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Abstract: This research aims to develop a microwave sensor to accurately measure the concentration
of dimethyl sulfoxide (DMSO) in water–DMSO binary mixtures. The proposed sensor will utilize
microwave frequency measurements to determine the DMSO concentration, providing a non-invasive
and efficient method for analyzing DMSO solutions. The research will involve the design, fabrication,
and testing of the sensor, as well as the development of an appropriate calibration model. The
outcomes of this study will contribute to improved monitoring and quality control in various
fields, including pharmaceuticals, chemical synthesis, and biomedical research. The binary mixtures
of dimethyl sulfoxide (DMSO) and water with varying concentrations were investigated in the
frequency range of 1 GHz to 5 GHz at room temperature using a microwave sensor. The proposed
microwave sensor design was based on an interdigital capacitor (IDC) microstrip antenna loaded
with a hexagonal complementary ring resonator (HCRR). The performance of the sensor, fabricated
using the print circuit board (PCB) technique, was validated through simulations and experiments.
The reflection coefficient (S11) and resonance frequency (Fr) of binary mixtures of DMSO and water
solutions were recorded and analyzed for DMSO concentrations ranging from 0% v/v to 75% v/v.
Mathematical models were developed to analyze the data, and laboratory tests showed that the
sensor can detect levels of DMSO/water binary mixtures. The sensor is capable of detecting DMSO
concentrations ranging from 0% v/v to 75% v/v, with a maximum sensitivity of 0.138 dB/% for S11

and ∆S11 and 0.2 MHz/% for Fr and ∆Fr at a concentration of 50% v/v. The developed microwave
sensor can serve as an alternative for detecting DMSO concentrations in water using a simple and cost-
effective technique. This method can effectively analyze a wide range of concentrations, including
highly concentrated solutions, quickly and easily.

Keywords: microwave sensor; hexagonal complementary ring resonator (HCRR); DMSO–water
mixtures; interdigital capacitor; microstrip antenna

1. Introduction

Dimethyl sulfoxide (DMSO), also known as (CH3)2SO, is a colorless, water-soluble,
hygroscopic, slightly alkaline organic non-toxic liquid with a slight odor that boils at 189 ◦C
and freezes at 18.5 ◦C. DMSO is a widely used solvent in the fields of biology, chemistry,
pharmacology, and medicine for various applications [1,2]. Its advantageous properties,
including low toxicity and environmental compatibility, make it a highly valuable polar
aprotic solvent for a variety of applications. Among its many uses, it serves as a cryopreser-
vation agent for cells, a penetration enhancer in topical treatments, and a vital component
in the fields of toxicology and pharmacology [3–5]. However, it is known that high concen-
trations of DMSO are cytotoxic. Therefore, it is important to measure and define threshold
concentrations of DMSO for cells [6]. DMSO is often a principal additive in assay buffers,
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with a concentration normally ranging from 0.1% to 5% [7]. It is generally accepted to be
non-toxic at concentrations below 10% [3–5]. Nevertheless, it should be noted that excessive
concentrations of DMSO above 50% introduced into the bloodstream can lead to hemolysis,
while direct intravenous injection of DMSO may cause local irritation and necrosis [8].
Therefore, measuring and monitoring the DMSO concentration is very important. Many
methods exist for detecting the DMSO concentration, such as gas chromatography (GC) [9],
high-performance liquid chromatography (HPLC) [10], mass spectrometry (MS) [11], near-
infrared (NIR) spectroscopy [12], and the organic sulfur sequential chemical analysis robot
(OSSCAR) [13]. In addition to measuring the DMSO concentration, research has also
been conducted on the behavior resulting from the mixing of DMSO with water. The
mixing behavior of the DMSO/water system is widely recognized for its strong non-ideal
characteristics. Solutions comprising this solvent mixture deviate significantly from the
ideal behavior and manifest physical and chemical properties that deviate from the norm
of what is generally anticipated for an ideal solution. The non-ideal characteristics of
the DMSO/water system are evident in various physical properties, including viscosity,
density, calorimetry, refractive index, hygroscopicity, and the translational and rotational
motion of DMSO–water mixtures [14–16]. Understanding the interaction between DMSO
and water is crucial for elucidating the mechanisms underlying ice-blocking and biological
toxicity. Furthermore, the distinct characteristics of DMSO–water mixtures have been exten-
sively explored and analyzed through a variety of methods, including molecular dynamics
(MD) simulations [17–21], soft X-ray spectra [22], neutron diffraction [23,24], vibrational
spectroscopy [25], dielectric spectroscopy [26], Rydberg electron-transfer spectroscopy [27],
a high-pressure spectroscopic probe [28], infrared absorption spectroscopy [29,30], Raman
spectroscopy [31], and Fourier-transform microwave spectroscopy [32]. Another method
that has gained interest today is the measurement of material properties using microwave
sensors, which has many advantages, such as being easy to build, cheap, and small in size.
Additionally, the results can be checked and analyzed in real time. The use of microwave
sensors for measuring solution concentrations has been confirmed in various research
applications, including the determination of concentrations of salt [33,34], sugar [33,35–39],
nitrate and phosphate [40,41], alcohol [42], ethanol [43–46], methanol [47], glycerol [48],
metal ions [49], and equol [50]. However, various research reviews have revealed that
there has not been a study or proof of measuring the concentration of DMSO mixed with
water using a microwave sensor. We are pleased to present the results of our study, which
investigated the use of a microwave sensor to measure the DMSO concentration in water
at room temperature. Our method is simple, low-cost, and capable of rapidly analyzing a
wide range of concentrations, including high-concentration solutions. With easy operation,
we tested concentrations from 0% v/v to 75% v/v.

