustic short
circuit between the incident acoustic pressure and the pressure field inside the transducer
caused by the perforation. This leads to the sensitivity roll-off at lower frequencies, which
has to be calculated correctly when precise theoretical modeling allowing the optimization
of the transducer behavior in the audio frequency range is required.
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While the precise models of the transducers with perforated moving electrodes are still
missing, to our knowledge, several models taking into account the perforation of the fixed
electrodes and the acoustic short circuit can be found in the literature. The classical lumped-
element models of condenser microphones, such as [18], use the “porosity” approach;
the more recent lumped-element model [19] deals with acoustic short circuit through the
venting hole. With regard to more advanced models, ref. [20] and, more recently, [21,22]
took into account the effects of holes in the fixed electrode accounting for the position
of the holes, and ref. [23] employed the impedance approach. Vibration of a very thin
perforated backplate of an MEMS transducer was taken into account in [24]. In [25], the
effect of the acoustic short circuit through thin slits surrounding the moving electrode in the
form of a microbeam was included in the complex wavenumber for the acoustic pressure
in the air gap. In the same reference, the acoustic pressure in the air gap was expressed
using integral formulation with appropriate Green’s function, which was not expressed
as a series expansion over the eigenfunctions of the moving electrode. Such a fomulation
is also advantageous in the case of rectangular geometries [26,27] and is therefore used
herein. It is worth mentioning the numerical methods, namely, the finite element method,
which can take into account the thermoviscous losses and the coupling effects without
geometry-dependent approximations [28]. However, numerical methods generally suffer
from high computational costs, compared to analytical methods, and are usually used as a
reference against which the analytical results can be tested.

The present paper deals mainly with the theoretical modeling of the acoustic field
inside a miniaturized electroacoustic transducer with a square perforated moving electrode,
taking into account its coupling with the vibration of the moving electrode, the acoustic
short circuit through the perforation, and the thermoviscous losses originating in the
narrow regions inside the transducer. Two types of the perforated moving electrode are
considered: (i) the rigid elastically supported square plate, partially inspired by [14] (see
Figure 1a), and (ii) the flexible square plate clamped at all boundaries, partially inspired
by [13] (see Figure 1b).

Figure 1. MEMS transducers with perforated moving electrodes in the form of (a) the rigid elastically
supported square plate and (b) the flexible square plate clamped at all boundaries.

Section 2 presents viscous effects in short narrow holes and governing equations for
the acoustic pressure field in the thin air gap between the perforated moving electrode and
the fixed one (backplate) using the porosity approach. Then, the solutions for the acoustic
pressure are expressed for the case of uniform (piston-like) and nonuniform movement of
the moving electrode, corresponding to the rigid elastically supported and flexible plate,
respectively. The coupling of the acoustic field with vibration of the plates of both types,
leading to the expression of their displacements, is finally derived, with the eigenfunctions
of the perforated flexible clamped plate being given approximately in Appendix A. In
Section 3, the analytically calculated acoustic pressure sensitivities of the transducers used
as microphones are depicted and compared with the numerical (FEM) results. The influence
of some geometrical parameters is discussed. This section is followed by the conclusion in
Section 4.
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2. Analytical Solution

In this section, the analytical solution of the problem is expressed in frequency domain
(the time dependence being ejωt; ω is the angular frequency). The acoustic field inside
the transducer and the displacement of the moving electrode is searched for as a response
to harmonic incident acoustic pressure pinc (assumed to be uniform over the moving
electrode surface).

2.1. Description of the Device

The device consists of a moving electrode in the form of a square perforated plate
of side 2a and thickness hp with N square holes of side ah, with the air gap between the
plate and the backplate of thickness hg surrounded by a peripheral cavity described by its
volume Vc and acoustic impedance Zc (see Figure 2). The perforation ratioR = Na2

h/(4a2)
is the ratio of total surface occupied by the holes and the area of the plate. In the case of
a moving electrode in the form of a rigid elastically supported square plate (Figure 1a),
the plate displacement is uniform and the cavity is connected with the incident acoustic
pressure pinc through slits of thickness hs along the arms supporting the plate.

Figure 2. Sketch of the whole system.

2.2. The Acoustic Pressure Field inside the Transducer

The system is supposed to be filled with thermoviscous fluid (air in this case) with the
following properties: the density ρ0, the adiabatic speed of sound c0, the heat capacity at
constant pressure per unit mass Cp, the specific heat ratio γ, the shear viscosity coefficient
µ, and the thermal conduction coefficient λh. Since the air gap thickness hg is supposed to
be much smaller than other dimensions of the air gap and smaller than the wavelengths
considered, even at high frequencies, the acoustic pressure in the air gap is assumed to
depend on the x, y spatial coordinates only and denoted pg(x, y). The particle velocity and
temperature variation (that generally depend on the z axis due to the viscous and thermal
boundary layers effects) are then replaced by their mean values over the air gap thickness.
The acoustic pressure in the cavity volume pc is supposed to be uniform. The displacement
of the moving electrode is denoted ξ.

