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Abstract: A safety and arming device with a condition feedback function has been designed in
this article to improve the intelligence and safety of ignition devices. The device achieves active
control and recoverability by virtue of four groups of bistable mechanisms which consist of two
electrothermal actuators to drive a semi-circular barrier and a pawl. According to a specific operation
sequence, the barrier is engaged by the pawl at the safety or the arming position. The four groups of
bistable mechanisms are connected in parallel, and the device detects the contact resistance generated
by the engagement of the barrier and pawl by the voltage division of an external resistor to determine
the parallel number of the mechanism and give feedback on the device’s condition. The pawl as a
safety lock can restrain the in-plane deformation of the barrier in the safety condition to improve the
safety function of the device. An igniter (a NiCr bridge foil covered with different thicknesses of
Al/CuO films) and boron/potassium nitrate (B/KNO3, BPN) are assembled on both sides of the S&A
device to verify the safety of the barrier. The test results show that the S&A device with a safety lock
can realize the safety and arming functions when the thickness of the Al/CuO film is set to 80 µm
and 100 µm.

Keywords: safety and arming device; electrothermal actuator; bistable mechanism; condition feedback;
MEMS

1. Introduction

Safety and Arming (S&A) devices are vital to ensuring weapon systems’ safety, re-
liability, and lethality by isolating sensitive igniters from insensitive charges through a
removable barrier mechanism to control their energy transfer (allowing standard ignition
and preventing accidental ignition). With the demand for miniaturization and intelligence
in modern information warfare, MEMS S&A devices have become a focus of research due
to their outstanding features such as micromechanics, integrated structure, and intelligent
actuation [1,2]. Existing MEMS S&A devices already have miniaturized structures and
different drive principles, but they are still insufficient in terms of intelligence.

The intelligence of S&A devices is reflected in their active control, recoverability,
and condition feedback. Actively controlled S&A devices can be armed in arbitrary en-
vironments, whereas traditional S&A devices use ammunition-specific environmental
information for one-time passive arming. Initially, Charles H. Robinson proposed an
inertial-driven micro S&A device for small caliber munition, which is armed by setback
load and fabricated by the UV-LIGA process [3]. Similarly, Seok et al. and Jeong et al.
presented two miniature S&A devices armed with setback and centrifugal loads [4,5]. In
addition, Lou et al. designed a micro S&A device for a small caliber projectile that is armed
by centrifugal loads [6,7]. Recently, Lei et al. analyzed the mechanical responses of an
inertially driven S&A device under dual-environment inertial loads [8]. Inertially driven
S&A devices are the most reliable, but they are inflexible on a complicated battlefield.
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For novel unmanned combat platforms, such as unmanned aerial vehicles (UAV), the
ammunition lacks an inertial environment and does not need to be activated on every
mission. Therefore, armed S&A devices must be able to recover to a safe condition to
ensure the safety of the platform’s recycling. To ensure the success of each drive, S&A
devices urgently need a simple and reliable condition feedback function. Electrically driven
S&A devices are armed by electrical signals, such as electromagnetic and electrothermal
signals. For example, Hu et al. designed an electrothermal S&A device that can control
the barrier’s movement with the cooperation of four electrothermal actuators [9,10]. In
addition, Maurer et al. proposed an electromagnetic S&A device in which the barrier
is pulled by an electromagnetic coil [11,12] and Sun et al. presented an electromagnetic
coil used in MEMS S&A devices [13]. All the electrically driven S&A devices can achieve
active control and recoverability through bistable mechanisms, but no articles have been
published on the condition feedback function of MEMS S&A devices.

Herein, we propose the design and characterization of an intelligent MEMS S&A
device with a condition feedback function, which is an improvement of an electrothermal
bistable S&A device [14–16]. This intelligent S&A device has a smaller size (5.8 × 5.8 mm2),
lower drive voltage (11 V), and higher safety (barrier safety lock) through an optimized
structural layout. The device uses two actuators to control a pawl and a barrier so that
they can engage or disengage to realize the bistability of the barrier and test the pawl and
barrier contact to achieve the feedback function. The S&A device is then assembled in an
ignition device to test the safety improvement of the safety lock.