2. Materials and Methods
2.1. Designing and Fabricating Sensors

The proposed microstrip antenna sensor was designed based on an IDC loaded with
an HCRR in the ground plane, as shown in Figure 1. The left and right sides of Figure 1a
show the IDC and HSRR structures, respectively. A chamber tube is to be equipped in the
region of high electric field strength, as shown in Figure 1a on the right side. The fabricated
sensor, which is on a DiClad880 substrate with a dielectric constant of εr = 2.2 and a loss
tangent of tan δ = 0.0009 and a thickness of 1.6 mm, is presented in Figure 1b. The layout
and dimensions of the sensor structures are shown in Table 1. The equivalent circuit model
of the proposed microwave sensor is shown in Figure 2. In our model, the IDC and feed line
are represented as a series LC circuit (LIDC and CIDC), while the HCRR slot is represented
as a parallel C circuit (CHCRR) with a series LR circuit (LHCRR and RMUT), where RMUT
denotes the resistance of the material under test (MUT). The coupling capacitance between
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the patch with the IDC and the HCRR slot ground plane is represented by CC. The equation
used to determine the resonance frequency (Fr) of the proposed device is:

Fr =
1

2π
√

LHCRR(CHCRR + CC)
(1)

Table 1. Layout and geometrical parameters of a microwave sensor.

Parameter W1 W2 W3 W4 W5 L1 L2 L3 L4 L5 S R C D θ

Value (mm) 40 20 0.8 1.2 5 45 30 7.3 9.6 9.25 0.6 6.4 0.6 8.8 60◦
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Figure 2. Modeling the proposed sensor using an equivalent circuit.

Figure 3 displays a comparison between the S11 spectra simulations and measure-
ments for the microwave sensor in free space. The results of the simulations and actual
measurements show that the Fr is 3.68 GHz and 3.69 GHz, respectively. A frequency
difference of 10 MHz represents a 0.27% error. The simulations and actual measurements
of S11, respectively, have values of −34.5 dB and −10.25 dB. The magnitude of S11 in the
measurements was found to be lower than that in the simulation, and the reasons behind
this discrepancy are not yet fully understood, necessitating further investigation. This
discrepancy may be due to parasitic components and differences in size and location during
the construction process. This leads to a disparity between the positions of the IDC and
HSRR structures in terms of coupling compared to the simulations.
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2.2. Preparation of Materials and Analyte Solutions

The analytical grade dimethyl sulfoxide (DMSO) that was used in the experiment was
purchased from PanReac AppliChem (Cat. No. 67-68-5). Each concentration of DMSO was
dissolved in DI water at concentrations of 0, 25, 50, and 75% v/v. Each concentration of
DMSO solution was prepared in triplicate at each concentration.