2.2.1. Viscous Effects Originating in the Holes in the Perforated Moving Electrode

For the sake of simplicity, the holes in the moving electrode are supposed to have
circular cross-section instead of the square one, with the radius of the equivalent cylindrical

hole being given by Rh = ah/
√

π (thus R =
NπR2

h
4a2 ), see Figure 3. The particle velocity

vz(r, z) in such a hole is governed by the diffusion equation [29](
1
r

∂

∂r
r

∂

∂r
+ k2

v

)
vz(r, z) =

1
µ

∂

∂z
p(z), (1)

with the diffusion wavenumber

kv =
1− j√

2

√
ωρ0

µ
, (2)
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with j being the imaginary unit, and subjected to the nonslip boundary condition at r = Rh

vz(Rh, z) = jωξ(x, y). (3)

The velocity of the moving electrode jωξ(x, y) at the position of the hole is assumed
to be approximately uniform on the whole internal surface of the hole. The solution of the
problem (1) and (3) is given by

vz(r, z) = − 1
jωρ0

∂

∂z
p(z)

[
1− J0(kvr)

J0(kvRh)

]
+ jωξ(x, y)

J0(kvr)
J0(kvRh)

, (4)

where Jn denotes the cylindrical Bessel functions of the first kind of order n. After relying
on the approximation of the pressure derivative in a very short hole of length hp

∂

∂z
p(z) ≈

pinc − pg(x, y)
hp

, (5)

the mean value of the particle velocity over the cross-section of the hole Sh = πR2
h is

〈vz(r, z)〉r =
1
Sh

∫∫
Sh

vz(r, z)dSh ≈ −
1

jωρ0

pinc − pg(x, y)
hp

Fvh + jωξ(x, y)Kvh, (6)

with
Fvh = 1− Kvh,

Kvh =
2

kvRh

J1(kvRh)

J0(kvRh)
.

(7)

Figure 3. Sketch of the hole in the moving electrode.

The viscous force acting on the interior surface of the hole 2πRhhp is proportional to
the normal derivative (here, ∂/∂n = −∂/∂r) of the particle velocity (4)

Fz = −2πRhhpµ

(
∂vz(r, z)

∂r

)
r=Rh

, (8)

and in using (5) takes the following form

Fz(x, y) ≈ jωξ(x, y)Πh − πR2
hKvh

[
pinc − pg(x, y)

]
, (9)

with

Πh = 2πRhhpµ
kv J1(kvRh)

J0(kvRh)
. (10)
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Dividing this force by the area associated with one hole (4a2/N) leads to the equivalent
pressure caused by the viscosity effects originating in the hole

pv(x, y) = jωξ(x, y)Πh
N

4a2 −RKvh
[
pinc − pg(x, y)

]
. (11)

2.2.2. Wave Equation Governing the Acoustic Pressure in the Air Gap

In order to express the wave equation for the acoustic pressure pg(x, y) in the air gap,
the following contributions of the mass per unit of time in the gap element of dimensions
dx× dy× hg have to be taken into account (see velocity contributions in Figure 4):

• Change of the mass per unit of time in both x and y directions− ∂
∂w 〈vgw(w, z)〉z ρ0 dx dy hg,

where w designates x and y.
• Contribution from the moving electrode −jωξ(x, y) ρ0 (1−R)dx dy.
• Contribution form the holes −〈vz(r, z)〉r ρ0Rdx dy, where 〈vz(r, z)〉r is given by

Equation (6).

Figure 4. Element of the air gap.

The sum of these terms is equal to jω 〈ρ〉z dx dy hg (conservation of mass) where 〈ρ〉z
is the time-dependent acoustic density in the gap element averaged over the gap thick-
ness. The classical solutions of linearized Navier–Stokes equation and Fourier equation
for the heat conduction, under several approximations [29], give, respectively, the par-
ticle velocity and temperature variations profiles in the air gap, leading to the relations

(after introducing the latter into the gas state equation) 〈vgw(w, z)〉z = − 1
jωρ0

∂pg(x,y)
∂w Fvg

and 〈ρ〉z = pg(x, y)
[
γ− (γ− 1)Fhg

]
/c2

0 [29], with the mean values of the velocity and
temperature variation profiles over the air gap thickness given by

Fvg = 1−
tan
(
kvhg/2

)
kvhg/2

,

Fhg = 1−
tan
(
khhg/2

)
khhg/2

,

(12)

where kv is given by (2) and kh = 1−j√
2

√
ωρ0Cp

λh
. Note that these mean values are calculated

for nonslip and isothermal boundary conditions at both (nonperforated) electrodes. Alter-
natively, the relation accounting for more realistic boundary conditions on the perforated
plate [21],

F(v,h)g = 1− 2−R
2

tan
(

k(v,h)hg/2
)

k(v,h)hg/2
, (13)

can be used.
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The combination of the above mentioned terms leads to the wave equation governing
the acoustic pressure pg(x, y) in the air gap[

∆ + χ2
]

pg(x, y) = −U(x, y), (14)

where the source term is composed from U(x, y) = U1ξ(x, y) + U2 pinc with

U1 =
ω2ρ0(1−RFvh)

Fvghg
,

U2 =
FvhR

Fvghghp
,

(15)

and the complex wavenumber is given by

χ2 =
ω2

c2
0

γ− (γ− 1)Fhg

Fvg
− FvhR

Fvghghp
. (16)

