Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Soil Sample Preparation
2.3. Electrode Preparation
2.4. Hardware Development
2.5. Experimental Design
3. Results and Discussion
3.1. TDDA Gaussian Simulation for Visualization of Its Interaction
3.2. Sensor Calibration
3.3. Cross-Reactivity Experiment
3.4. Validation
3.5. Real-Time Continuous In Situ Soil Nitrate Monitoring
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations. SDG Indicators; United Nations: New York, NY, USA, 2021; p. 1095. [Google Scholar]
- Sustainable Agriculture Programs|National Institute of Food and Agriculture. Available online: https://www.nifa.usda.gov/grants/programs/sustainable-agriculture-programs (accessed on 19 May 2023).
- Fan, Y.; Wang, X.; Funk, T.; Rashid, I.; Herman, B.; Bompoti, N.; Mahmud, M.S.; Chrysochoou, M.; Yang, M.; Vadas, T.M.; et al. A Critical Review for Real-Time Continuous Soil Monitoring: Advantages, Challenges, and Perspectives. Environ. Sci. Technol. 2022, 56, 13546–13564. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Deng, F.; Zuo, P.; Wen, K.; Wu, X. Novel soil environment monitoring system based on RFID sensor and LoRa. Comput. Electron. Agric. 2020, 169, 105169. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Ali, M.A.; Dong, L.; Wang, X.; Archontoulis, S.V.; Schnable, J.C.; Castellano, M.J. Continuous in situ soil nitrate sensors: The importance of high-resolution measurements across time and a comparison with salt extraction-based methods. Soil Sci. Soc. Am. J. 2021, 85, 677–690. [Google Scholar] [CrossRef]
- Peng, X.; Chen, D.; Zhou, Z.; Zhang, Z.; Xu, C.; Zha, Q.; Wang, F.; Hu, X. Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 2659. [Google Scholar] [CrossRef]
- Kashyap, B.; Kumar, R. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access 2021, 9, 14095–14121. [Google Scholar] [CrossRef]
- Abenina, M.I.A.; Maja, J.M.; Cutulle, M.; Melgar, J.C.; Liu, H. Prediction of Potassium in Peach Leaves Using Hyperspectral Imaging and Multivariate Analysis. AgriEngineering 2022, 4, 400–413. [Google Scholar] [CrossRef]
- Liberata Ullo, S.; Sinha, G.R.; Bacco, M.; Gotta, A.; Cassarà, P.; Agbinya, J.I. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Northon, K. NASA Launches Groundbreaking Soil Moisture Mapping Satellite; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Zedler, M.; Tse, S.W.; Ruiz-Gonzalez, A.; Haseloff, J.; Zedler, M.; Tse, W.; Ruiz-Gonzalez, A.; Haseloff, J. Paper-Based Multiplex Sensors for the Optical Detection of Plant Stress. Micromachines 2023, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Potdar, R.P.; Shirolkar, M.M.; Verma, A.J.; More, P.S.; Kulkarni, A. Determination of soil nutrients (NPK) using optical methods: A mini review. J. Plant Nutr. 2021, 44, 1826–1839. [Google Scholar] [CrossRef]
- Moraitis, M.; Vaiopoulos, K.; Balafoutis, A.T. Design and Implementation of an Urban Farming Robot. Micromachines 2022, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Rajh, T.; Guha, S. Photonic microresonator based sensor for selective nitrate ion detection. Sens. Actuators B Chem. 2021, 328, 129027. [Google Scholar] [CrossRef]
- Dudala, S.; Srikanth, S.; Dubey, S.K.; Javed, A.; Goel, S. Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and Taste Stimuli. Micromachines 2021, 12, 1037. [Google Scholar] [CrossRef]
- Tian, H.; Gao, C.; Zhang, X.; Yu, C.; Xie, T. Smart Soil Water Sensor with Soil Impedance Detected via Edge Electromagnetic Field Induction. Micromachines 2022, 13, 1427. [Google Scholar] [CrossRef]
- Joly, M.; Marlet, M.; Durieu, C.; Bene, C.; Launay, J.; Temple-Boyer, P. Study of chemical field effect transistors for the detection of ammonium and nitrate ions in liquid and soil phases. Sens. Actuators B Chem. 2022, 351, 130949. [Google Scholar] [CrossRef]
- Dai, C.; Song, P.; Wadhawan, J.D.; Fisher, A.C.; Lawrence, N.S. Screen Printed Alizarin-Based Carbon Electrodes: Monitoring pH in Unbuffered Media. Electroanalysis 2015, 27, 917–923. [Google Scholar] [CrossRef]
- Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. DENSE: DiElectric Novel Soil Evaluation System to Electrochemically Profile Soil Matrices. J. Electrochem. Soc. 2022, 169, 067511. [Google Scholar] [CrossRef]
- Zeitoun, R.; Biswas, A. Instant and Mobile Electrochemical Quantification of Inorganic Phosphorus in Soil Extracts. J. Electrochem. Soc. 2020, 167, 167512. [Google Scholar] [CrossRef]
- Kim, H.-J.; Hummel, J.W.; Sudduth, K.A.; Motavalli, P.P. Simultaneous Analysis of Soil Macronutrients Using Ion-Selective Electrodes. Soil Sci. Soc. Am. J. 2007, 71, 1867–1877. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, M.; Ren, H.; Pu, P.; Kong, P.; Zhao, H. Comparative investigation on soil nitrate-nitrogen and available potassium measurement capability by using solid-state and PVC ISE. Comput. Electron. Agric. 2015, 112, 83–91. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, W.; Waimin, J.F.; Glassmaker, N.; Raghunathan, N.; Jiang, X.; Ziaie, B.; Rahimi, R. Inkjet-printed Solid-state Potentiometric Nitrate Ion Selective Electrodes for Agricultural Application. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019. [Google Scholar] [CrossRef]
- Fayose, T.; Thomas, E.; Radu, T.; Dillingham, P.; Ullah, S.; Radu, A. Concurrent measurement of nitrate and ammonium in water and soil samples using ion-selective electrodes: Tackling sensitivity and precision issues. Anal. Sci. Adv. 2021, 2, 279–288. [Google Scholar] [CrossRef]
- Baumbauer, C.L.; Goodrich, P.J.; Payne, M.E.; Anthony, T.; Beckstoffer, C.; Toor, A.; Silver, W.; Arias, A.C. Printed Potentiometric Nitrate Sensors for Use in Soil. Sensors 2022, 22, 4095. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Patkar, R.S.; Vinchurkar, M.; Baghini, M.S. Cost Effective Soil pH Sensor Using Carbon-Based Screen-Printed Electrodes. IEEE Sens. J. 2020, 20, 47–54. [Google Scholar] [CrossRef]
- Usepa. Method 353.2, Revision 2.0: Determination of Nitrate-Nitrite Nitrogen by Automated Colorimetry; Usepa: Washington, DC, USA, 1993. [Google Scholar]
- USDA-NRCS. Helping People Help the Land USDA Natural Resources Conservation Service Soil Quality Indicators Potentially Mineralizable Nitrogen (PMN); No. 3; USDA-NRCS: Washington, DC, USA, 2014. [Google Scholar]
Sample # | Soil Type | Calibration Curve | Reference Nitrate (01.12.22) | SD | Measured Nitrate (06.09.22) | SD | Error (%) |
1S1 | Sandy Loam | Sandy Loam | 0.50 | 0.03 | 1.27 | 0.62 | <4 ppm |
1S2 | Sandy Clay Loam | Clay | 11.99 | 0.25 | 9.84 | 1.12 | 17.9 |
Sample # | Soil Type | Calibration Curve | Reference Nitrate (03.19.22) | SD | Measured Nitrate (06.09.22) | SD | Error (%) |
2S1 | Sandy Clay | Sandy Loam | 1.88 | 0.21 | 2.64 | 0.97 | <4 ppm |
2S2 | Clay | Clay | 0.55 | 0.08 | 0.91 | 0.74 | <4 ppm |
2S3 | Sandy Loam | Sandy Loam | 12.41 | 1.85 | 11.92 | 0.94 | 3.95 |
Descriptive Statistics | Mock Study | |
Number of values | 168 | |
Mean | 3.87 | |
Std. deviation | 0.682 | |
Std. error of mean | 0.0527 | |
Coefficient of variation | 17.6% | |
Validation | Measured | Reference |
Mean | 3.87 | ~4 |
Std. deviation | 0.682 | - |
Error rate | 3.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldeeb, M.A.; Dhamu, V.N.; Paul, A.; Muthukumar, S.; Prasad, S. Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines 2023, 14, 1314. https://doi.org/10.3390/mi14071314
Eldeeb MA, Dhamu VN, Paul A, Muthukumar S, Prasad S. Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines. 2023; 14(7):1314. https://doi.org/10.3390/mi14071314
Chicago/Turabian StyleEldeeb, Mohammed A., Vikram Narayanan Dhamu, Anirban Paul, Sriram Muthukumar, and Shalini Prasad. 2023. "Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring" Micromachines 14, no. 7: 1314. https://doi.org/10.3390/mi14071314
APA StyleEldeeb, M. A., Dhamu, V. N., Paul, A., Muthukumar, S., & Prasad, S. (2023). Electrochemical Soil Nitrate Sensor for In Situ Real-Time Monitoring. Micromachines, 14(7), 1314. https://doi.org/10.3390/mi14071314