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Abstract: The need for high-speed communication has created a way to design THz antennas that
operate at high frequencies, speeds, and data rates. In this manuscript, a THz MIMO antenna is
designed using a metamaterial. The two-port antenna design proposed uses a complementary split-
ring resonator patch. The design results are also compared with a simple patch antenna to show the
improvement. The design shows a better isolation of 50 dB. A broadband width of 8.3 THz is achieved
using this complementary split-ring resonator design. The percentage bandwidth is 90%, showing
an ultrabroadband response. The highest gain of 10.34 dB is achieved with this design. Structural
parametric optimization is applied to the complementary split-ring resonator MIMO antenna design.
The designed antenna is also optimized by applying parametric optimization to different geometrical
parameters. The optimized design has a 20 µm ground plane, 14 µm outer ring width, 6 µm inner
ring width, and 1.6 µm substrate thickness. The proposed antenna with its broadband width, high
gain, and high isolation could be applied in high-speed communication devices.

Keywords: MIMO; metamaterial; antenna; optimization; THz; ultrabroadband; high gain; high isolation

1. Introduction

Antennas are a type of transducer used for communicating wirelessly between two
devices. Antennas, which in the past were designed to have a huge aperture size, have now
been reduced to small and compact nanoantennas. This reduction in the size of the antenna
also extensively reduced its gain; therefore, there is now a need for high-gain compact
antennas. There are various ways of improving the gain and bandwidth of an antenna, and
one of these ways is to incorporate metamaterials. Today, high-speed communication needs
THz antennas to be operated at high speeds. The THz antenna has in recent times been
researched by many researchers to be used in high-speed wireless communication devices.
The THz antenna offers a higher bandwidth, which could be used to transfer more data at
high speeds. The need for high-gain and high-bandwidth THz antennas has increased. The
gain and bandwidth of these THz antennas can be improved using metamaterials.

Metamaterials are artificial materials that can be used to improve many parameters of
THz antennas [1]. Split-ring resonators or thin wires can be used to create these metama-
terials [2]. Complementary split-ring resonators can also be applied to THz antennas to
improve their bandwidth and gain [3]. Metamaterial structures can be used to improve
the frequency of THz peaks. Simulation results showing a peak enhancement of 0.5 THz
were achieved using metamaterial structures [4]. A graphene-material-based metamaterial
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design has previously been used to improve the gain of the THz antenna design [5]. The
design of a microstrip antenna was also presented for THz applications. The antenna was
designed with metamaterial loading, offering a metamaterial realization of the circular
split-ring resonator. Traditional microstrip patch antennas are produced to be smaller and
using more efficient metamaterials [6]. For THz uses, current research delves into the topic
of designing adjustable MIMO antennas with superior isolation, both in terms of their
laterality and orthogonality placement. It is possible to tune antennas by changing the
chemical potential of the patches composed of trapezoidal graphene loaded onto metallic
patch antennas. With the help of flawed ground structures, mutual coupling between the
MIMO antennas can be reduced, even when they are placed laterally [7]. A triple-band
MPA built on a polyimide substrate and integrated with a metamaterial has been presented
as a potential solution for future healthcare applications in the terahertz band [8]. An
antenna with a tunable resonance frequency via an external voltage was presented through
the use of a graphene material. The graphene SRR was used as a metamaterial element in
the design. By taking advantage of the fact that the chemical potential of graphene can
be altered separately for the patch and the array, it is possible to optimize the material’s
properties. A lens could then be incorporated into the design to improve the radiation
properties of the proposed layout [9]. MIMO antennas are used in high-speed wireless
communication applications [10]. MIMO antennas are applicable in 5G applications [11]
and millimeter-wave applications [12].