2. Modeling
2.1. Structure of the Ignition Device

The S&A device is designed as an ignition device by assembling an igniter and an
ignition powder on both sides, the structure of which is improved based on the previous
research, with an overall size of Φ8 × 3.4 mm3, as shown in Figure 1. The center of the S&A
device is a double-layer barrier structure with interfaces at the top (diameter of 500 µm) for
connecting the ignition powder and at the bottom (diameter of 1000 µm) for connecting the
igniter, as shown in Figure 1c. The igniter is a NiCr bridge foil covered with an Al/CuO
energetic film which produces a flame to ignite the ignition powder when stimulated by
an electric current [17–20]. Boron/potassium nitrate (B/KNO3, BPN) was selected as the
ignition powder and assembled in the powder chamber to avoid crushing.
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2.2. Structure of the S&A Device

The S&A device consists of two layers (top layer and bottom layer) of SOI wafers
(50 µm device layer, 3 µm buried layer, and 400 µm handle layer) with an overall size
of 5.8 × 5.8 × 0.9 mm3, and each layer has two semicircular barriers driven by bistable
mechanism, as shown in Figure 2a. Two layers of the printed circuit board (PCB) and the
S&A device form a sandwich structure to protect the chip’s structure. In addition, the
electrodes of the two-layer chip are connected to the two PCB layers by gold wire leads and
then connected by four pads around the PCB. When the S&A device is in a safe condition,
the barrier covers the igniter. If the igniter is accidentally stimulated, the flame energy is
blocked and cannot reach the BPN, as shown in Figure 2b. Otherwise, driven by an arming
signal, the S&A device will switch to the armed condition to open the igniter. Flame energy
is allowed to pass through the S&A device and ignite the BPN, as shown in Figure 2c.
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2.3. Driving Principle of the S&A Device

A V-shape electrothermal actuator is selected as the drive unit for the S&A device; its
drive theory has been extensively studied and, thus, is not described in this article. The
displacement of the electrothermal actuator is too small to drive the barrier and a soft
lever mechanism is used to enlarge the deformation. The S&A device uses four groups of
bistable mechanisms to independently and synchronously control the double-layer barrier.
Each bistable mechanism consists of two actuators driving a barrier and a pawl. The
geometric parameters of the two actuators and the soft lever are shown in Table 1, and
all the parameters are expressed in previous research [14]. Finite element simulations of
the bistable mechanism are performed, and the results are shown in Figure 3a. When the
applied voltage is set to 11 V, the barrier and the pawls can generate a displacement of
358 µm and 117 µm, which is sufficient for the mechanism.

According to a specific operation sequence, the bistable mechanism can control the
engagement of the actuator and the pawl as shown in Figure 3b: (1) In the safety condition,
the pawl as a safety lock engages with the barrier so that the barrier can open only a minute
angle, and they are non-contact when no signal enters; (2) The pawl is opened to release
the barrier’s movement; (3) The barrier is opened to the arming position; (4) The pawl is
closed to prevent the barrier from returning to the safety position; (5) The barrier is closed
to engage with the pawl; and (6) In the armed condition, the barrier is engaged with the
pawl in the arming position, and the pawl is pressed against the limit block. The driven
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signal is two pulse signals with a phase difference, as shown in Figure 3c. Following a
reverse operation process, the S&A device can recover to the safe condition.

Table 1. Geometrical parameters of the electro-thermal actuator and the soft lever mechanism.

Item Barrier Actuator Pawl Actuator Unit

Width (w) 35 35 µm
Length (L) 1900 1500 µm

Thickness (h) 50 50 µm
Angle (θ) 3 3 ◦

Number of beams 3 2 None
Width of the soft lever (w′) 14 14 µm
Length of the soft lever (L′) 500 350 µm

Distance of the soft beams (Ld) 30 30 µm
Enlarged proportion 55 33 None

The condition feedback function of the S&A device is realized on the basis of the
bistable mechanism. The electrothermal actuators can be considered as a series connection
of two resistors (R1 and R2 for the barrier actuator; R3 and R4 for the pawl actuator). In
the armed condition, the barrier and the pawl are pressed tightly, which creates a contact
resistance of R5. The circuit of the S&A device can be simplified as shown in Figure 3d.
However, in the safety condition, the barrier and the pawl are separated and insulated from
each other. Therefore, the R5 is infinitely large as an open circuit in the safety condition.
Accordingly, the condition of the S&A device can be determined by testing the value of
the R5.
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3. Fabrication

