Field Effect Transistor with Nanoporous Gold Electrode
Abstract
:1. Introduction
2. Fabrication/Assembly of the Prototype MOSFETs
3. Theory of the MOSFET with NPG Gate Electrode
4. Experimental Results
4.1. Cyclic Voltammetry for MOSFET in a Glucose Solution
4.2. Detection of Carbon Monoxide
5. Discussion and Comparison of the NPG MOSFET to the ZnO MOSFET
- Deposition of the gate electrode: only atomic layer deposition (ALD) technique is known to be practical for the task of successfully depositing ZnO nanowires as a gate electrode in a MOSFET. ALD, however, is an expensive technique that is not suited for mass production. By comparison, the NPG gate electrode can be easily deposited by sputtering as described earlier. Sputtering is a low-cost technique that is suitable for mass production.
- Leakage currents: The leakage currents in ZnO MOSFETs are known to be high because of the degradation of the oxide layer during the growth process of the ZnO nanowires. The gate-source leakage current, for example, is typically in the order of a few hundred nA. In the present MOSFET, the leakage current is substantially lower because the NPG layer is deposited by sputtering. The gate-source leakage current in the present MOSFET was measured with a Tektronix DMM4020 multimeter and was found to be approximately 1 nA, which is substantially less than the leakage current in ZnO MOSFETs.
- Sensitivity: The sensitivity of a MOSFET that is fitted with a chemically sensitive gate electrode is given by the following equation [30]:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van der Zalm, J.; Chen, S.; Huang, W.; Chen, A. Review: Recent Advances in the Development of Nanoporous Au for Sensing Applications. J. Electrochem. Soc. 2020, 167, 037532. [Google Scholar] [CrossRef]
- Ruffino, F.; Grimaldi, M.G. Nanoporous Gold-Based Sensing. Coatings 2020, 10, 899. [Google Scholar] [CrossRef]
- Collinson, M.M. Nanoporous Gold Electrodes and Their Applications in Analytical Chemistry. ISRN Anal. Chem. 2013, 2013, 692484. [Google Scholar] [CrossRef]
- Chen, L.; Lang, X.; Fujita, T.; Chen, M. Nanoporous gold for enzyme-free electrochemical glucose sensors. Scr. Mater. 2011, 65, 17–20. [Google Scholar] [CrossRef]
- Li, Q.; Cui, S.; Yan, X. Electrocatalytic oxidation of glucose on nanoporous gold membranes. J. Solid State Electrochem. 2012, 16, 1099–1104. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, M.; Li, H.; Pan, Y.; Si, P. Non-Enzymatic Glucose Sensors based on Controllable Nanoporous Gold/Copper Oxide Nanohybrids. Talanta 2014, 125, 366–371. [Google Scholar] [CrossRef]
- Cao, Q.; Feng, J.; Lu, H.; Zhang, H.; Zhang, F.; Zeng, H. Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides. Opt. Express 2018, 26, 24614–24620. [Google Scholar] [CrossRef]
- Wittstock, A.; Biener, J.; Baumer, M. Nanoporous Gold: A New Material for Catalytic and Sensor Applications. Phys. Chem. Chem. Phys. 2010, 40, 12919–12930. [Google Scholar] [CrossRef]
- Scanlon, M.D.; Salaj-Kosla, U.; Belochapkine, S.; Mac Aodha, D.; Leech, D.; Ding, Y.; Magner, E. Characterization of Nanoporous Gold Electrodes for Bioelectrochemical Applications. Langmuir 2012, 28, 2251–2261. [Google Scholar] [CrossRef]
- Fujita, T.; Qian, L.-H.; Inoke, K.; Erlebacher, J.; Chen, M.-W. Three-Dimensional Morphology of Nanoporous Gold. Appl. Phys. Lett. 2008, 92, 251902. [Google Scholar] [CrossRef]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. On the Origin of the Catalytic Activity of Gold Nanoparticles for Low-Temperature CO Oxidation. J. Catal. 2004, 223, 232–235. [Google Scholar]
- Zhang, L.; Chang, H.; Hirata, A.; Wu, H.; Xue, Q.-K.; Chen, M. Nanoporous Gold Based Optical Sensor for Sub-ppt Detection of Mercury Ions. ACS Nano 2013, 7, 4595–4600. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.M. Nanoporous Metals: Fabrication Strategies and Advanced Electrochemical Applications in Catalysis, Sensing and Energy Systems. Chem. Soc. Rev. 2012, 41, 7016–7031. [Google Scholar] [CrossRef]
