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Abstract: The miniature serpentine robot can be applied to NOTES (Natural Orifice Transluminal
Endoscopic Surgery). In this paper, a bronchoscopy application is addressed. This paper describes
the basic mechanical design and control scheme of this miniature serpentine robotic bronchoscopy.
In addition, off-line backward path planning and real-time and in situ forward navigation in this
miniature serpentine robot are discussed. The proposed backward-path-planning algorithm utilizes
the 3D model of a bronchial tree constructed from the synthetization of medical images such as
images from CT (Computed Tomography), MRI (Magnetic Resonance Imaging), or X-ray, to define a
series of nodes/events backward from the destination, for example, the lesion, to the original starting
point, for example, the oral cavity. Accordingly, forward navigation is designed to make sure this
series of nodes/events shall be passed/occur from the origin to the destination. This combination of
backward-path planning and forward navigation does not require accurate positioning information
of the tip of the miniature serpentine robot, which is where the CMOS bronchoscope is located.
Collaboratively, a virtual force is introduced to maintain the tip of the miniature serpentine robot
at the center of the bronchi. Results show that this method of path planning and navigation of the
miniature serpentine robot for bronchoscopy applications works.

Keywords: miniature serpentine robot; robotic bronchoscopy; path planning and navigation

1. Introduction

In the years since 2020, the world has been experiencing the impact of the COVID-19
pandemic. According to global statistics from the World Health Organization, more than
750 million people have been confirmed infected, and this number of infected continues
to increase. Although the symptoms caused by the COVID-19 infection can be reduced
via vaccinations, there still exists uncured injuries located deep within the lungs, such as
pulmonary fibrosis. In addition, COPD (Chronic Obstructive Pulmonary Disease) causes
1 death every 10 s globally. COPD is caused by long-term inflammation in the respiratory
tract, resulting in the airflow via the respiratory tract being strongly obstructed (obstructive
ventilatory dysfunction). Essentially, COPD includes Chronic Bronchitis and Emphysema,
of which the symptoms are irreversible and cannot be cured.

As described above, the symptoms (pulmonary fibrosis and obstructive ventilatory
dysfunction) caused by the COVID-19 infection and COPD cannot be cured because of
the irreversible injuries located deep within the lungs and bronchi. Researchers have
tried to utilize Mesenchymal Stem Cells, which have the abilities of self-regeneration and
multilineage differentiation, to cure irreversible diseases [1–4]. Golchin, A. et al. [1] showed
the effectiveness of MSC therapy on COVID-19 based on MSCs’ immunomodulatory and
regenerative properties and concluded that cost-effective utilization of MSC therapy is a
critical issue. Kim, K. et al. [2] demonstrated that an intravenous injection of MSC is safe
and acceptable. Mallis, P. et al. [3] concluded that MSCs can successfully be activated by
a COVID-19 patient’s serum and secrete anti-inflammatory cytokines and growth factors.
P.M. George et al. [4] also showed the potential of MSC therapy for COVID-19.
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On the other hand, Zhang, Y. et al. [5] adopted allogeneic adipose-derived mesenchy-
mal stem cells (AMSCs) for COPD mice via intratracheal and intravenous administration.
Their results [5] showed that MSC therapy for COPD is effective. In addition, ref. [5]
showed that intratracheal administration of AMSCs is more effective compared to intra-
venous administration of AMSCs. Nejaddehbashi, F. et al. [6] also concluded that the
anti-inflammatory effects of intratracheal AMSCs treatment are more potent than systemic
administration for the treatment of emphysema.

Based on previous studies [1–6], adopting MSC therapy for the treatment of COVID-19
and COPD may be a potential treatment solution, while a critical issue will be how to effec-
tively deliver MSCs directly to the lesion. Therefore, research on MSC delivery is emerging.
Go, G. et al. [7] designed microrobots with an overall scaffold size of 357.55 ± 18.57 µm and
pore sizes of 43.85 ± 13.39 µm, which can contain MSCs. These microrobots containing MSCs
can be injected via a catheter needle into the knee for cartilage regeneration in vivo and be
navigated by an Electro-Magnetic Actuation (EMA) system [7]. This mechanism cannot be
adopted in the lungs for delivering MSCs to the lesion because penetration via the skin by a
catheter needle to the lungs has a very high probability of causing risky pneumothorax.