2.2.3. Solution for the Acoustic Pressure in the Air Gap in Case of Piston-like Movement of
the Moving Electrode

Since the source term U in (14) does not depend on the spatial coordinates x, y in this
case, the solution of (14) takes the classical form

pg(x, y) = A cos(κxx) cos(κyy)−U/χ2, (17)

where χ2 = κ2
x + κ2

y (for square geometry κx = κy = χ/
√

2) and A is an integration
constant. The boundary condition is given by the acoustic pressure in the peripheral cavity
(supposed to be uniform in the whole cavity volume) pc = Zcwtot, where Zc is the acoustic
impedance of the cavity and wtot is the total volume velocity entering to the cavity. This
volume velocity is composed of the volume velocity at the output of the air gap and the
volume velocity entering to the cavity through the slits

wtot = 8ahg
〈
vgw(w, z)

〉
z − Ssvs, (18)

where 8ahg is the output surface of the air gap, Ss is the total input surface of the slits,

and vs ∼= − Fvs
jωρ0

pinc−pc
hp

is the velocity in the slit, with Fvs = 1− tan(kvhs/2)
kvhs/2 being the mean

value of the velocity profile through the thickness of the slit hs (the influence of the plate
velocity on the fluid particle velocity in the slits is supposed to be negligible here). This
leads directly to the boundary condition for the normal derivative of the acoustic pressure
at the output of the air gap

∂n pg = −Λc pc + Λ2 pinc, (19)

with
Λc = Λ1 + Λ2, Λ1 =

jωρ0

8ahgFvgZc
, Λ2 =

SsFvs

8ahghpFvg
.

The continuity of the acoustic pressure at the boundary between the air gap and
the cavity can be approximately expressed using the value at the middle of the square
gap side pc = pg(a, 0) (alternatively, the value at the corner pg(a, a) or the mean value
over the side of the gap could be used). Replacing ∂n pg and pc in (19) by (for example)
∂x pg(a, 0) and pg(a, 0), respectively, and substituting from the solution (17) readily gives
the integration constant

A = (A1ξ + A2 pinc)/A3, (20)

with

A1 = ΛcU1/χ2, A2 = Λ2 + ΛcU2/χ2, A3 = Λc cos(κxa)− κx sin(κxa). (21)
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2.2.4. Solution for the Acoustic Pressure in the Air Gap in Case of Nonuniform Movement
of the Moving Electrode

Due to the symmetry of the transducer’s geometry, the solution of (14) for nonuniform
U(x, y) is expressed here in the first quadrant only (namely, x, y ∈ (0, a)). The chosen
Green’s function used in the integral formulation for the solution of (14) satisfies the same
Neumann’s condition (the first derivative vanishes) at x = 0, y = 0 as the solution for the
acoustic pressure, which can be expressed as follows [26,27,29]:

pg(x, y) =
∫ a

0

∫ a

0
G(x, x0; y, y0)U(x0, y0)dx0dy0

+
∫ a

0

[
G(x, x0; y, a)∂y0 pg(x0, a)− ∂y0 G(x, x0; y, a)pg(x0, a)

]
dx0

+
∫ a

0

[
G(x, a; y, y0)∂x0 pg(a, y0)− ∂x0 G(x, a; y, y0)pg(a, y0)

]
dy0,

(22)

with the Green’s function being given by

G(x, x0; y, y0) = g(x, x0; y, y0) + g(x,−x0; y, y0) + g(x, x0; y,−y0) + g(x,−x0; y,−y0), (23)

with

g(x, x0; y, y0) = −
j
4

H−0

(
χ
√
(x− x0)2 + (y− y0)2

)
, (24)

where H−0 denotes the cylindrical Hankel function of the second kind of order “0”.
Taking into account the boundary condition (19), here without the slits (Λ2 vanishes),

solution (22) becomes

pg(x, y) =
∫ a

0

∫ a

0
G(x, x0; y, y0)U(x0, y0)dx0dy0 − pc Ig(x, y), (25)

where

Ig(x, y) =Λ1

[∫ a

0
G(x, x0; y, a)dx0 +

∫ a

0
G(x, a; y, y0)dy0

]
+

[∫ a

0
∂y0 G(x, x0; y, a)dx0 +

∫ a

0
∂x0 G(x, a; y, y0)dy0

]
.

(26)

The acoustic pressure in the cavity, calculated here as the mean value over the edge
of the gap, pc =

〈
pg(x, a)

〉
x, where 〈 f (w)〉w denotes

∫ a
0 f (w)dw/a, can be then expressed

from (25) as follows:

pc =
1

1 +
〈

Ig(x, a)
〉

x

∫ a

0

∫ a

0
〈G(x, x0; a, y0)〉xU(x0, y0)dx0dy0. (27)

2.3. Coupling of the Moving Electrode Displacement Field and the Acoustic Pressure Field

In this section, the strong coupling between the acoustic field inside the transducer,
described in previous sections, and the displacement of the moving electrode in the form
of an elastically supported rigid perforated plate and a flexible perforated plate clamped at
all edges is presented.