Today, THz MIMO antennas are used in high-speed communication devices because
of their good isolation, high gain, and high bandwidth. MIMO array antennas have been
designed with graphene materials, and high isolation has been achieved using a serpentine
resonator. The antennas have been applied in THz communication [13]. The two-port
MIMO antenna design was created for THz communication where the graphene-based de-
sign provides high isolation with simultaneous transmit and receive modes [14]. One other
two-port MIMO communication channel design has been used for THz applications, where
the light in the design is maintained between MIMO channels. To maximize the system’s
throughput and reliability, parallel channels created using appropriately spaced antenna
elements have been used, inspired by the principles of diffraction-limited optics [15].
Single-element monopole antennas have been extended into four-port MIMO antennas,
and designed with improved isolation for THz applications. The bandwidth was improved
using the four-element MIMO antenna design [16]. The graphene-material-based patch an-
tenna design is reconfigurable through the change of the chemical voltage of the graphene
material. This reconfigurable MIMO antenna is applicable in THz applications [17]. MIMO
THz antennas are also applicable in the design of quantum key distribution. The MIMO
antenna design has been shown to have a more powerful distribution compared to the
single-element antenna design. The MIMO antenna has one extra secret key component
compared to the simple antenna design [18], which is the tapered square patch design
used for THz communication. The design is fed through using a microstrip line with a
partial ground plane. This design has been shown to be capable of achieving good results
for application in high-speed THz communication devices [19]. The MIMO antenna also
provides better performance when loaded with metamaterials, which can be realized in
the form of different components, such as thin wires, split-ring resonators, complementary
split-ring resonators, etc. The improved MIMO antenna is applicable in many GHz [20]
and THz applications [21].

The MIMO antenna design has been investigated for use in 5G communication, and
has also been presented for integration with portable devices [22]. The use of the broadband
THz four-port MIMO antenna covering a broad spectrum of frequencies was presented
in [23]. The isolation of the MIMO antenna is important, as all the radiating elements need
to be isolated from each other. High isolation is, thus, important, and one such MIMO
antenna design with high isolation was presented in [24]. The loading of metamaterial
elements onto the MIMO antenna design allows for the tunability of the polarization, which
is important when used for differently polarized antennas [7]. The size of the antenna is
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also important if desired to use in portable applications. One such compact antenna for 5G
applications was presented in [25]. High-gain and wideband antennas are applicable in
many applications, as they cover most frequency bands for different applications. One such
MIMO antenna for achieving a high-gain and wideband response was presented in [26] for
vehicular applications.

The optimization of the structural design is essential in achieving the optimized
parameters. The different types of optimization that can be applied to these designs are
nonlinear parametric optimization and linear parametric optimization [27]. The selection
of the optimization algorithm is based on the behavior of the response, whether it be linear
or nonlinear [28]. Nonlinear parametric optimization has previously been presented and
used to achieve high absorption for the design of a solar absorber [29]. A similar approach
could also be applied for the design of an efficient antenna with enhanced parameters, such
as the bandwidth, gain, etc. Mutual coupling between patch antenna array elements can be
reduced through several approaches. One of the approaches was discussed in detail using
a ladder resonator, presented in [30].

The growing demand for high-speed wireless communication devices has led the way
toward the design of an antenna that works at the THz frequency. As such, we propose
a MIMO antenna design that shows a broadband and high isolation response at the THz
frequency range. The proposed antenna is designed with a CSRR-loaded patch antenna.
The antenna design comprising a simple microstrip patch is also designed with similar
dimensions to show the improvement in the design. Nonlinear parametric optimization
is applied to different parameters to achieve the optimal MIMO antenna design. The
proposed antenna could be essential for use in high-speed wireless communication devices.
We show the design, results, and analysis in the upcoming sections.