Another resolution for delivering MSCs into the deep lungs (bronchi) could be a
bronchoscopy via the human oral cavity. This kind of method depends heavily on the
bronchoscopy operation experiences of the surgeons. Thus, studies and developments on
robotic bronchoscopy have been conducted. Chen, A.C. et al. [8] showed the capability
of a robotic bronchoscopy via the support of real-time images from a bronchoscope, elec-
tromagnetic navigation, and CT views. However, it still requires surgeons to control the
movement of this robot-assisted bronchoscopy. This kind of serpentine robot [9–12] has
been discussed as a feasible solution for moving inside the bronchi of the lungs.

Beyond the research on robotic bronchoscopy, path planning and navigation for this
robotic bronchoscopy is a critical issue. Refs. [13,14] discussed several schemes to fulfill
the functionalities of path planning and navigation. In [13], Ho, E. et al. reviewed several
research studies related to path planning for a robotic bronchoscopy; for example, a bron-
choscopist begins by reviewing the CT scan of the chest carefully and then writing down
the plans to take—starting from the distal trachea to the main bronchus, lobar bronchus,
segmental airway, and subsegmental airways, and finally the target. Another planning
scheme mentioned in [13] is a computer-generated pathway where the bronchoscopist
identifies and marks the target lesion and then the computer accordingly generates a path-
way from the central airway to the target lesion. Regarding the navigation phase—guiding
the robotics bronchoscopy while moving inside the bronchi—ref. [13] indicated that a
synchronization procedure (Registration) between the position of the robotic bronchoscopy
and the planned virtual pathway is required in advance. Without this synchronization,
the robotic bronchoscopy could be navigated along the wrong path. Furthermore, ref. [13]
described the significance of a live bronchoscopy view in order to correct the real-time
movement of the robotic bronchoscopy. Duan, X., et al. [14] adopted an electromagnetic
(EM) localization system integrated into the robotic bronchoscopy for further navigation.

After reviewing the research described above, we can draw the following conclusions:
1. MSC therapy for healing COVID-19 and COPD could be effective but requires a direct
way to deliver the MSCs to the target in vivo; 2. adopting a miniature serpentine robot
as a container for MSCs is an effective method of delivering MSCs directly to the target
bronchi; accordingly, 3. path-planning and navigation inside the lungs become critical
issues when an automatic robotic bronchoscopy is applied. Therefore, in this paper, a
miniature serpentine robotic bronchoscopy is proposed. Section 2 of this paper will describe
the basic mechanical design and control scheme of this proposed miniature serpentine
robotic bronchoscopy. In addition, off-line backward path planning and real-time and
in situ forward navigation of this miniature serpentine robot is discussed in Section 2.
The implementation and results are described in Section 3. Then, Section 4 contains the
discussion and conclusions.
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2. Mechanical Design, Control Scheme, Path Planning, and Navigation of the
Miniature Serpentine Robotic Bronchoscopy

In this section, the mechanical design and control scheme of the proposed miniature
serpentine robotic bronchoscopy will be described. A bending section with a length of
40 mm and an outer diameter of <4 mm is designed at the front portion of this robotic
bronchoscopy for omnidirectional entry into the complicated bifurcation of bronchi. Then,
a control scheme combining real-time visual information captured from a CMOS camera
equipped at the tip of the bending section is specified. In addition, the algorithm for path
planning and navigation of this robotic bronchoscopy is proposed.

2.1. Mechanical Design

The main use case for this proposed robotics bronchoscopy is MSC therapy, consisting
of delivering MSCs directly to the target lesion located deep within the bronchi. As is
well known, the stricture of the bronchial tree is complicated with large turning angles
(for example, 90◦) and multiple bifurcations. Furthermore, the diameter of the bronchi
becomes much smaller when moving deeper inside the bronchial tree. Accordingly, the
outer diameter of this proposed robotic bronchoscopy must be as small as possible to allow
the bronchoscopy to move closer to the lesion. In addition, real-time and in situ visual
information is captured by a CMOS sensor/camera equipped at the tip of the bending
section at the front portion of the proposed robotic bronchoscopy. To summarize, the basic
design guidelines and requirements are listed in Table 1.