2.3.1. Elastically Supported Rigid Perforated Plate

The equation governing the displacement ξ of the elastically supported rigid plate
takes the form[

−Mpω2 + jωRp + Kp

]
ξ =

∫ a

−a

∫ a

−a

[
pg(x, y)− pinc − pv(x, y)

]
dxdy, (28)
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where Mp is the mass of the plate, Kp is the stiffness of the elastic support, and Rp is the
structural damping coefficient which is neglected here (all the damping in the system taken
into account here originates in the acoustic fluid-filled parts of the transducer).

Reporting Equations (11) and (17) using (20) to (28) gives, after straightforward calcu-
lation, the solution for the displacement of the rigid plate:

ξ =
4a2(1 +RKvh)

[
sin(κxa) sin(κya)A2

κxκya2 A3
−
(

1 + U2
χ2

)]
pinc

−Mpω2 + jωRp + Kp + jωπN + 4a2(1 +RKvh)
[

U1
χ2 −

sin(κya) sin(κya)A1
κxκya2 A3

] . (29)

2.3.2. Flexible Perforated Plate Clamped at All Edges

We will depart here from the classical equation governing the displacement of the
nonperforated plate [30] with the mass per unit area Ms = ρphp (ρp designates the density

of the plate) and the flexural rigidity D =
Ehp

12(1−ν2)
(E and ν being the Young’s modulus and

Poisson’s ratio, respectively)[
D∆∆−Msω2

]
ξ(x, y) = pg(x, y)− pinc − pv(x, y), (30)

clamped at all edges

ξ(x, y) =
∂

∂x
ξ(x, y) = 0, x = ±a, ∀y ∈ (−a, a),

ξ(x, y) =
∂

∂y
ξ(x, y) = 0, y = ±a, ∀x ∈ (−a, a).

(31)

The displacement field can be searched for in the following form of series expansion
(with some truncation in practical implementation):

ξ(x, y) = ∑
mn

ξmnψmn(x, y), (32)

where the orthonormal eigenfunctions ψmn(x, y) satisfy the homogeneous equation associ-
ated with Equation (30): [

∆∆− k4
m,n

]
ψmn(x, y) = 0, (33)

where k4
m,n = (k2

xm + k2
yn)

2. An approximate form of such eigenfunctions can be obtained as
a series expansion over known functions from numerically (FEM) calculated results using
the method described in [31] for nonperforated rectangular clamped plates and in [32] for
perforated square clamped plates, the latter being used herein (see Appendix A).

Using the properties of the eigenfunctions [29], the modal coefficients ξmn in (32) can
be obtained from the relation (using Equation (11))

ξmn

[
Dk4

m,n −Msω2 + jωΠh
N

4a2

]
= (1−RKvh)

a∫
−a

a∫
−a

[
pg(x, y)− pinc

]
ψmn(x, y)dxdy. (34)

Using the relation for the acoustic pressure in the air gap pg(x, y) (25) along with
Equations (15) and (32), Equation (34) can be expressed as follows:[

Dk4
m,n −Msω2 + jωΠh

N
4a2

]
ξmn = cmn −

∞

∑
qr

ξqr A(mn),(qr), (35)

or in the matrix form
[B−A]Ξ = C, (36)
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where Ξ is the column vector of elements ξmn, B is the diagonal matrix of elements Dk4
m,n −

Msω2 + jωΠh
N

4a2 , C is the column vector, and A is the matrix whose elements cmn and
A(mn),(qr) are given, respectively, by

cmn = pinc

a∫
−a

a∫
−a

ψmn(x, y)

U2

 a∫
0

a∫
0

G(x, x0; y, y0)dx0dy0 −MIg(x, y)

− 1

dxdy, (37)

and

A(mn),(qr) = U1

a∫
−a

a∫
−a

ψmn(x, y)

 a∫
0

a∫
0

G(x, x0; y, y0)ψqr(x, y)dx0dy0 − Nqr Ig(x, y)

dxdy, (38)

with
M =

1
1 +

〈
Ig(x, a)

〉
x

∫ a

0

∫ a

0
〈G(x, x0; a, y0)〉x dx0dy0,

Nqr =
1

1 +
〈

Ig(x, a)
〉

x

∫ a

0

∫ a

0
〈G(x, x0; a, y0)〉x ψqr(x0, y0)dx0dy0.

(39)

Solving Equation (36) for Ξ gives the modal coefficients ξmn and thus the displacement
field of the plate ξ(x, y).

3. Analytical Results and Comparisons with the Numerical (FEM) Ones

In this section, the analytical results calculated using the present method are discussed
and compared with the numerical (FEM) results provided by the software Comsol Mul-
tiphysics, version 6.0. The numerical formulation for the acoustic field in thermoviscous
fluid inside the transducer, involving the acoustic particle velocity ~v, acoustic temperature
variation τ, and acoustic pressure p using the Acoustics Module [33], was coupled with the
classical linear mechanical formulation for the plate provided by the Structural Mechanics
Module [34]. One quarter of the transducer geometry was used for the simulation (the rest
was symmetric), and the mesh consisted of tetrahedral elements combined with layered
prism elements (in the boundary layers). The number of degrees of freedom varied between
approximately 1 million and 3 million, depending on the dimensions of the holes in the
plate (smaller holes lead to finer mesh and thus higher number of degrees of freedom). The
properties of the air used in both numerical and analytical calculations are given in Table 1,
and the properties of the material of the plate (silicon) are summarized in Table 2.