The ignition device is prepared by an assembly of each component, including the S&A
device, the igniter, and the BPN, where the S&A device is fabricated from a 4-inch SOI
wafer by the etching process [14–16], as shown in Figure 4a, and each individual chip, as
shown in Figure 4b. Two layers of the S&A device and two layers of the PCB are bonded
layer-by-layer with epoxy resin, as shown in Figure 4c. The BPN is press-fitted into the
powder chamber at a density of 1.47 ± 0.21 g/cm3 and placed above the S&A device.
The igniter is fabricated on a ceramic substrate by a magnetron sputtering process, and
the Al/CuO energetic film is filled by ink droplets [15,21]. All the independent parts are
assembled layer by layer to form an ignition device.
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4. Tests and Discussion
4.1. Test of the Bistable Function

According to the driving principle, the displacement and response time of the elec-
trothermal actuator is directly determined by the applied voltage. The response process
of the barrier and the pawl are recorded by a high-speed camera (5000 fps) from 11 V to
18 V, as shown in Figure 5. The arming time is the time it takes for the pawls and barriers
to reach the arming position (pawl: 100 µm; barrier: 300 µm); the arming time as a function
of the applied voltage is shown in Figure 5a. The switch time is the time required for the
S&A device to switch to the arming or safety condition; the switch time as a function of the
applied voltage is shown in Figure 5b. As the applied voltage increases (11 V to 18 V), the
actuator takes less time to reach the armed position (barrier: 16.2 ms to 2.8 ms; pawl: 4.4 ms
to 1.2 ms), and the switching time also decreases (armed to safe: 34.6 ms to 19.2 ms; safe
to armed: 25.6 ms to 15.2 ms). The S&A device switches the condition through a specific
operation sequence; the detailed process from safe to armed with an applied voltage of 14 V
is shown in Figure 5c. The electrothermal actuator can increase the drive voltage to increase
the heating power, but the cooling process of the actuator is natural cooling independent
of the drive voltage. Therefore, in step 3, the barrier spends 11 ms waiting for the pawl to
return to its initial position, taking the longest time of all the steps, so the switching time
hardly decreases further with the applied voltage.

4.2. Test of the Feedback Function

The S&A device consists of four identical bistable mechanisms, each containing a
barrier actuator (R1 + R2) and a pawl actuator (R3 + R4), with the two actuators generating
a contact resistance R5 in the armed condition. To simplify the control circuit, the four
groups of bistable mechanisms are connected in parallel to drive the double-layer barrier
synchronously, as shown in Figure 6a. To realize the drive and feedback function, four
switches and a feedback resistor R0 are used to design the control circuit. The source
voltage (Vs) is set as 14 V. The driving principle of the circuit is shown in Figure 6b; switch 1
controls the barrier actuator, while switches 2 and 3 control the pawl actuator. Controlling
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the three switches to turn on/off in a specific sequence (Figure 3c) can switch the S&A
device’s condition.
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Only when all four bistable mechanisms are operating successfully will the S&A device
switch to the safe or armed condition. Failure of any one set of mechanisms will cause the
drive to fail. Therefore, the feedback function only needs to give feedback on the number
of contact resistances R5 and does not need to give feedback on which specific R5 is having
problems. The feedback principle is designed as shown in Figure 6c. Switches 1, 2, and 3
are set to the off state, and switch 4 is set to the on state. The current flows through the
resistors R1, R5, R3, and R0 in turn. Since the resistance of R5 is much larger than R1 and R3,
the current is small, and the actuator will not operate. The total resistance inside the S&A
device is Rd = (R1 + R3 + R5)/n (n is the parallel number of the bistable mechanism). The
Rd is variable with n, while the value of R0 is fixed. Therefore, the voltage division of R0 as
the feedback voltage (Vn) can give feedback on the resistance change of Rd. The larger the
voltage difference (Vn − Vn−1), the better the detection. Vn − Vn−1 can be expressed as:

k = R1+R3+R5
R0

Vn −Vn−1 = Vs
k

k2+(2n−1)k+n(n−1) (n ≥ 2)

(Vn −Vn−1)max = Vs
1

2
√

n2−n+2n−1

(
k =
√

n2 − n
) (1)

when n is 4, Vn − Vn−1 reaches the minimum value. To make V4 − V3 reach the maximum
value of 0.0718Vs (1.01 V), k should be taken as 2

√
3. The measured value of R1 + R3 + R5

is about 1580 Ω, so R0 is taken as 330 Ω, 430 Ω, and 510 Ω for testing. The test results are
shown in Figure 6d, where the Vn can be seen to increase with the R0 and n. The voltage
difference (Vn − Vn−1) is shown in Figure 6e. The V4 − V3 reaches the maximum value
(0.98 V) when the R0 is taken as 430 Ω. Each drive of the S&A device causes a change in R5,
which in turn changes Vn. However, the change in Vn is less than 0.15 V, which does not
affect the detection. In the safety condition, the contact resistance R5 is not present and the
value of the V0 is 0 V. The number of successfully operating bistable mechanisms can be
detected by the feedback voltage.

