Microwave Sensor for the Determination of DMSO Concentration in Water–DMSO Binary Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Designing and Fabricating Sensors
2.2. Preparation of Materials and Analyte Solutions
2.3. Experimental Measurement Setup
3. Results
3.1. Reflection Coefficient of Sensor
3.2. Linearity of Binary Liquid Mixture Measurement
3.3. Sensitivity
3.4. Microwave Sensor Performance for Mixed DMSO/Water Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verheijen, M.; Lienhard, M.; Schrooders, Y.; Clayton, O.; Nudischer, R.; Boerno, S.; Timmermann, B.; Selevsek, N.; Schlapbach, R.; Gmuender, H.; et al. DMSO induces drastic changes in human cellular processes and epigenetic landscape in vitro. Sci. Rep. 2019, 9, 4641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalán, J.; Díaz, C.; García-Blanco, F. Characterization of binary solvent mixtures of DMSO with water and other cosolvents. J. Org. Chem. 2001, 66, 5846–5852. [Google Scholar] [CrossRef] [PubMed]
- Galvao, J.; Davis, B.; Tilley, M.; Normando, E.; Duchen, M.R.; Cordeiro, M.F. Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 2014, 28, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yang, Y.; Tian, Y.; Park, J.; Dai, A.; Roberts, R.M.; Liu, Y.; Han, X. Efficient long-term cryopreservation of pluripotent stem cells at −80 °C. Sci. Rep. 2016, 6, 34476. [Google Scholar] [CrossRef] [Green Version]
- Akkök, C.A.; Liseth, K.; Hervig, T.; Ryningen, A.; Bruserud, Ø.; Ersvaer, E. Use of different DMSO concentrations for cryopreservation of autologous peripheral blood stem cell grafts does not have any major impact on levels of leukocyte- and platelet-derived soluble mediators. Cytotherapy 2009, 11, 749–760. [Google Scholar] [CrossRef]
- Sumida, K.; Igarashi, Y.; Toritsuka, N.; Matsushita, T.; Abe-Tomizawa, K.; Aoki, M.; Urushidani, T.; Yamada, H.; Ohno, Y. Effects of DMSO on gene expression in human and rat hepatocytes. Hum. Exp. Toxicol. 2011, 30, 1701–1709. [Google Scholar] [CrossRef]
- Tjernberg, A.; Markova, N.; Griffiths, W.J.; Hallén, D. DMSO-related effects in protein characterization. J. Biomol. Screen. 2006, 11, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Rubin, L.F. Toxicologic update of dimethyl sulfoxide. Ann. N. Y. Acad. Sci. 1983, 411, 6–10. [Google Scholar] [CrossRef]
- Luong, J.; Gras, R.; Shellie, R.A.; Cortes, H.J. Direct measurement of part-per-billion levels of dimethyl sulfoxide in water by gas chromatography with stacked injection and chemiluminescence detection. J. Sep. Sci. 2012, 35, 1486–1493. [Google Scholar] [CrossRef]
- Thumm, W.; Freitag, D.; Kettrup, A. Determination and quantification of dimethyl sulphoxide by HPLC. Chromatographia 1991, 32, 461–462. [Google Scholar] [CrossRef]
- Berresheim, H.; Tanner, D.J.; Eisele, F.L. Real-time measurement of dimethyl sulfoxide in ambient air. Anal. Chem. 1993, 65, 84–86. [Google Scholar] [CrossRef]
- Semin, D.J.; Malone, T.J.; Paley, M.T.; Woods, P.W. A novel approach to determine water content in DMSO for a compound collection repository. J. Biomol. Screen. 2005, 10, 568–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asher, E.C.; Dacey, J.W.H.; Jarniková, T.; Tortell, P.D. Measurement of DMS, DMSO, and DMSP in natural waters by automated sequential chemical analysis. Limnol. Oceanogr.-Methods 2015, 13, 451–462. [Google Scholar] [CrossRef]
- LeBel, R.G.; Goring, D.A.I. Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide. J. Chem. Eng. Data. 1962, 7, 100–101. [Google Scholar] [CrossRef]
- Cowie, J.M.G.; Toporowski, P.M. Association in the binary liquid system dimethyl sulfoxide-water. Can. J. Chem. 1961, 39, 2240–2243. [Google Scholar] [CrossRef] [Green Version]
- Packer, K.J.; Tomlinson, D.J. Nuclear spin relaxation and self-diffusion in the binary system, dimethyl sulfoxide (DMSO)+ Water. Trans. Faraday Soc. 1971, 67, 1302–1314. [Google Scholar] [CrossRef]