Table 1. Basic design guidelines and requirements of the proposed robotic bronchoscopy.

Item Description Guidelines/Requirements

1. Bending section at the front portion of the
robotic bronchoscopy

• Maximal bending angle >90◦, larger is better.
• Four movable directions—Up-Down; Right-Left
• Radius of curvature/bending section is as less as possible.

2. Outer diameter of the bending section • Smaller is better. Currently, <4 mm is feasible.

3. Real-time and in-situ visual information

• Visual information is captured by a CMOS sensor/camera.
• Smaller CMOS sensor/camera is better.
• Higher resolution is better.
• Higher frame rate is better.

Based on Table 1, the mechanical structure of this proposed robotic bronchoscopy is
shown in Figure 1, based on our previous works [15,16]. In Figure 1, a bending section
at the front portion of the bronchoscopy is illustrated. At the tip of this bending section,
there is a CMOS sensor/camera located. This bending section is manipulated by wires
(tendons). Dimensions related to the mechanical structure are depicted in Figure 1 as
well. The bending section is composed of several sub-sections with a 30◦ gap between two
consecutive sub-sections, as shown in Figure 2. By accumulating several sub-sections to
form a complete bending section, the maximal bending angle can be determined, and the
radius of curvature/bending can be calculated.

For four movable directions—up–down and right–left—two sub-sections are con-
nected via two hinges attached to each sub-section, interlaced mutually at 90◦ as shown in
Figure 2. Accordingly, eight sets of two sub-sections can determine >180◦ bending angles
along four directions, as illustrated in Figure 3.

For further investigation and control of this mechanical design, kinematics analysis
is required. To analyze the kinematics for this bending section, the well-known Denavit–
Hartenberg (D-H) parameters were applied, and the D-H table of this bending section is
shown in Table 2 [15,16], while the coordinates assigned to each sub-section are displayed
in Figure 4 where the directions of the x-axis, y-axis, and z-axis are illustrated.



Micromachines 2023, 14, 969 4 of 16Micromachines 2023, 14, 969 4 of 17 
 

 

 
Figure 1. The mechanical structure of this proposed robotic bronchoscopy. 

 

(a) 

 

(b) 

Figure 2. (a) 30° gap and (b) 90° interlaced placement of hinges between two consecutive sub-sec-
tions. 

For four movable directions—up–down and right–left—two sub-sections are con-
nected via two hinges attached to each sub-section, interlaced mutually at 90° as shown 
in Figure 2. Accordingly, eight sets of two sub-sections can determine >180° bending an-
gles along four directions, as illustrated in Figure 3.  

Figure 1. The mechanical structure of this proposed robotic bronchoscopy.

Micromachines 2023, 14, 969 4 of 17 
 

 

 
Figure 1. The mechanical structure of this proposed robotic bronchoscopy. 

 

(a) 

 

(b) 

Figure 2. (a) 30° gap and (b) 90° interlaced placement of hinges between two consecutive sub-sec-
tions. 

For four movable directions—up–down and right–left—two sub-sections are con-
nected via two hinges attached to each sub-section, interlaced mutually at 90° as shown 
in Figure 2. Accordingly, eight sets of two sub-sections can determine >180° bending an-
gles along four directions, as illustrated in Figure 3.  

Figure 2. (a) 30◦ gap and (b) 90◦ interlaced placement of hinges between two consecutive sub-sections.



Micromachines 2023, 14, 969 5 of 16Micromachines 2023, 14, 969 5 of 17 
 

 

 
Figure 3. Bending angles of bending section composed of eight sets of two sub-sections. 