2.3. Experimental Measurement Setup

Figure 4 illustrates the setup of the sensor and measuring device. The sensor is
mounted on a foam base and connected to a Vector Network Analyzer (VNA) via a high-
frequency cable. Prior to taking measurements, the short-open-load (SOL) calibration
procedure is applied to Port 1 of the VNA. The S11 value is subsequently measured and
meticulously recorded. The test solution is carefully loaded into the chamber tube using a
micropipette. Subsequent to measuring the results, the chamber tube is thoroughly cleansed
with DI water after each measurement is completed, ensuring accuracy and reliability.
Multiple sample tests, comprising free space, an empty tube, DI water, and varying DMSO
concentrations, were conducted. Each measurement was meticulously carried out using
1601 data points within the frequency range of 1–5 GHz to ensure precision and accuracy.
The measurement results are plotted to compare the resonance frequency and S11 magnitude
at different DMSO concentrations and DI water in the frequency range of 3.5–3.75 GHz. The
frequency resolution in the measurements is 2.5 MHz, resulting from the 1601 data points
used. A total of 0.2 mL of test solution was filled into a chamber tube, the temperature was
kept constant at 25 ± 1 ◦C, and the relative humidity was maintained at 45 ± 1% to ensure
a stable and consistent working environment.
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Figure 4. Measurement setup.

3. Results
3.1. Reflection Coefficient of Sensor

The S11 spectra for different sample tests were recorded three times with a time interval
of 2 min to ensure stability and reliability. Figure 5 shows the S11 spectra for free space, an
empty tube, DI water, and different concentrations of DMSO. The magnitude of S11 for the
sensor with the chamber tube installed has increased by 1.20 dB, and the Fr has decreased
by 5 MHz compared to the case without the chamber tube installed. When DI water was
filled into the chamber tube, the Fr dropped from 3.67 GHz to 3.64 GHz, a decrease of
approximately 40 MHz, and the magnitude of S11 increased from −33.29 dB to −7.70 dB,
an increase of 25.59 dB. The decrease in Fr is due to the permittivity constant of the DI
water being greater than that of air, and the increase in S11 is a result of the electrical loss
of the DI water being higher than that of air. However, when changing the assay from DI
water to various concentrations of DMSO, the Fr and S11 magnitudes gradually decreased,
as shown in Figure 5. We found that the signal of the S11 spectra in the frequency range
of 3 to 4 GHz was uneven. To clarify the changes, we zoomed in on a narrower frequency
range of 3.5 GHz to 3.75 GHz, which covers the notch range of the signal obtained from all
the sample tests. Therefore, we applied a smoothing method based on a robust quadratic
regression to smooth it out, as shown in Figure 6. However, even though the data was
smoothed, the Fr and magnitude of S11 remained unchanged from the results obtained
from the unsmoothed data.
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3.2. Linearity of Binary Liquid Mixture Measurement

In this section, we use mixtures of DMSO and water to test the capability of our pro-
posed sensor in characterizing binary liquid mixtures. To accomplish this goal, we carefully
prepare DMSO/water mixtures with varying concentrations of 0%, 25%, 50%, and 75%
v/v using a micropipette. This allows us to assess the sensor’s performance in accurately
detecting and quantifying the composition of binary liquid mixtures. The magnitude of the
S11 and Fr data at various DMSO concentrations were searched and analyzed to find the
relationship between them. The horizontal axis displays the concentration of DMSO, while
the left vertical axes show the values of S11 and Fr, as shown in Figure 7a,b, respectively.
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Scattered data points for both the S11 and Fr datasets were plotted and fitted to curved
trendlines, allowing for the study of the resulting relationship between the variables. The
change in S11 and Fr resulting from the alteration in the concentration of DMSO mixed
with water is caused by a variation in the real and imaginary components of the complex
permittivity of the DMSO/water binary mixture. The response of the microwave sensor
was established by measuring the levels of S11 and Fr at various concentrations of DMSO.
The relationship between the levels of S11 and Fr at different concentrations of DMSO was
then determined using a mathematical model developed through linear regression analysis,
which links DMSO concentrations with measurable S11 and Fr levels. Equation (2) was
used to calculate the levels of S11 at various DMSO concentrations, which were plotted in
Figure 7a. Likewise, the levels of Fr at various DMSO concentrations were calculated using
Equation (3) and plotted in Figure 7b. The study revealed that the standard deviation (SD)
value of Fr was lower than that of S11, indicating that the Fr values were more consistent
and less dispersed compared to the S11 values.