Table 1. Properties of the air.

Parameter Value Unit

Adiabatic sound speed c0 343.2 m s−1

Air density ρ0 1.2 kg m−3

Shear dynamic viscosity µ 1.814× 10−5 Pa s
Thermal conductivity λh 25.77× 10−3 W m−1 K−1

Specific heat coefficient at constant pressure per unit of mass Cp 1005 J kg−1 K−1

Ratio of specific heats γ 1.4 -

Table 2. Material properties of the plate (silicon).

Parameter Value Unit

Plate density ρp 2330 kg m−3

Young’s modulus E 160 G Pa
Poisson’s ratio ν 0.27 -

The displacement of the moving electrode given either by Equation (29) for the elas-
tically supported rigid perforated plate or by Equation (32) for the flexible perforated
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plate clamped at all edges was used to calculate the acoustic pressure sensitivity of the
electrostatic receiving transducer σ = U0ξ/(hg pinc), where ξ = [

∫∫
Se

ξ(x, y)dSe]/Se is the
mean displacement of the plate over the surface of the backing electrode Se = 4a2, and U0
is the polarization voltage (here, U0 = 30 V).

Figure 5 shows the acoustic pressure sensitivity of the receiving transducer with an
elastically supported rigid perforated plate of dimensions 0.3× 0.3 mm (a = 150 µm) and
thickness hp = 5 µm with N = 256 square holes of side dimension ah varying between
0.3 µm and 3 µm, as per the thickness of the slits hs. The air gap thickness is hg = 4 µm,
and the peripheral cavity of thickness 50 µm has the volume of Vc = 2.72× 10−12 m3. The
mass of the plate is given by Mp = ρphp(4a2−Na2

h), and the structural damping coefficient
is supposed to be negligible Rp = 0 Ns/m. The stiffness of the elastic support Kp was
calculated from the simple numerical model of the mechanical moving part only (in vacuo)
at very low frequencies. The dimensions of the arms of 145× 30 µm lead to Kp = 200 N/m.
Very good agreement between the analytical results was obtained using the present method
(Equation (29)), and the ones provided by the complete numerical model of the transducer
can be observed, especially for small ah and hs. When the values of ah and hs approach the
gap thickness hg (Figure 5d)), the damping seems to be slightly underestimated. Generally,
it seems that the “porosity” approach using the ratioR works better when the dimensions
of the holes are much smaller than the gap thickness.
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Figure 5. Magnitude (upper curves) and phase (lower curves) of pressure sensitivity of the transducer
with elastically supported perforated plate: comparison of the present analytical results (continuous
lines) with the numerical (FEM) result (black points) for the side of the holes and the thickness of the
slits being equal to (a) 0.3 µm, (b) 1 µm, (c) 2 µm, and (d) 3 µm.

The acoustic pressure sensitivities of the receiving transducer with flexible perfo-
rated plate clamped at all edges of dimensions a = 0.5 mm and thickness hp = 10 µm
with N = 400 square holes of side dimension ah varying between 2 µm and 7 µm are
shown in Figure 6. Here, the air gap thickness is hg = 10 µm, and the volume of the
cavity is Vc = 10−10 m3. The analytical result, calculated using the method described in
Section 2.3.2, here takes into account only the first mode of the vibration of the plate ψ11
in Equations (37) and (38), which is sufficient in the audio frequency range. Very good
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agreement between this analytical result and the reference numerical one can be found in
the pass band of the transducer. At very high frequencies, the higher modes of the plate
vibrations (not contained in the analytical results) appear in the numerical results.
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Figure 6. Magnitude (upper curves) and phase (lower curves) of pressure sensitivity of the transducer
with flexible perforated clamped plate: comparison of the present analytical results (continuous
lines) with the numerical (FEM) result (black points) for the side of the holes being equal to (a) 2 µm,
(b) 3 µm, (c) 5 µm, and (d) 7 µm.

At very low frequencies, the difference between the acoustic pressure in the gap
pg(x, y) and the incident acoustic pressure pinc is very small due to the acoustic short
circuit through the holes (see Figure 7 for pinc = 1 Pa and hole side of 2 µm (left) and 5 µm
(right) at f = 100 Hz). This leads to the numerical noise in the results of the integrals in
Equations (25), (37) and (38), especially for larger holes (Figure 7b)). Since this pressure
difference is the source for the plate displacement (see Equation (30)), the analytical results
are perturbed by the noise in the low-frequency range (see Figure 6c,d). However, when
using the transducer in the audio frequency range, the effect of the acoustic short circuit
should be reduced, which leads to the use of small holes. For this case, the present analytical
model gives correct results (Figure 6a)).