- Fahy, G.M. Cryoprotectant toxicity neutralization. Cryobiology 2010, 60, S45–S53. [Google Scholar] [CrossRef]
- Luzar, A.; Chandler, D. Structure and hydrogen-bond dynamics of water-dimethyl sulfoxide mixtures by computer-simulations. J. Chem. Phys. 1993, 98, 8160–8173. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, B.; Hutter, J. The structure of a DMSO-Water mixture from car-parrinello simulations. Chem. Phys. Lett. 2002, 364, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Idrissi, A.; Marekha, B.; Barj, M.; Jedlovszky, P. Thermodynamics of mixing water with dimethyl sulfoxide, as seen from computer simulations. J. Phys. Chem. B 2014, 118, 8724–8733. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.J.; Yang, X.Q.; Huang, K.M.; Jia, G.Z.; Shang, H. Dielectric properties of binary solvent mixtures of dimethyl sulfoxide with water. Int. J. Mol. Sci. 2009, 10, 1261–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, N.; Atak, K.; Lange, K.M.; Gotz, M.; Soldatov, M.; Golnak, R.; Suljoti, E.; Rubensson, J.E.; Aziz, E.F. DMSO-Water Clustering in Solution Observed in Soft X-ray Spectra. J. Phys. Chem. Lett. 2012, 3, 3697–3701. [Google Scholar] [CrossRef] [PubMed]
- Soper, A.K.; Luzar, A. A Neutron Diffraction Study of Dimethyl Sulfoxide-Water Mixtures. J. Chem. Phys. 1992, 97, 1320–1331. [Google Scholar] [CrossRef]
- Soper, A.K.; Luzar, A. Orientation of water molecules around small polar and nonpolar groups in solution: A neutron diffraction and computer simulation study. J. Phys. Chem. 1996, 100, 1357–1367. [Google Scholar] [CrossRef]
- Wulf, A.; Ludwig, R. Structure and dynamics of water confined in dimethyl sulfoxide. ChemPhysChem 2006, 7, 266–272. [Google Scholar] [CrossRef]
- Lu, Z.; Manias, E.; Macdonald, D.D.; Lanagan, M. Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy. J. Phys. Chem. A 2009, 113, 12207–12214. [Google Scholar] [CrossRef]
- Carles, S.; Desfrancçois, C.; Schermann, J.P.; Berges, J.; Houée-Levin, C. Rydberg electron-transfer spectroscopy and Ab initio studies of dimethylsulfoxide-water neutral and anion dimers. Int. J. Mass Spectrom. 2001, 205, 227–232. [Google Scholar] [CrossRef]
- Chang, H.; Jiang, J.; Feng, C.; Yang, Y.; Su, C.; Chang, P.; Lin, S. High-pressure spectroscopic probe of hydrophobic hydration of the methyl groups in dimethyl sulfoxide. J. Chem. Phys. 2003, 118, 1802–1807. [Google Scholar] [CrossRef]
- Oh, K.I.; Rajesh, K.; Stanton, J.F.; Baiz, C.R. Quantifying hydrogen-bond populations in dimethyl sulfoxide/water mixtures. Angew. Chem. 2017, 129, 11533–11537. [Google Scholar] [CrossRef]
- Wong, D.B.; Sokolowsky, K.P.; El-Barghouthi, M.I.; Fenn, E.E.; Giammanco, C.H.; Sturlaugson, A.L.; Fayer, M.D. Water dynamics in water/DMSO binary mixtures. J. Phys. Chem. B 2012, 116, 5479–5490. [Google Scholar] [CrossRef]
- Yang, B.; Cao, X.; Wang, C.; Wang, S.; Sun, C. Investigation of hydrogen bonding in water/DMSO binary mixtures by Raman spectroscopy, Spectrochim. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117704. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Evangelisti, L.; Maris, A.; Song, W.; Salvitti, G.; Melandri, S. Characterizing the interactions of dimethyl sulfoxide with water: A rotational spectroscopy study. J. Phys. Chem. A 2022, 126, 6882–6889. [Google Scholar] [CrossRef] [PubMed]