S11(dB) = −0.0966ρ− 7.2069 with R2 = 0.9664 (2)

Fr(GHz) = −14× 104ρ+ 3.63× 109 with R2 = 0.9800 (3)

where ρ represents the concentration of DMSO in units of % v/v. The relationship between
the magnitude of S11 and Fr, obtained from the mathematical model, and the concentration
of DMSO in the range of 0–75% v/v was found to be linear with a negative slope. The
results indicated that the magnitude of both S11 and Fr altered when the concentration of
DMSO varied between 0 to 75% v/v. This step is essential as fluctuations in the complex
relative permittivity (εr) of the sample have the potential to influence the sensor response,
which is discernible from the changes in S11 and Fr measurements. The changes observed
in the S11 at resonance can be attributed to variations in the sensor impedance, which, in
turn, are influenced by the imaginary component (ε′′r ) of the εr. On the other hand, the
change in Fr is primarily influenced by variations in CR, which is a consequence of changes
in the real component (ε′r) of the εr of the mixed DMSO/water sample. The equation below
represents the frequency (f) dependent behavior of the complex relative permittivity for
mixed DMSO/water solutions:

εr(f) = ε′r(f)− jε′′r (f) (4)

The εr can be expressed as a function of the ε′r and the ε′′r [21,51–55]. In conducting
samples, the ε′′r has two contributions, as shown below:

ε
′′
r (f) = ε

′′
rd(f)− ε

′′
rσ(f) (5)

The ε′′r is composed of two contributions, namely the dielectric relaxation in dimethyl
sulfoxide/loss (ε′′rd) and the loss due to ion drift (ε′′rσ). At low frequencies, the loss due to
ion drift tends to obscure the dielectric contribution of ions.

ε
′′
rσ =

σ

ε02πf
(6)

Here, σ represents the ionic conductivity, and ε0 denotes the permittivity of free
space [55]. The dielectric constant of electrolyte–water solutions can be described by the
following equation:

ε′r = ε′rw − αc (7)

Here, ε′rw denotes the dielectric constant of DI water, c represents the concentration
of the electrolyte solution, and α denotes the phenomenological, ion-specific parameter.
Figure 7a,b obviously indicate that S11 and Fr decrease as the concentration of DMSO in-
creases, respectively. It can be inferred that the complex relative permittivity of the mixtures
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is strongly dependent on the DMSO concentration. This phenomenon is expected to arise
from the cooperative motion of DMSO–water molecules through hydrogen bonds [22,55].
As the concentration of DMSO increases within the range of 0–75% v/v, the ε”

r increases, as
reported in [53].
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This study utilized a newly proposed microwave sensor to measure the differences
in S11 and Fr at various concentrations of DMSO and DI water. The resulting data were
meticulously analyzed to investigate the relationship between these variables. Figure 8a,b
depict the effect of the DMSO concentration on the shift in S11 (∆S11) and Fr (∆Fr) from
their reference values, in the range of 0–75% v/v, using DI water as the reference sample. A



Micromachines 2023, 14, 1378 9 of 16

linear relationship was found between the ∆S11 and ∆Fr and the DMSO concentration, as
shown in Equations (8) and (9), respectively.