4.3. Test of the Safety and Arming Functions

The safety and arming functions of the S&A device are used to prevent the BPN from
being ignited by the igniter in the safe condition and to allow the BPN to be ignited in
the armed condition. To test the safety capability of the device, the igniter was filled with
different thicknesses of Al/CuO films to control the magnitude of the flame energy. The
resistance of the igniter is 1 Ω, which can be excited by a 100 µF capacitor discharging at a
charge voltage of 25 V. The safety and arming function of the double-layer barrier have been
verified in a previous study [15], showing that it can block the flame energy of an Al/CuO
film of 50 µm thickness and maintain the complete structure. However, if the flame energy
is further increased, the barrier will deform in-plane and lose its safety function.

Therefore, in this article, the pawl is designed as a safety lock to engage with the barrier
at the safety position so that the barrier can only open a square gap of 60 µm × 60 µm with
the safety lock closed, as shown in Figure 7a. To verify the improvement of the safety
lock, the safety and arming functions were tested through Al/CuO film with an 80 µm,
100 µm, and 150 µm thickness; the test results are shown in Table 2. Four groups of tests
were carried out for each thickness in the safety test and two groups in the arming test.
When the thickness of the Al/CuO film was set to 80 µm and 100 µm, the flame energy was
blocked by the barrier as shown in Figure 7b, and a rectangular gap of 60 µm × 130 µm
was formed after the safety test, as shown in Figure 7c. Although the gap of the barrier was
enlarged by the flame energy, the BPN was not ignited in the safety tests of the 80 µm and
100 µm thick Al/CuO films, so the safety lock significantly improved the safety function of
the barrier. The safety lock can only restrain the in-plane deformation of the barrier, not
the out-of-plane deformation. When the thickness of the Al/CuO film was set to 150 µm,
the barrier broke out of the plane as shown in Figure 7d, causing the BPN to ignite. In the
arming test, all of the flame generated by the igniter could flow through the S&A device
and ignite the BPN, as shown in Figure 7e,f. The S&A device with a safety lock can realize
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the safety and arming function when the thickness of the Al/CuO film is set to 80 µm and
100 µm.

Table 2. The test results of the safety and arming function.

Thickness of Al/CuO
Film

Charge Quantity of
Al/CuO Film

Ignition Test in
Safety Condition

Charge Quantity of
Al/CuO Film

Ignition Test in
Arming Condition

80 µm

0.47 mg Safety 0.42 mg Ignition
0.42 mg Safety 0.41 mg Ignition
0.43 mg Safety / /
0.42 mg Safety / /

100 µm

0.52 mg Safety 0.50 mg Ignition
0.51 mg Safety 0.53 mg Ignition
0.51 mg Safety / /
0.54 mg Safety / /

150 µm

0.74 mg Ignition 0.74 mg Ignition
0.76 mg Ignition 0.76 mg Ignition
0.73 mg Ignition / /
0.74 mg Ignition / /
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5. Conclusions

In this article, an intelligent MEMS safety and arming device with a condition feedback
function was designed. The S&A device has a smaller size (5.8 × 5.8 × 0.9 mm3), lower
driving voltage (11 V), and higher safety (safety lock) through an optimized structural
layout. When the applied voltage was set to 14 V, the S&A device could switch the condition
to armed within 17 ms or to safe within 22 ms. In addition, the device can give feedback
on the device’s condition by the voltage division of an external resistor of 430 Ω. The
feedback voltage can detect the number of successfully operating bistable mechanisms with
a minimum voltage difference of 0.98 V. In summary, the safety lock can improve the safety
function so that the device can realize the safety and arming function when the thickness
of Al/CuO film is set to 80 µm and 100 µm. This MEMS S&A device with miniaturized
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structure and intelligent actuation is suitable for applications in micro combat platforms
such as unmanned aerial vehicles (UAV).
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