- Kim, S.H. Nanoporous gold: Preparation and applications to catalysis and sensors. Curr. Appl. Phys. 2018, 18, 810–818. [Google Scholar] [CrossRef]
- Liu, Z.; Puumala, E.; Chen, A. Sensitive electrochemical detection of Hg(II) via a FeOOH modified nanoporous gold microelectrode. Sensors Actuators B Chem. 2019, 287, 517–525. [Google Scholar] [CrossRef]
- Cha, S.N.; Jang, J.E.; Choi, Y.; Amaratunga, G.A.J.; Ho, G.W.; Welland, M.E.; Hasko, D.G.; Kang, D.J.; Kim, J.M. High performance ZnO nanowire field effect transistor using self-aligned nanogap gate electrodes. Appl. Phys. Lett. 2006, 89, 263102. [Google Scholar] [CrossRef]
- Sultan, S.S.M. Top-Down Fabrication and Characterization of Zinc Oxide Nanowire Field Effect Transistors. Ph.D. Thesis, University of Southampton, Southampton, UK, April 2013. [Google Scholar]
- Hsu, C.; Tsai, T. Fabrication of fully transparent indium-doped ZnO nanowire field-effect transistors on ITO/glass substrates. J. Electrochem. Soc. 2011, 158, K20–K23. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.W.; Zhao, J.; Goh, G.K.L.; Chen, L.; Liew, L.L.; Qiu, J.; Hwang, Y.H. Comparison of the hydrothermal and VPT grown ZnO nanowire field effect transistors. Int. J. Nanosci. 2010, 9, 317–320. [Google Scholar] [CrossRef]
- Heo, Y.W.; Tien, L.C.; Kwon, Y.; Norton, D.P.; Pearton, S.J.; Kang, B.S.; Ren, F. Depletion-mode ZnO nanowire field-effect transistor. Appl. Phys. Lett. 2004, 85, 2274–2276. [Google Scholar] [CrossRef]
- Ng, H.T.; Han, J.; Yamada, T.; Nguyen, P.; Chen, Y.P.; Meyyappan, M. Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Lett. 2004, 4, 1247–1252. [Google Scholar] [CrossRef]
- Chen, K.-I.; Li, B.-R.; Chen, Y.-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131–154. [Google Scholar] [CrossRef]
- Mao, S.; Chang, J.; Pu, H.; Lu, G.; He, Q.; Zhang, H.; Chen, J. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904. [Google Scholar] [CrossRef]
- Pachauri, V.; Ingebrandt, S. Biologically sensitive field-effect transistors: From ISFETs to NanoFETs. Essays Biochem. 2016, 60, 81–90. [Google Scholar] [CrossRef]
- Neamen, D. An Introduction to Semiconductor Devices; McGraw Hill: New York, NY, USA, 2006. [Google Scholar]
- Li, Y.; Song, Y.-Y.; Yang, C.; Xia, X.-H. Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem. Commun. 2007, 9, 981–988. [Google Scholar] [CrossRef]
- Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochim. Acta 2010, 55, 5561–5568. [Google Scholar] [CrossRef]
- Bakhoum, E.G.; Cheng, M.H.M. Miniature Carbon Monoxide Detector Based on Nanotechnology. IEEE Trans. Instrum. Meas. 2012, 62, 240–245. [Google Scholar] [CrossRef]
- Ditshego, N.M.J. Zinc Oxide Nanowire Field Effect Transistor Used as a pH Sensor. Int. J. Electr. Electron. Eng. Telecommun. 2022, 11, 162–166. [Google Scholar] [CrossRef]
Parameter | ZnO MOSFET | NPG MOSFET |
---|---|---|
Deposition of gate electrode | ALD | Sputtering |
Leakage current | few hundred nA | 1 nA |
Sensitivity | 75% | 300% or higher |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhoum, E.G.; Zhang, C. Field Effect Transistor with Nanoporous Gold Electrode. Micromachines 2023, 14, 1135. https://doi.org/10.3390/mi14061135
Bakhoum EG, Zhang C. Field Effect Transistor with Nanoporous Gold Electrode. Micromachines. 2023; 14(6):1135. https://doi.org/10.3390/mi14061135
Chicago/Turabian StyleBakhoum, Ezzat G., and Cheng Zhang. 2023. "Field Effect Transistor with Nanoporous Gold Electrode" Micromachines 14, no. 6: 1135. https://doi.org/10.3390/mi14061135
APA StyleBakhoum, E. G., & Zhang, C. (2023). Field Effect Transistor with Nanoporous Gold Electrode. Micromachines, 14(6), 1135. https://doi.org/10.3390/mi14061135