∆S11(dB) = 0.0966ρ− 0.4947 (8)
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With R2 = 0.9664
∆Fr(MHz) = 14× 104ρ− 0.25× 106 (9)

With R2 = 0.9800
The S11 and Fr of the proposed sensor shift upward as the concentration of DMSO in

the solution increases. The shift in Fr also results in a corresponding change in the S11 level
at a fixed frequency of 3.64 GHz, which is the Fr for DI water. As a result, both S11 and Fr
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can be utilized for sensing purposes. The relationship between the S11 shift and the DMSO
concentration is illustrated in Figure 8a, while the change in Fr with respect to the DMSO
concentration is depicted in Figure 8b. It was observed that the relationship between the
S11, Fr, ∆S11, and ∆Fr is linear across the entire range of the 0–75% v/v change in the DMSO
concentration. Furthermore, it was discovered that the R2 value for both S11 and ∆S11 was
0.9664, while the R2 value for both Fr and ∆Fr was even higher at 0.98, indicating a stronger
correlation compared to S11 and ∆S11.

The variations in S11 and ∆S11 illustrated in Figures 7a and 8a are ascribed to alterations
in the losses of binary liquid mixtures at different concentrations. In the context of mixed
DMSO/water binary mixtures at microwave frequencies, the losses are from a polar origin,
specifically from the reaction of water molecules with the incident field, as calculated using
Equations (5) and (6) [56,57]. The variations in Fr and ∆Fr illustrated in Figures 7b and 8b
are ascribed to alterations in the complex permittivity of binary liquid mixtures at different
concentrations. To determine the complex permittivity of binary liquid mixtures at varying
concentrations, it is possible to employ the dielectric mixture equation, as illustrated
in (10) [58–60]:

εr(f) = εMUT(f)×
[
(2εMUT(f) + εW(f)) + 2VVF(εW(f)− εMUT(f))
(2εMUT(f) + εW(f))−VVF(εW(f)− εMUT(f))

]
(10)

where εMUT and εW are the permittivities of DMSO and DI water, respectively. VVF is
the volume fraction of water in the DMSO/water mixtures. This equation can be used to
calculate theoretical values of permittivity, providing valuable insights for studying the
dielectric behavior of these mixtures. It will enable us to gain a better understanding of
the intermolecular interactions and structural properties of liquids, which is significant in
various fields of study.

3.3. Sensitivity

Figure 9 shows the sensitivity (S) of the proposed microwave sensor obtained from
the measurement of the S11, Fr, ∆S11, and ∆Fr values. The proposed sensor demonstrated
an exceptionally high sensitivity when the DMSO concentration was 50% v/v for the
S11, Fr, ∆S11, and ∆Fr parameters. The reason behind the proposed microwave sensor’s
high sensitivity at a 50% v/v concentration is believed to be that this concentration falls
within the range of the DMSO/water mixture, where the imaginary part of the complex
permittivity, the Gibbs energy activation, ∆G, and relaxation time are high [53]. The
sensitivity calculations, obtained from the S11, Fr, ∆S11, and ∆Fr values, are presented in
Equations (11)–(14), respectively.

SS11 =
∆S11

∆ρ
(11)

SFr =
∆Fr

∆ρ
(12)

S∆S11 =
∆(∆S11)

∆ρ
(13)

S∆Fr =
∆(∆Fr)

∆ρ
(14)

Figure 9a demonstrates that the sensitivity for S11 and ∆S11 remains consistent across
various concentrations of DMSO. However, the sensitivity derived from S11 will yield a
negative value. Similarly, the sensitivity for Fr and ∆Fr was found to be consistent across
different concentrations of DMSO, with the sensitivity derived from Fr being negative, as
shown in Figure 9b. When examining the sensitivity derived from all four parameters
in Figure 9, it becomes evident that the sensitivity escalates as the DMSO concentration
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increases until it reaches a maximum at 50% v/v. Subsequently, the sensitivity gradually
diminishes with further increments in the DMSO concentration.