- Harnsoongnoen, S.; Wanthong, A.; Charoen-In, U.; Siritaratiwat, A. Planar microwave sensor for detection and discrimination of aqueous organic and inorganic solutions. Sens. Actuators B Chem. 2018, 271, 300–305. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Wanthong, A. A non-contact planar microwave sensor for detection of high-salinity water containing NaCl, KCl, CaCl2, MgCl2 and Na2CO3. Sens. Actuators B Chem. 2021, 331, 129355. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Wanthong, A. Real-time monitoring of sucrose, sorbitol, d-glucose and d-fructose concentration by electromagnetic sensing. Food Chem. 2017, 232, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Harnsoongnoen, S.; Wanthong, A. Coplanar Waveguide Transmission Line Loaded with Electric-LC Resonator for Determination of Glucose Concentration Sensing. IEEE Sens. J. 2017, 17, 1635–1640. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Wanthong, A. Coplanar waveguides loaded with a split ring resonator-based microwave sensor for aqueous sucrose solutions. Meas. Sci. Technol. 2016, 27, 015103. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Microwave reflective biosensor for glucose level detection in aqueous solutions. Sens. Actu. A Phys. 2020, 301, 2020. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Buranrat, B. Advances in a Microwave Sensor-Type Interdigital Capacitor with a Hexagonal Complementary Split-Ring Resonator for Glucose Level Measurement. Chemosensors 2023, 11, 257. [Google Scholar] [CrossRef]
- Harnsoongnoen, S.; Wanthong, A.; Charoen-In, U.; Siritaratiwat, A. Microwave sensor for nitrate and phosphate concentration sensing. IEEE Sens. J. 2019, 19, 2950–2955. [Google Scholar] [CrossRef]
- Harnsoongnoen, S. Metamaterial-Inspired microwave sensor for detecting the concentration of mixed phosphate and nitrate in water. IEEE Trans. Instrum. Meas. 2021, 70, 9509906. [Google Scholar] [CrossRef]
- Mohammadi, S.; Wiltshire, B.; Jain, M.C.; Nadaraja, A.V.; Clements, A.; Golovin, K.; Roberts, D.J.; Johnson, T.; Foulds, I.; Zarifi, M.H. Gold coplanar waveguide resonator integrated with a microfluidic channel for aqueous dielectric detection. IEEE Sens. J. 2020, 20, 9825–9833. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.S.; Wang, B.X.; Wang, D.W.; You, B.; Liu, Q.; Wang, G. Swarm intelligence algorithm-based optimal design of microwave microflfluidic sensors. IEEE Trans. Ind. Electron. 2022, 69, 2077–2087. [Google Scholar] [CrossRef]
- Gan, H.Y.; Zhao, W.S.; Liu, Q.; Wang, D.W.; Dong, L.; Wang, G.; Yin, W.Y. Differential microwave microflfluidic sensor based on microstrip complementary split-ring resonator (MCSRR) structure. IEEE Sens. J. 2020, 20, 5876–5884. [Google Scholar] [CrossRef]
- Fan, L.-C.; Zhao, W.-S.; Wang, D.-W.; Liu, Q.; Chen, S.; Wang, G. An ultrahigh sensitivity microwave sensor for microflfluidic applications. IEEE Microw. Wirel. Compon. Lett. 2020, 30, 1201–1204. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Trans. Microw. Theory. Tech. 2019, 67, 4269–4277. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Tovar-Lopez, F.J.; Scott, J.; Ghorbani, K. Difffferential microwave sensor for characterization of glycerol–water solutions. Sens. Actuators B Chem. 2020, 321, 128561. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, M.; Zhang, F.; Liu, F.; Lu, T.; Liu, Z.; Li, Y. Wireless microfluidic sensor for metal ion detection in water. ACS Omega. 2021, 6, 9302–9309. [Google Scholar] [CrossRef]
- Loutchanwoot, P.; Harnsoongnoen, S. Microwave microfluidic sensor for detection of high equol concentrations in aqueous solution. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 244–251. [Google Scholar] [CrossRef]
- Kaatze, U.; Pottel, R.; Schaefer, M. Dielectric spectrum of dimethyl sulfoxide/water mixtures as a function of composition. J. Phys. Chem. 1989, 93, 5623–5627. [Google Scholar] [CrossRef]
- Puranik, S.M.; Kumbharkhane, A.C.; Mehrotra, S.C. Dielectric study of dimethyl sulfoxide-water mixtures using the time-domain technique. J. Chem. Soc. Faraday Trans. 1992, 88, 433–435. [Google Scholar] [CrossRef]