2. THz MIMO Antenna Design

The THz MIMO antenna design was first prepared with a simple square patch, com-
plemented by split-ring resonator etching, and, finally, through preparing the design of the
complementary split-ring resonator patch antenna. The design is presented in Figure 1,
showing different views for a better understanding of the design. The blue color indicates
the dielectric substrate, and the gray part is the metal patch and ground plane. The com-
plementary square split-ring resonator patch was 41 × 41 µm2 in size. The two elements
of this patch were used to prepare the two-port MIMO antenna. The MIMO antenna was
fed through with a matched microstrip line, as shown in Figure 1a. The two-port MIMO
antenna was placed over a 122 µm substrate with two resonating elements 20 µm apart
from one another. The MIMO antenna was backed with a defected ground structure, which
was used to improve the performance of the antenna. The ground was defected through
etching a section of the ground plane. The width of the ground plane was then reduced from
61 µm to 20 µm. The thickness of the substrate layer was optimized to 1.5 µm. The optimization
results are given in the following results section. The complementary split-ring resonator width
was also optimized. The optimized value of the CSRR rings was R1 = 14 µm and R2 = 6 µm.

The antenna parameter calculation mainly depended on the following equation, where
the length and width are inversely proportional to the frequency, as shown in Equations (1)–(4):
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C
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The envelope correlation coefficient (ECC) and diversity gain (DG) could be calculated
as per Equations (5) and (6) [31].

ECC =
|S∗11S12 + S∗21S22|2(

1−
(
|S11|2 + |S21|2

))(
1−

(
|S22|2 + |S12|2

)) (5)

The improvement in the SNR of the multiple-element system over a one-element
system is referred to as diversity gain (DG). The DG was calculated using the following
Equation (6).

DG = 10
√

1−|ECC|2 (6)

The results of the ECC and DG are discussed further in the results and discussions section.
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then etched with a split-ring resonator, and a complementary split-ring resonator met-
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analyzed and its results were obtained and shown in Figure 2. The results for the simple 
patch MIMO design were compared with the complementary split-ring resonator met-
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sign had better performance in terms of the S-parameters and gain. The bandwidth ob-
tained was also higher for the metamaterial design. The bandwidth obtained for the CSRR 

Figure 1. The CSRR metamaterial-based MIMO antenna design. (a) Top view of the THz MIMO
antenna design showing the complementary split-ring resonator design. The patch was 41 × 41 µm2.
(b) Front view of the THz MIMO antenna design showing the MIM layer design. (c) Defected ground
plane with 20 µm ground plane width (GW). The substrate and ground plane length was 122 µm.
The width of the substrate was 61 µm. The substrate thickness (ST), inner ring width (R2), and outer
ring width (R1) were 1.5 µm, 6 µm, and 14 µm, respectively.
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3. THz MIMO Design Results

The design presented in Figure 1 was analyzed to obtain its results for different S-
parameters. The square patch design 41 × 41 µm2 in size was simulated first, and its
response in terms of the S-parameters and gain was obtained. The square patch design
was then etched with a split-ring resonator, and a complementary split-ring resonator
metamaterial patch design was obtained, given in Figure 1. The new metamaterial design
was analyzed and its results were obtained and shown in Figure 2. The results for the
simple patch MIMO design were compared with the complementary split-ring resonator
metamaterial patch antenna design, with the comparison showing that the metamaterial
design had better performance in terms of the S-parameters and gain. The bandwidth
obtained was also higher for the metamaterial design. The bandwidth obtained for the
CSRR metamaterial patch MIMO antenna design was 8.3 THz, showing its ultrabroadband
behavior. This high bandwidth could be used for the development of higher bandwidth
high-speed communication system designs. The simple patch MIMO antenna design had
the highest bandwidth of 1 THz between 14 THz and 15 THz. The simple MIMO antenna
design gave four bands with the highest bandwidths of 1 THz. The highest isolation of
approximately 50 dB was achieved for the CSRR metamaterial patch MIMO antenna design.
The design’s results were further optimized using changes in various physical parameters,
such as substrate height, ground plane width, outer ring width, and inner ring width.
The results for the different MIMO parameters, such as ECC and DG, were analyzed and
presented in this section. The gain results for the two designs were also analyzed and
presented in Figure 3. The antenna designed in this research could be easily fabricated
through the use of lithography and by placing the metal patch over the substrate and
etching the patch to create a CSRR shape.
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Figure 2. S-parameter results in dB for THz MIMO antenna designs. (a) CSRR metamaterial-loaded
patch antenna. (b) Simple patch design. The patch was 41 × 41 µm2 backed with 122 × 61 µm2

SiO2 substrate. The ground plane and patch were composed of a gold material. The thickness of the
ground plane and patch was 500 nm.
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Table 1. CSRR metamaterial MIMO antenna design comparison with simple patch MIMO antenna design.