For further investigation and control of this mechanical design, kinematics analysis 
is required. To analyze the kinematics for this bending section, the well-known Denavit–
Hartenberg (D-H) parameters were applied, and the D-H table of this bending section is 
shown in Table 2 [15,16], while the coordinates assigned to each sub-section are displayed 
in Figure 4 where the directions of the x-axis, y-axis, and z-axis are illustrated.  

 
Figure 4. Coordinate assignment for each sub-section [15,16]. 

Table 2. The D-H table of the bending section [15,16]. 

Joint θ d a α 
1 0 0 lS 0° 
2 θ1 0 g + h 90° 
3 θ2 0 g + h −90° 
4 θ3 0 g + h 90° 
     

14 θ13 0 g + h 90° 
15 θ14 0 lE −90° 

From the derivation of the kinematics analysis based on the information in Table 2 
[15,16], where 𝑙ௌ and 𝑙ா are defined as the lengths of the first sub-section and the last 
sub-section, the wiring hole length is ℎ, and the distance between two consecutive wiring 
holes is 𝑔 . Accordingly, 𝜃ோ  as the right–left bending angle can be calculated with 𝜃ଵ, 𝜃ଷ, … , 𝜃ଵଷ, and 𝜃 as the up–down bending angle with 𝜃ଶ, 𝜃ସ, … 𝜃ଵସ. The homogene-
ous transformation matrix (HTM) adopted is shown in Equation (1). 

𝐴 = ൦𝑐𝜃 െ𝑠𝜃𝑐𝛼 𝑠𝜃𝑠𝛼 𝑎𝑐𝜃𝑠𝜃 𝑐𝜃𝑐𝛼 െ𝑐𝜃𝑠𝛼 𝑎𝑠𝜃0 𝑠𝛼 𝑐𝛼 𝑑0 0 0 1 ൪, (1)
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Table 2. The D-H table of the bending section [15,16].

Joint θ d a α

1 0 0 lS 0◦

2 θ1 0 g + h 90◦

3 θ2 0 g + h −90◦

4 θ3 0 g + h 90◦

14 θ13 0 g + h 90◦

15 θ14 0 lE −90◦
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From the derivation of the kinematics analysis based on the information in Table 2 [15,16],
where lS and lE are defined as the lengths of the first sub-section and the last sub-section,
the wiring hole length is h, and the distance between two consecutive wiring holes is g.
Accordingly, θRL as the right–left bending angle can be calculated with θ1, θ3, . . . , θ13, and θUD
as the up–down bending angle with θ2, θ4, . . . θ14. The homogeneous transformation matrix
(HTM) adopted is shown in Equation (1).

An =


cθn −sθncαn sθnsαn ancθn
sθn cθncαn −cθnsαn ansθn
0 sαn cαn dn
0 0 0 1

 (1)
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where sθn = sinθn, cθn = cosθn. Accordingly, the complete HTM can be calculated using
Equation (2) where Px, Py, and Pz represent the end position.

T= A1 × A2 × · · · × An =


nx ox ax Px
ny oy ay Py
nz oz az Pz
0 0 0 1

. (2)

To further investigate the working space, the θRL can be ±210◦ and θUD can be ±240◦

since there are seven 30◦ gaps for the right–left bending and eight 30◦ gaps for the up–down
bending angle, as shown in Figure 3.

Moreover, a CMOS sensor/camera (diameter < 2 mm) was equipped to the tip of the
bending section within the distal head with a diameter of <4 mm, as shown in Figure 5.
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2.2. Control Scheme

As shown in Figure 6, the basic control scheme of the proposed miniature serpentine
robotic bronchoscopy is composed of a central controller to coordinate the movements of
this robotic bronchoscopy and an actuation module to activate the wires with a pull/release
motion that can control the bending angle and the bending direction of the bending
section at the front portion of this robotic bronchoscopy based on the commands from
the central controller. For further applications, this actuation module will be mounted on
a collaborative robot arm where the proper orientation can be provided to adapt to the
environment. Moreover, a visual information-processing module will be introduced to
process the visual information captured by the integrated CMOS sensor/camera at the
tip of the bending section. The visual information-processing module can calculate the
central position of an area of interest in an image based on the image-processing algorithm.
This centering capability will be utilized to automatically control the tip of the bending
section pointing to the center of an area of interest. In the following Sections 2.3 and 2.4,
the proposed path planning and navigation scheme will be specified.