- Yang, X.Q.; Yang, L.J.; Huang, K.M.; Tian, W.Y.; Shang, H. Experimental and the theoretical studies of the dielectric properties of DMSO–H2O mixtures. J. Solution. Chem. 2010, 39, 849–856. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.N.; Zeman, J.; Holm, C.; Smiatek, J. Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions. Phys. Chem. Chem. Phys. 2016, 18, 31312–31322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, K.; Geise, G.M. Dielectric permittivity properties of hydrated polymers: Measurement and connection to ion transport properties. Ind. Eng. Chem. Res. 2020, 59, 5205–5217. [Google Scholar] [CrossRef]
- Gavish, N.; Promislow, K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach. Phys. Rev. E 2016, 94, 012611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sihvola, A. Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Steeman, P.A.M.; Maurer, F.H.J. An interlayer model for the complex dielectric constant of composites. Colloid Polym. Sci. 1990, 268, 315–325. [Google Scholar] [CrossRef]
- Tuncer, E.; Gubanski, S.M.; Nettelblad, B. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas. J. Appl. Phys. 2001, 89, 8092–8100. [Google Scholar] [CrossRef]
- Saeed, K.; Pollard, R.D.; Hunter, I.C. Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials. IEEE Trans. Microw. Theory Tech. 2008, 56, 2340–2347. [Google Scholar] [CrossRef]
Parameter | W1 | W2 | W3 | W4 | W5 | L1 | L2 | L3 | L4 | L5 | S | R | C | D | θ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value (mm) | 40 | 20 | 0.8 | 1.2 | 5 | 45 | 30 | 7.3 | 9.6 | 9.25 | 0.6 | 6.4 | 0.6 | 8.8 | 60° |
Ref. | Method | Specimen | Concentration | Data | Sensitivity |
---|---|---|---|---|---|
[9] | GC | Mixed DMSO/water | 0.0001–0.01% v/v | Voltage | NA |
[10] | HPLC | Mixed DMSO/water | 0–0.005% v/v | Absorbance | NA |
[11] | MS | Mixed DMSO/ water/NH3 | 0–80 × 10−12% v/v | Phase with solar radiation peaks | NA |
[12] | NIR | Mixed DMSO/water | 0–20% v/v | Transmission | NA |
[13] | OSSCAR | DMSO/DMSP | 0–1.23% v/v | Voltage | NA |
[22] | Soft X-ray | Mixed DMSO/water | 0–100% v/v | Emission intensity | NA |
[26] | Dielectric spectroscopy | Mixed DMSO/water | 0–47.62% v/v | S21 | NA |
[29] | Infrared absorption spectroscopy | Mixed DMSO/water | 0–0.24% v/v | Intensity | NA |
[30] | Infrared absorption spectroscopy | Mixed DMSO/water | 0–47.62% v/v | Absorbance | NA |
[31] | Raman spectroscopy | Mixed DMSO/water | 0–90% v/v | Raman intensity | NA |
[38] | Open-ended microstrip transmission line loaded CSRR | Glucose | 0−5 mg/mL | 0.5 (dB/(mg/mL)) 0.5 × 10−3 (MHz/(mg/mL)) | |
[43] | Microstrip coupled CSRR | Ethanol | 0–100% v/v | NA | |
[44] | Microstrip transmission line loaded series LC | Ethanol | 0–100% v/v | 0.695% | |
[45] | Microstrip complementary split-ring resonator (MCSRR) | Ethanol | 0–100% v/v | 0.626% | |
[46] | Microstrip line loaded CSRR | Ethanol | 0–100% v/v | 0.98% | |
[47] | Microstrip transmission line loaded a shunt-connected series LC resonator | Methanol | 0–100% v/v | 0.9% | |
[48] | Microstrip transmission line terminated with a series RLC resonator | Glycerol | 0–90% v/v | 0.446 (dB/%) | |
This proposes | IDC loaded HCRR | Mixed DMSO/water | 0–75% v/v |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harnsoongnoen, S.; Buranrat, B. Microwave Sensor for the Determination of DMSO Concentration in Water–DMSO Binary Mixture. Micromachines 2023, 14, 1378. https://doi.org/10.3390/mi14071378
Harnsoongnoen S, Buranrat B. Microwave Sensor for the Determination of DMSO Concentration in Water–DMSO Binary Mixture. Micromachines. 2023; 14(7):1378. https://doi.org/10.3390/mi14071378
Chicago/Turabian StyleHarnsoongnoen, Supakorn, and Benjaporn Buranrat. 2023. "Microwave Sensor for the Determination of DMSO Concentration in Water–DMSO Binary Mixture" Micromachines 14, no. 7: 1378. https://doi.org/10.3390/mi14071378
APA StyleHarnsoongnoen, S., & Buranrat, B. (2023). Microwave Sensor for the Determination of DMSO Concentration in Water–DMSO Binary Mixture. Micromachines, 14(7), 1378. https://doi.org/10.3390/mi14071378