Design Bandwidth (THz) Gain (dB) Isolation (dB)

CSRR metamaterial
MIMO antenna design 8.3 10.34 50

Simple patch MIMO
antenna design 1 4.18 45
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Figure 3. Gain results for both MIMO designs in dB. (a) CSRR metamaterial-loaded patch antenna.
(b) Simple patch design. The highest gain of the CSRR metamaterial-loaded patch design was
10.34 dB, while the simple patch design was 4.18 dB. The metamaterial inclusion improved the gain
by more than double its original value. The comparison of the two designs for different antenna
parameters is presented in Table 1. The comparison showed that the CSRR metamaterial MIMO
antenna design outperformed the simple patch MIMO antenna design.
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The highest gain for the simple patch MIMO antenna design was 4.3 dB, as shown in
Figure 3b. The results presented in the figure showed that the gain for the simple patch
antenna design was on the lower side. The addition of metamaterial loading improved
the gain of the design. The CSRR metamaterial patch MIMO antenna resulted in 10.34 dB,
which was greater than the simple patch MIMO design. The increase in the gain was
achieved through the etching of the metamaterial in the simple patch design. The etching
of the split-ring resonator from the patch changed its permittivity and permeability, which
resulted in the improved response of the antenna design.

3.1. MIMO Antenna Parameter Analysis

The different MIMO antenna parameters, such as the diversity gain (DG) and envelope
correlation coefficient (ECC), were calculated in this section to show their effect on the
analyzed spectrum ranging from 5 to 15 THz. Both parameters were analyzed using
Equations (5) and (6). The S-parameter results were applied to the equation, and the results
achieved for the ECC and DG were given in Figure 4. The ideal value for the DG was
10 dB, but because of losses, it was not achieved fully. The diversity gain reached a value
of 10 dB throughout the studied spectrum from 5 to 15 THz, except in some parts of the
spectrum at approximately 9 THz. The diversity gain value decayed for some frequencies
at approximately 9 THz, which presented the idea that the diversity was inadequate only
in this frequency range. The S-parameter curves and isolation between the two antennas
was weak around that frequency, which showed that the diversity was also weak, reducing
the diversity gain at that point. Similarly, the way the ECC increased at the same frequency
also showed that the behavior of the design was adequate in the frequency range of 5 THz
to 15 THz. The diversity was good overall for the data transmission and reception in the
studied range. The ideal diversity value would have been zero, but there were still some
minor values available.
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3.2. Structural Parameter Optimization

The optimization algorithms could be applied to different structural parameters to
obtain optimized parameters that give not only the best results, but also a compact design.
The parametric optimization method can be applied to these structural parameters to obtain
different optimized parameters. There are two main types of parametric optimization
algorithms [32]. The first one is linear parametric optimization, and the second is the
nonlinear parametric optimization method [33]. The selection of this method is based on
the behavior of the design, whether the behavior of the design is linear or nonlinear. Based
on this behavior, the correct type of optimization algorithm can be applied. The results
of the reflectance clearly showed that the behavior of the results was nonlinear, and, thus,
the nonlinear parametric optimization method could be applied to obtain the optimized
structural parameters.

The functions did not behave linearly, which gave this optimization. It had function
f (x), constraint ci(x) = 1, 2, . . . n, or dj(x) = 1, 2, . . . n, which are components of x that
were nonlinear [34].