2.3. Backward Path Planning

As described above, efficient path planning for navigating the robotic bronchoscopy in-
side the bronchial tree is necessary. Several previous researchers [8–14] have addressed this
issue. In this paper, a backward path planning algorithm is proposed, followed by a forward
navigation algorithm. With these paired backward-path-planning and forward-navigation
algorithms, it is not required to calculate the accurate position/orientation of the tip of the
bending section of the proposed miniature serpentine robotic bronchoscopy; instead, an
event planning and navigation scheme conducts the movement of the robotic bronchoscopy.

The structure/topology of the bronchial tree of a human body does not dramatically
change in a short period of time, that is, certain bronchi do not go missing or disappear
suddenly. Thus, the proposed backward path planning scheme adopts this invariance of
the structure/topology of the bronchial tree as the key concept to encode the invariant
structure/topology into discrete events. The basic idea of this path planning is to start
planning from the destination and then move back toward the origin/start and record
the path that is followed, then reverse the record of the movement path. Finally, the path



Micromachines 2023, 14, 969 7 of 16

planning from the origin/start to the destination is achieved. The block diagram of this
backward path planning scheme is illustrated in Figure 7.
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Figure 7. Block diagram of the proposed backward path planning.

In Figure 7, the Destination is defined as the nearest bronchi to the target of the robotic
bronchoscopy. The Origin is usually the oral cavity. It shall be noted that before starting path
planning, medical image information such as CT scanned images, MRI images, and even a
3D model of the bronchial tree is made available. In this paper, the method of reconstructing
a 3D model of the bronchial tree from medical image information is not addressed.

Conventional path planning is specified as finding the appropriate path from the
Origin to the Destination. Most path-planning algorithms, such as those in [17,18], first
assign the destination and then start path searching from the origin. These algorithms
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accordingly determine a feasible path from the search results. This kind of path planning
with a forward-searching process takes longer. This paper proposed a backward scheme for
path planning by beginning at the Destination. The process for this backward path planning
is shown in Figure 7. From the Destination, at Initialization, Event Index i is set to 1 and the
Wall Status is set to “Not detected”. An Event is defined as a situation that the tip of the
robotic bronchoscopy will encounter during its trip from the Origin to the Destination. In
the bronchoscopy use case, the Event is further specified as Equation (3), where Node refers
to a bifurcation in the bronchial tree and the Decision represents what decision is made at
such a Node. Thus, Event means that at such a Node, a predetermined Decision shall be made
to trigger this Event. The Decision can be Right or Left in the simplified bronchial tree, as
shown in Figure 8, which means the tip of the robotic bronchoscopy shall move right or left
at such a Node to trigger that associated Event.

Eventi = Nodei + Decision (3)
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Wall Status represents whether there is a Wall detected in the image captured by the
robotic bronchoscopy. Wall signifies that there is a line existing between two bronchi in the
captured image, as shown in Figure 8. After Initialization, a sliced image at the Destination
is loaded. Node Determination will determine whether there is a Node or not based on the
detection of a Wall. If a Wall is detected by image processing to identify a line existing
between two bronchi, then a Node at a bifurcation point in the bronchial tree is found. In
this Node Determination, a change in Wall Status is critical information to avoid duplication
of the same Node. Therefore, based on the result from Node Determination, a new Event could
be added. The Event is recorded, and 1 is added to Event Index i as Equation (4) shows.

TEventi = TNodei + Decision(RorL).i = i + 1 (4)

Then, the tip of the robotic bronchoscopy can move backward toward the Origin with
one step backward after image loading. The Decision at this newly determined Event can be
derived because, after moving back to the Origin, the virtual path the tip has passed can be
recorded. A series of Decisions would be recorded accordingly, which represents a series of
TEvents that are defined accordingly. When the Origin is reached virtually by the tip of the
robotic bronchoscopy, a series of TEvents in reverse order from the Destination to Origin is
specified by our proposed path-planning process. To reverse the backward order, we set
Final Event Index FEI = current Event Index i, then according to Equation (5), Event Path
Planning with an incremental index from the Origin to the Destination is generated.