Using the present analytical model, the dimensions of the transducer can be further
optimized, as shown in Figure 8. Smaller dimensions of the holes improve the pass band
of the transducer in the lower frequency range (ah = 1 µm in Figure 8a). The dependence
of the sensitivity σ on the air gap thickness hg in the pass band of the transducer presents
the common sensitivity doubling (+6 dB) when halving the gap thickness for small holes
(ah = 1 µm in Figure 8a, ah = 2 µm in Figure 8b), while in the case of larger holes, this effect
almost disappears (ah = 5 µm in Figure 8c, ah = 7 µm in Figure 8d). However, the impact
of decreasing hg on increasing damping of the resonance, which is usual in condenser
microphones, is preserved in the case of a perforated moving electrode. Note that the
thickness of the plate hp influences the mass and stiffness of the plate, hence the resonance
frequency and amplitude of the plate displacement. Higher thickness hp leads to higher
resonance frequency (thus, higher pass band of the transducer) and lower sensitivity.
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Figure 7. Real part of the difference of the acoustic pressure between both sides of the plate
<
[
pg(x, y)− pinc

]
in the first quadrant (x, y ∈ (0, a)) calculated using the present method at

f = 100 Hz for pinc = 1Pa and for the side of the holes being equal to (a) ah = 2 µm (left) and
(b) ah = 5 µm (right).
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Figure 8. Magnitude of pressure sensitivity of the transducer calculated using the present method:
the effect of varying air gap thickness hg for the side of the holes being equal to (a) 1 µm, (b) 2 µm,
(c) 5 µm, and (d) 7 µm.

4. Conclusions

The analytical model of an electroacoustic transducer with the moving electrode in the
form of a perforated plate (rigid elastically supported or flexible clamped at all boundaries)
was developed. The formulation for the acoustic pressure field in the air gap between the
moving and the fixed electrode was derived, taking into account the acoustic short circuit
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through the holes, the thermal and viscous boundary layers effects in the thin fluid film,
and the coupling with the displacement of the plate. The displacement of the plate and the
acoustic pressure sensitivity of the transducer used as a microphone was calculated, and
the latter was compared to the reference numerical (FEM) results. Very good agreement
between these models was found in the transducer pass band, and some discrepancies,
appearing generally out of the frequency range of interest, were discussed and explained.
The influence of some geometrical parameters of the transducer, such as dimensions of the
holes in the plate or air gap thickness, was investigated.

Note that only the first mode of the flexible plate vibration was taken into account
here using the analytically expressed approximation of its first eigenfunction calculated
numerically. This is sufficient in the audio frequency range; however, further research
should focus on improved expression of the eigenfunctions, providing better results at
the frequencies above the first resonance, where the higher modes of the perforated plate
vibration occur.
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Appendix A. Approximate Eigenfunctions of the Perforated Flexible Square Plate
Clamped at All Edges [32]

Since no exact analytical expression for the eigenfunctions of perforated plates is
known, to our knowledge, the eigenfunctions used in Section 2.3.2 are approximated using
the series expansion [32]

ψmn(x, y) = ∑
qr

c(qr),(mn)φq(x)φr(y), (A1)

where the basis functions φq(x), φr(y) are the symmetrical eigenfunctions of 1D beam
clamped at both ends, given by [27,35]

φs
q(x) =

1√
2a

cos
(

αs
qx
)

cos
(

αs
qa
) − cosh

(
αs

qx
)

cosh
(

αs
qa
)
, with tan

(
αs

qa
)
= − tanh

(
αs

qa
)

, (A2)

and similarly for φs
r(y). Such a form of the basis functions ensures that the approximated

eigenfunctions ψmn(x, y) verify the boundary conditions (31). A simple numerical (FEM)
simulation of the perforated plate only (not loaded by the acoustic parts of the transducer)
was performed in order to obtain the numerically calculated eigenfunctions nψmn(x, y).
The coefficients c(qr),(mn) in (A1) were then calculated from these numerical eigenfunctions
as follows:

c(qr),(mn) =
1

2a2

∫ a

−a

∫ a

−a

nψmn(x, y)φq(x)φr(y)dxdy. (A3)
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Other important information provided by the simple numerical model of the per-
forated plate are the eigenfrequencies n fmn associated with each eigenmode m, n. The
eigenvalues kxm, kyn are then expressed from these numerically calculated eigenfrequencies
n fmn as follows:

kxm =

√
2π n fmm

2cp
, (A4)

where cp =
√

D/Ms is the wave speed on the plate. Note that kyn has the same values as
kxm in the case of a square plate.

References
1. Malcovati, P.; Baschirotti, A. The Evolution of Integrated Interfaces for MEMS Microphones. Micromachines 2018, 9, 323. [CrossRef]

[PubMed]
2. Ali, W.R.; Prasad, M. Piezoelectric MEMS based acoustic sensors: A review. Sens. Actuator A Phys. 2020, 301, 111756. [CrossRef]
3. Dehé, A. Silicon microphone development and application. Sens. Actuator A Phys. 2007, 133, 283–287. [CrossRef]
4. Bergqvist, J.; Rudolf, F. A silicon condenser microphone using bond and etch-back technology. Sens. Actuator A Phys. 1994, 45,

115–124. [CrossRef]
5. Iguchi, Y.; Goto, M.; Iwaki, M.; Ando, A.; Tanioka, K.; Tajima, T.; Takeshi, F.; Matsunaga, S.; Yasuno, Y. Silicon microphone with

wide frequency range and high linearity. Sens. Actuator A Phys. 2007, 135, 420–425. [CrossRef]
6. Scheeper, P.R.; Nordstrand, B.; Gulløv, J.O.; Liu, B.; Clausen, T.; Midjord, L.; Storgaard-Larsen, T. A new measurement microphone

based on MEMS technology. J. Microelectromech. Syst. 2003, 12, 880–891. [CrossRef]
7. Füldner, M.; Dehé, A. Dual Back Plate Silicon MEMS microphone: Balancing High Performance! In Proceedings of the DAGA