The optimization of different structural parameters, such as the substrate height,
ground plane width, and CSRR ring widths, was carried out to optimize antenna results,
such as the bandwidth and S-parameters.

3.3. Substrate Thickness (ST) Optimization

The ST optimization was carried out to obtain the highest bandwidth and good results
for the MIMO antenna design. The optimization was applied to the CSRR metamaterial-
loaded MIMO antenna design. The substrate of the design varied from 0.5 µm to 1.5 µm
to observe its effect on the absorption results. The variation was kept at 1.5 µm, because
increasing the substrate more than this would increase the overall area of the structure,
as well as the cost of the structure, so it was preferential to increase it to a certain limit,
keeping it to a 1.5 µm thickness, so that the substrate was kept to a limit, suitable for
fabrication and also reducing the cost of the substrate. The variation in the figure clearly
showed that the reflectance shown in Figure 5a had the highest bandwidth for the 1.5 µm
thickness. The reflectance level was also high for this value only. The yellow color curve
showed the reflectance for the 1.5 µm thickness. The red and blue color curves showed
a low bandwidth and low reflectance. The transmittance of the design is presented in
Figure 5b, also showing that the transmittance results of the yellow curve of the 1.5 µm
thickness were −50 dB higher, which showed that there was a 50 dB isolation, which is
very good for MIMO antennas. The optimized value of the ST was 1.5 µm.

3.4. Ground Layer Width (GW) Optimization

The GW optimization was carried out to obtain the highest bandwidth and good results
for the MIMO antenna design. The optimization was applied to the CSRR metamaterial-
loaded MIMO antenna design. The ground layer width of the design varied from 20 µm to
35 µm to observe its effect on the absorption results. The variation was kept from 20 µm to
35 µm, because increasing the ground layer width further would have given abrupt results,
and the defected ground concept was implemented by etching the part of the ground plane.
The variation in the figure clearly showed that the reflectance shown in Figure 6a had the
highest bandwidth for the 20 µm ground layer width. The S21 results of the design are
presented in Figure 6b, showing that for 20 µm, the average value was less than −20 dB,
with the highest depth obtained at approximately −50 dB. When the ground layer width
was increased to 25, the reflectance showed only one band with a much lower bandwidth,
and the transmittance also showed a low isolation compared to the 20 µm results. The
increase in the ground layer width did not improve the results any further. Thus, the
optimized value of the GW obtained was 20 µm.
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3.5. Inner Ring Width (R2) Optimization

The inner ring width (R2) optimization was carried out to obtain the highest bandwidth
and good results for the MIMO antenna design. The optimization was applied to the CSRR
metamaterial-loaded MIMO antenna design. The inner ring width of the design varied
from 6 µm to 8 µm to observe its effect on the absorption results. The variation was kept at
6 µm to 8 µm, because increasing the width of the inner ring further would mix with the
outer ring of the CSRR. The change in the ring width would change the capacitance of the
metamaterial design. The increase in the width increased the capacitance and degraded the
results, as shown in Figure 7. The blue-colored curve in Figure 7a showed the maximum
bandwidth of 6 µm. The increase in the inner ring width degraded the response, and
there was a reduction in the bandwidth, with more resonating bands available at a lower
bandwidth. When the width increased to 8 µm, the result worsened, and there was a
mismatch in the power that also resulted in one peak of 20 dB reflectance, which was
not valid and, therefore, we could not consider this width for the design of the antenna.
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The results showed a mismatch as we further increased the inner ring width; thus, only
these three values were considered in this result. The S21 results also showed that for the
increased inner width, the results of the transmittance showed a peak of 20 dB, which
was not valid and could not be considered. The optimized value of the inner ring width
was 6 µm.
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3.6. Outer Ring Width (R1) Optimization