From j = 1 to FEI − 1, Eventj = TEventFEI−j+1. (5)
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At the Navigation stage, the robotic bronchoscopy is controlled to trigger this specified
series of Events from the Origin, and finally, the Destination will be reached.

2.4. Forward Navigation

By adopting the proposed backward path planning described in Section 2.3, a series of
Events with Nodes and Decisions is derived from the Origin to the Destination. In Figure 9,
the navigation process is demonstrated. The core concept is to adopt image recognition
to identify the Node, make a Decision at this Node and mark this Event as triggered, and
then move forward until the next Node is identified. This kind of navigation does not
strictly depend on the accurate position of the tip of the robotic bronchoscopy compared to
conventional navigation with a robotic endoscope. Furthermore, this navigation depends
on ensuring a series of Events is triggered in order. As shown in Figure 9a, following Events
1~3 and making the corresponding Decisions 1~3 by identifying Nodes 1~3, the Destination
can be reached. In Figure 9b, the complete navigation process is depicted.
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As shown in Figure 9b, navigation starts from the Origin via several functional pro-
cessing modules and guides the robotic bronchoscopy to move forward to the Destination.
During the entire navigation process, Image Capture means capturing real-time images
from the CMOS sensor/camera at the tip of the robotic bronchoscopy. Because there is an
orientation indicator located at the tip, the orientation of the tip can be derived at the Pose
& Orientation Calculation stage. This orientation information will be used in the calculation
of the desired bending angle when a Decision (Right/Left) is made. At the Node Recognition
stage, if a Wall, as defined in Section 2.3, is identified by image processing, then the Depth
Calculation will determine the Depth from the tip to the Wall and pass the depth information
on to the next stage Event-triggered Navigation. If no Wall is identified, the controller will
control the tip of the robotic bronchoscopy to point to the center of the captured image and
then keep moving forward. This Centralization can be achieved by visual servo control as
described in our previous research [16].

At the Event-triggered Navigation stage, a detailed procedure takes place, as is shown in
Figure 10. Based on the pose, orientation, depth information, and event-triggered history,
the bending section of the robotic bronchoscopy is controlled to point toward the identified
Wall, as shown in Figure 11, via an estimation. During this process, if the calculated depth
is small enough, then the bending section is controlled to move toward the center of the
desired branch of the bronchial tree according to the planned Event + Node + Decision as
shown in Figure 12.
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During this navigation, it is necessary to record all the Events being triggered and
compare them with the pre-determined Event planning. Accordingly, following the ordered
Event planning, the robotic bronchoscopy can move toward the desired Destination.

In the following Section 2.5, an extra module is proposed with a virtual impedance
force control scheme to avoid the tip of the robotic bronchoscopy making forceful contact
with the bronchial wall. In contrast to ref. [19], in this paper, two kinds of virtual forces are
generated to maintain the tip in a central position inside the bronchi.

2.5. Virtual Force for Centering

This paper proposes a module with a virtual impedance force control scheme in order
to avoid unnecessary contact during operation. Figure 13 demonstrates this scheme. Two
virtual forces are defined as FA, representing the attraction force that attracts the tip toward
the center, and FR, representing the repulsion force that pushes the tip away from the
bronchial wall. The directions of FA and FR point to the center along with the inverse
direction of P, calculated as Equation (6).