2015, Nürnberg, Germany, 16–19 March 2015; pp. 41–43.
8. Peña-García, N.N.; Aguilera-Cortés, L.A.; Gonzáles-Palacios, M.A.; Raskin, J.-P.; Herrera-May, A.L. Design and Modeling of a

MEMS Dual-Backplate Capacitive Microphone with Spring-Supported Diaphragm for Mobile Device Applications. Sensors 2018,
18, 3545. [CrossRef]

9. Rong, Z.; Zhang, M.; Ning, Y.; Pang, W. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined
ultrasonic transducers. Sci. Rep. 2022, 12, 16174. [CrossRef]

10. Pinto, R.M.R.; Gund, V.; Dias, R.A.; Nagaraja, K.K.; Vinayakumar, K.B. CMOS-Integrated Aluminum Nitride MEMS: A Review. J.
Microelectromech. Syst. 2022, 31, 500–523. [CrossRef]

11. Lynes, D.D.; Chandrahalim, H. Influence of a Tailored Oxide Interface on the Quality Factor of Microelectromechanical Resonators.
Adv. Mater. Interfaces 2023, 10, 2202446. [CrossRef]

12. Verdot, T.; Redon, E.; Ege, K.; Czarny, J.; Guianvarc’h, C.; Guyader, J.-L. Microphone with planar nano-gauge detection:
Fluid-structure coupling including thermo-viscous effects. Acta Acust. United Acust. 2016, 102, 517–529. [CrossRef]

13. Rufer, L.; De Pasquale, G.; Esteves, J.; Randazzo, F.; Basrour, S.; Somà, A. Micro-acoustic source for hearing applications fabricated
with 0.35 µm CMOS-MEMS process. Procedia Eng. 2015, 120, 944–947. [CrossRef]

14. Ganji, B.A.; Sedaghat, S.B.; Roncaglia, A.; Belsito, L. Design and fabrication of very small MEMS microphone with silicon
diaphragm supported by Z-shape arms using SOI wafer. Solid State Electron. 2018, 148, 27–34. [CrossRef]

15. Ganji, B.A.; Majlis, B.Y. Design and fabrication of a new MEMS capacitive microphone using a perforated aluminum diaphragm.
Sens. Actuator A Phys. 2009, 149, 29–37. [CrossRef]

16. Ganji, B.A.; Sedaghat, S.B.; Roncaglia, A.; Belsito, L. Design and fabrication of high performance condenser microphone using
C-slotted diaphragm. Microsyst. Technol. 2018, 24, 3133–3140. [CrossRef]

17. Sedaghat, S.B.; Ganji, B.A.; Ansari, R. Design and modeling of a frog-shape MEMS capacitive microphone using SOI technology.
Microsyst. Technol. 2018, 24, 1061–1070. [CrossRef]

18. Škvor, Z. On the Acoustical Resistance due to Viscous Losses in the Air Gap of Electrostatic Transducers. Acustica 1967, 19,
295–299.

19. Estèves, J.; Rufer, L.; Ekeom, D.; Basrour, S. Lumped-parameters equivalent circuit for condenser microphones modeling. J.
Acoust. Soc. Am. 2017, 142, 2121–2132. [CrossRef]

20. Zuckerwar, A.J. Theoretical response of condenser microphones. J. Acoust. Soc. Am. 1978, 64, 1278–1285. [CrossRef]
21. Lavergne, T.; Durand, S.; Bruneau, M.; Joly, N. Dynamic Behavior of Circular Membrane and An Electrostatic Microphone: Effect

of Holes In The Backing Electrode. J. Acoust. Soc. Am. 2010, 128, 3459–3477. [CrossRef]
22. Lavergne, T.; Durand, S.; Bruneau, M.; Joly, N. Analytical Modeling of Electrostatic Transducers in Gases: Behavior of Their

Membrane and Sensitivity. Acta Acust. United Acust. 2014, 100, 440–447. [CrossRef]
23. Naderyan, V.; Raspet, R.; Hickey, C. Thermo-viscous acoustic modeling of perforated micro-electro-mechanical systems (MEMS).