The outer ring width (R1) optimization was carried out to obtain the highest bandwidth
and good results for the MIMO antenna design. The optimization was applied to the CSRR
metamaterial-loaded MIMO antenna design. The outer ring width of the design varied
from 14 µm to 16 µm to observe its effect on the absorption results. The variation was
kept at 14 µm to 16 µm, because increasing the width of the outer ring would increase
the capacitance of the structure. The increase in the width increased the capacitance
and degraded the results, as shown in Figure 8. The blue-colored curve in Figure 8a
showed the maximum bandwidth of 14 µm. The reflectance for the 14 µm outer width
thickness showed better results, giving the maximum bandwidth compared to all the other
investigated design lengths. The 15 µm outer ring width was shown with an orange, dashed
color plot in the figure, with the plot showing less than −10 dB results for three bands with
a maximum bandwidth at approximately 1 THz, which was much lower compared to the
8.3 THz bandwidth of the 14 µm width design. The results were even more degrading
for the 16 µm design results, which showed only one band with at approximately −12 dB



Micromachines 2023, 14, 1328 12 of 16

reflectance, and with a lower bandwidth. Similar results were also obtained for S21, with
the results presented in Figure 8b. Thus, the optimized outer ring width obtained was
14 µm.
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The permittivity, which is very important for metamaterials, was also obtained and pre-
sented in Figure 9. Both the real and imaginary parts were presented. The complementary
split-ring resonator metamaterial was placed in a two-port network and the permittivity
was calculated based on the metamaterial approach given in [35]. To be a metamaterial, its
permittivity would have to be negative and in the figure; it was visible that the permittivity
attained negative values in the investigated spectrum. The current distribution in the
MIMO antenna design is also presented in Figure 10. The current distribution showed the
highest current density of 3 × 104 A/m. The 2D radiation pattern plot is also presented
in Figure 11 for different phi values. Four different radiation patterns were presented for
phi values of 45◦, 90◦, 135◦, and 180◦. Radiation patterns were presented for a reference
frequency of 10 THz. The radiation patterns for the other frequencies and other phi values
could also be similarly achieved.
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The THz MIMO antenna design for the CSRR metamaterial patch element and simple
patch element was compared with outer designs and presented in Table 2. From the com-
parison, it was clear that the design had a high bandwidth and high gain. Apart from this,
the design of the antenna was simple to fabricate and low cost, as we achieved everything
with a two-port MIMO design only compared to a four-port design. Thus, the novelty of
the design was shown to be a high bandwidth, high gain, low cost, easy fabrication, and
compact size. These were the five novelties associated with our metamaterial MIMO design.
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Table 2. CSRR metamaterial MIMO antenna design comparison with simple patch MIMO antenna
design and other designs.

Design Bandwidth (THz) Gain (dB) Isolation (dB)

CSRR metamaterial MIMO
antenna design 8.3 10.34 50

Simple patch MIMO
antenna design 1 4.18 45

[7] 1.4 - 38

[36] 0.6 7.23 55

[37] 0.15 5 50

[15] - 7.69 -

[38] 1.25 5.72 30

[39] 0.5 3.9 52

[40] 0.12 - 30

[41] 1 - -
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4. Conclusions

We compared two THz MIMO antenna designs in our research, namely, a CSRR
metamaterial design and a square patch design. The gain and S-parameters were compared
for these two designs. The CSRR design showed better performance compared to the
other design at a 50 dB isolation, 10.34 dB gain, and 8.3 THz ultrabroadband width. The
investigation was carried out for a 5 to 15 THz frequency range. Nonlinear parametric
optimization was applied to the ground layer width, substrate thickness, CSRR inner
ring width, and CSRR outer ring width. The optimized design parameters were achieved
through this optimization. The current distribution and radiation patterns were also
presented for the CSRR metamaterial design. The permittivity of the CSRR metamaterial
design showed a negative behavior for its real and imaginary parts. The designed MIMO
antennas were also compared with other published works. Overall, the proposed MIMO
antenna with its high isolation, high gain, and broadband response could be applied in
high-speed wireless communication devices.
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