FA = −MA
..
P + BA

.
P + KAP

DA
2 FR = −MR

..
P + BR

.
P + KRP

DR
2 (6)

where P is defined as a vector pointing to the tip position from the center; MA, BA, and KA
are the impedance coefficients for attraction; MR, BR, and KR are the impedance coefficients
for repulsion; DA is the distance between tip position P and the center; DR is the distance
between tip position P and the virtual bronchial wall by setting the radius RBW from the
center. Apparently, based on Equation (6), when P is approaching RBW, DA is close to RBW,
DR is then very short, and the repulsion force FR will increase and strongly push the tip
back to the center. When P is close to the center, DA is close to zero, DR is near RBW, and the
attraction force FA will attract the tip to the center. By selecting the impedance coefficients
(MA, BA, KA) and (MR, BR, KR), the desired attraction and repulsion forces can be generated.
In our implementation, we will integrate the impedance control scheme into the tip of our
robotic bronchoscopy system.
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3. System Implementation and Results
3.1. Implementation

Based on the mechanical design described in Section 2.1, consecutive sub-sections
of the bending section of the robotic bronchoscopy are manufactured by precise laser
engraving of one piece of stainless-steel tube, of which the diameter can be selected to
satisfy the size of the CMOS sensor/camera adopted. Four metal wires pass through the
holes of each sub-section to actuate bending with any desired direction and angle. Figure 14
shows pictures of the bending sections with outer diameters of 3.36 mm and 4.0 mm,
respectively, as well as the 3D orientation of this bending section. A CMOS sensor/camera
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(OV6948 with an optical size of 1/36”, 200 × 200 pixels, and 30 fps) is integrated into the
distal head at the tip of the bending section. With reference to Figure 1, it displays the
assembly of this robotic bronchoscopy. It shall be noted that SUS304 and SUS316L are
applied as the materials of mechanical components to satisfy the FDA requirements for
materials. Moreover, the overall manufacturing and assembly process will be GMP-certified.
In addition, a gravitational indicator is added to our bronchoscopy implementation to
indicate the horizontal level for determining the right or left side.
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As per the implementation of the control scheme, the system diagram is shown in
Figure 15. An eMIO controller is adopted as a central control coordinator to coordinate the
movements of the robot arm and the proposed robotic bronchoscopy, primarily based on
the image information from the CMOS sensor/camera and our proposed path planning
and navigation algorithms. An SJ605 Collaborative Robot developed by ITRI is adopted
in this system. Two RE30 DC motors and correlated drivers and Ethercat controllers are
utilized to actuate the wires to control the bending section of the robotic bronchoscopy.
Visual servo functionality is implemented to guide the tip of the bending section to aim
at the desired position. In Section 3.2, simulated results of the proposed backward path
planning and forward navigation are described.
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3.2. Results

To navigate the robotic bronchoscopy when moving inside the bronchial tree by
following the pre-determined path planning with planned and ordered Events, an algorithm
of backward path planning was described in Section 2.3. Referring to Figure 7, which shows
the proposed backward path planning, and Figure 8, which shows the simplified bronchial
tree, as shown in Figure 16, an initialization image at Destination D is loaded, and at point
¬ according to the Node Determination, Wall Detection is NO. This leads to No New Node
Added as shown in Figure 16. Based on the proposed backward path planning, the virtual
tip of the robotic bronchoscopy is controlled to move backward from the Destination to
the Origin while the corresponding medical images are loaded along with the backward
moving path. Thus, at point , the same status is concluded: No New Node Added. At
point ®, Wall Detection is YES and Wall Status is changed from Not detected to Detected.
In addition, from the image history and 3D model of the bronchial tree reconstructed
from medical images, a Right-Hole will appear on the right side once the tip has moved
backward slightly from point  to point ®, then a New Event with New Node and Decision
(TEvent1 = TNode1 + Decision(L)) is added, as shown in Figure 16. In the following steps,
the Decision corresponding to an Event is specified by the same scheme. At point ¯, the
Wall is still detected but Wall Status is not changed, and the planning result is No New Node
Added. Meanwhile, at point °, there is no Wall detected since the tip of the bronchoscopy is
located far from the previous Wall. The planning result is No New Node Added. Meanwhile,
at point ±, Wall Detection is YES and Wall Status is changed from Not detected to Detected,
and then a New Event with a New Node and Decision ( TEvent2 = TNode2 + Decision(L)) is
added. At point ², the status is the same as at point °, and No New Node is added. At point
³, accordingly, Wall Detection is YES and Wall Status is changed from Not detected to Detected,
and then a New Event with a New Node and Decision ( TEvent3 = TNode3 + Decision(R))
is added. At point ´, the planning result is No New Node Added. Finally, at point ¬, the
Origin, the Final Event Index FEI is 4, and by applying Equation (5), a series of planned and
ordered Events are listed, as shown in Table 3.
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tively. This experiment demonstrates the feasibility of the proposed algorithms.  
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Table 3. The simulated results of backward path planning based on Figure 16.