J. Acoust. Soc. Am. 2020, 148, 2376–2385. [CrossRef] [PubMed]
24. Pedersen, M.; Olthuis, W.; Bergveld, P. On the electromechanical behaviour of thin perforated backplates in silicon condenser

microphones. In Proceedings of the 8th International Conference on Solid-state Sensors ancl Actuators, and Eurosensors IX,
Stockholm, Sweden, 25–29 June 1995; p. 234 A7.

http://doi.org/10.3390/mi9070323
http://www.ncbi.nlm.nih.gov/pubmed/30424256
http://dx.doi.org/10.1016/j.sna.2019.111756
http://dx.doi.org/10.1016/j.sna.2006.06.035
http://dx.doi.org/10.1016/0924-4247(94)00833-7
http://dx.doi.org/10.1016/j.sna.2006.08.016
http://dx.doi.org/10.1109/JMEMS.2003.820260
http://dx.doi.org/10.3390/s18103545
http://dx.doi.org/10.1038/s41598-022-19693-5
http://dx.doi.org/10.1109/JMEMS.2022.3172766
http://dx.doi.org/10.1002/admi.202202446
http://dx.doi.org/10.3813/AAA.918969
http://dx.doi.org/10.1016/j.proeng.2015.08.811
http://dx.doi.org/10.1016/j.sse.2018.07.004
http://dx.doi.org/10.1016/j.sna.2008.09.017
http://dx.doi.org/10.1007/s00542-018-3816-3
http://dx.doi.org/10.1007/s00542-017-3461-2
http://dx.doi.org/10.1121/1.5006905
http://dx.doi.org/10.1121/1.382112
http://dx.doi.org/10.1121/1.3504706
http://dx.doi.org/10.3813/AAA.918724
http://dx.doi.org/10.1121/10.0002357
http://www.ncbi.nlm.nih.gov/pubmed/33138523


Micromachines 2023, 14, 921 15 of 15

25. Novak, A.; Honzík, P.; Bruneau, M. Dynamic behaviour of a planar micro-beam loaded by a fluid-gap: Analytical and numerical
approach in a high frequency range, benchmark solutions. J. Sound Vib. 2017, 401, 36–53. [CrossRef]

26. Honzík, P.; Bruneau, M. Acoustic fields in thin fluid layers between vibrating walls and rigid boundaries: Integral method. Acta
Acust. United Acust. 2015, 101, 859–862. [CrossRef]

27. Šimonová, K.; Honzík, P.; Bruneau, M.; Gatignol, P. Modelling approach for MEMS transducers with rectangular clamped plate
loaded by a thin fluid layer. J. Sound Vib. 2020, 473, 115246. [CrossRef]

28. Herring Jensen, M.J.; Sandermann Olsen, E. Virtual prototyping of condenser microphone using the finite element method for
detailed electric, mechanic, and acoustic characterisation. Proc. Meet. Acoust. 2013, 19, 030039.

29. Bruneau, M.; Scelo, T. Fundamentals of Acoustics; ISTE: London, UK, 2006.
30. Leissa, A.W. Vibration of Plates; Scientific and Technical Information Division, National Aeronautics and Space Administration:

Washington, DC, USA, 1969.
31. Šimonová, K.; Honzík, P.; Joly, N.; Durand, S.; Bruneau, M. Modelling of a MEMS transducer using approximate eigenfunctions

of a square clamped plate. In Proceedings of the 23rd International Congress on Acoustics, Aachen, Germany, 9–13 September
2019; pp. 7361–7368.

32. Šimonová, K.; Honzík, P.; Joly, N.; Durand, S.; Bruneau, M. Modelling of a MEMS Transducer with a Moving Electrode in Form of
Perforated Square Plate. In Proceedings of Forum Acusticum 2020, Lyon, France, 7–11 December 2020; pp. 2539–2542.

33. COMSOL Multiphysics. Acoustics Module User’s Guide. 2022. Available online: https://doc.comsol.com/6.1/doc/com.comsol.
help.aco/AcousticsModuleUsersGuide.pdf (accessed on 23 March 2023).

34. COMSOL Multiphysics. Structural Mechanics Module User’s Guide. 2022. Available online: https://doc.comsol.com/6.1/doc/
com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf (accessed on 23 March 2023).

35. Le Van Suu, T.; Durand, S.; Bruneau, M. On the modelling of a clamped plate loaded by a squeeze fluid film: Application to
miniaturized sensors. Acta Acust. United Acust. 2010, 96, 923–935. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jsv.2017.04.026
http://dx.doi.org/10.3813/AAA.918880
http://dx.doi.org/10.1016/j.jsv.2020.115246
https://doc.comsol.com/6.1/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf
https://doc.comsol.com/6.1/doc/com.comsol.help.aco/AcousticsModuleUsersGuide.pdf
https://doc.comsol.com/6.1/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf
https://doc.comsol.com/6.1/doc/com.comsol.help.sme/StructuralMechanicsModuleUsersGuide.pdf
http://dx.doi.org/10.3813/AAA.918351

	Introduction
	 Analytical Solution
	 Description of the Device
	 The Acoustic Pressure Field inside the Transducer
	 Viscous Effects Originating in the Holes in the Perforated Moving Electrode
	 Wave Equation Governing the Acoustic Pressure in the Air Gap
	 Solution for the Acoustic Pressure in the Air Gap in Case of Piston-like Movement of the Moving Electrode
	 Solution for the Acoustic Pressure in the Air Gap in Case of Nonuniform Movement of the Moving Electrode

	 Coupling of the Moving Electrode Displacement Field and the Acoustic Pressure Field
	 Elastically Supported Rigid Perforated Plate
	 Flexible Perforated Plate Clamped at All Edges


	 Analytical Results and Comparisons with the Numerical (FEM) Ones 
	 Conclusions 
	Approximate Eigenfunctions of the Perforated Flexible Square Plate Clamped at All Edges KarinaLyon2020
	References