Event TEvent TNode Node Decision FEI = 4

Event1 TEvent(4-1) = TEvent3 TNode3 Node1 R
Event2 TEvent(4-2) = TEvent2 TNode2 Node2 L
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At the navigation stage, following the navigation algorithm described in Section 2.4
and as shown in Figure 9, by adopting image recognition to identify the Node, making a
Decision at this Node, marking and recording that this Event has been triggered, and moving
forward until the next Node is identified, the Destination will be reached. In Figure 17, the
results of an experiment in the bronchial tree phantom with our proposed algorithms are
illustrated. The correctness of image recognition can navigate the robotics bronchoscopy
to move along the correct path. In Figure 17a, image recognition is illustrated as yellow
and blue circles. During the insertion of the robotic bronchoscopy along the bronchi, a
bifurcation is then detected, illustrated as two blue circles in Figure 17b. According to the
first Event definition, Right Decision is selected as indicated in Figure 17b. Meanwhile, in
Figure 17c,d, the Decisions of the second and third Events are Left and Left, respectively. This
experiment demonstrates the feasibility of the proposed algorithms.
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attached to this proposed robotic bronchoscopy to provide extra sensory information such 
as haptic/force feedback. The provision of the haptic/force information supports the sys-
tem in reducing the probability of tissue damage due to any applied force. With this hap-
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Figure 17. Experiment results in bronchial tree phantom with the proposed algorithms: (a) yellow
and blue circles shows the results of image recognition at the start; (b) Two blue circles show the
bifurcation and Right Decision is indicated; (c) Left Decision at Event2 is indicated; (d) Left Decision at
Event3 is indicated.

4. Discussion and Conclusions

In this paper, a review of MSC therapy has been addressed. Researchers have prelimi-
narily demonstrated the potential effectiveness. Therefore, a miniature serpentine robotic
bronchoscopy is proposed to deliver MSCs as close to the target as possible. Furthermore, a
corresponding mechanical design and control scheme has been also discussed. In addition,
a backward path planning and forward navigation algorithm is described to efficiently
perform path planning from the oral cavity to the deep bronchi and navigate the robotic
bronchoscopy to move correctly to the planned destination.

In the proposed path planning and navigation algorithms, the correctness of image
processing to identify a Wall and map the identified image to the planned Event is significant.
Furthermore, a major point of difference compared to other navigation algorithms or
solutions is that the accurate position of the tip of the robotic bronchoscopy is not required
during the entire navigation in the proposed navigation scheme in this paper. The only
information required is a correct map and record of the planned Events that are triggered.
In addition, making the related appropriate Decision at the correct Node is also significant.

The implementation of this robotic bronchoscopy with path planning and navigation
has demonstrated the feasibility of this solution. More simulations and experiments
will be conducted to further verify the efficiency of the proposed path planning and
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navigation mechanism. In addition, a force sensor is under design and development,
which will be attached to this proposed robotic bronchoscopy to provide extra sensory
information such as haptic/force feedback. The provision of the haptic/force information
supports the system in reducing the probability of tissue damage due to any applied
force. With this haptic/force information, this robotic bronchoscopy can perform more
sophisticated operations within limited space inside the human body. Moreover, an MSC
cell sprayer is under development to spray MSCs uniformly onto the target with the
working channel provided via the proposed miniature serpentine robotic bronchoscopy.
This proposed robotic bronchoscopy can be a platform for carrying various tools with their
own specific purposes. Moreover, with multiple miniature serpentine robotic endoscopes,
more complicated and dexterous operation procedures could be performed.

5. Patents
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