Micromachines 2023, 14, x FOR PEER REVIEW 11 of 16 
 

 

SS11
=

∆S11

∆ρ
  (11) 

SFr
=

∆Fr

∆ρ
  (12) 

S∆S11
=

∆(∆S11)

∆ρ
  (13) 

S∆Fr
=

∆(∆Fr)

∆ρ
  (14) 

 

 
(a) 

 
(b) 

Figure 9. The sensitivity of the sensor and the parameter sensing of (a) S11 and S11 and (b) Fr and 

F vary with different concentrations of DMSO. 

Concentration (% v/v)

20 30 40 50 60 70 80

S
e
n

s
it

iv
it

y
 (

d
B

/%
)

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

S
e
n

s
it

iv
it

y
 (

d
B

/%
)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S11 DS11 

Concentration (% v/v)

20 30 40 50 60 70 80

S
e
n

s
it

iv
it

y
 (

M
H

z
/%

)

-0.22

-0.20

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

S
e
n

s
it

iv
it

y
 (

M
H

z
/%

)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Fr DFr 

Figure 9. The sensitivity of the sensor and the parameter sensing of (a) S11 and ∆S11 and (b) Fr and
∆F vary with different concentrations of DMSO.

3.4. Microwave Sensor Performance for Mixed DMSO/Water Detection

The measurements of the mixed DMSO/water concentration using planar microwave
sensors have been presented for the first time. Nevertheless, we conducted a comparative
analysis between the concentration range and parameters measured by each technique
with the proposed method in order to present a more concise overview of the mixed
DMSO/water measurements obtained through different techniques. This analysis is il-
lustrated in Table 2. Unfortunately, due to a lack of available data on the sensitivity of
other methods used to measure mixed DMSO/water, we are unable to compare our sen-
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sitivity findings. Our study allows for an evaluation of the electrical response of mixed
DMSO/water in the microwave frequency range across a wide concentration range, includ-
ing extremely high concentrations. The analysis of mixed DMSO/water commonly involves
a variety of techniques, including GC [9], HPLC [10], MS [11], NIR [12,29,30], OSSCAR [13],
soft X-ray [22], dielectric spectroscopy [26], and Raman spectroscopy [31]. GC, MS, and
HPLC are renowned for their exceptional performance in measuring mixed DMSO/water,
owing to their ability to offer high resolution, specificity, and sensitivity features. These
techniques are particularly well suited to analyze low molecular weight compounds and
mixtures, making them an excellent choice for such applications. Nevertheless, it is im-
portant to note that these methods involve intricate procedures, extended analysis times,
frequently require labor-intensive sample pretreatment, and involve costly equipment in
addition to necessitating highly specialized technical staff for operation. NIR spectroscopy
is a useful and widely used technique for the analysis of mixed solutions, offering several
advantages, including speed, efficiency, and non-destructiveness, but also has some limita-
tions, including interferences and the need for specialized instrumentation and expertise.
The OSSCAR technique has many advantages for mixed solution measurement, including
high selectivity, high sensitivity, and high speed. However, it also has its disadvantages,
including complexity, cost, limited scope, and demanding sample preparation. The soft
X-ray technique offers several benefits for mixed solution measurement, including high
sensitivity, element specificity, and non-destructiveness. Despite these advantages, the
technique also has some limitations, including cost, complexity, demanding sample prepa-
ration, and limited scope of detection. The equipment required for soft X-ray analysis can
be expensive, which may make it difficult for some laboratories to access. Additionally, the
techniques involved can be complex and may require specialized technical staff to operate,
and the sample preparation process can be demanding and time-consuming, which may
impact the accuracy of the results. The advantages of using dielectric spectroscopy for
mixed solution measurement include high sensitivity, non-invasiveness, and versatility.
The technique can detect small changes in the electrical properties of a sample, making it
possible to detect trace amounts of substances, and it does not require any modification of
the sample, making it a non-invasive option. Additionally, it can be used for a wide range of
applications, including liquids, solids, and suspensions. However, dielectric spectroscopy
also has its disadvantages. The analysis of mixed solutions using this technique can be
complex and may require specialized technical knowledge. Raman spectroscopy is a highly
specific technique for mixed solution measurement, providing molecular-level information
without altering the sample. However, its low sensitivity and complexity, as well as the
cost and potential requirement for sample preparation, can be disadvantages. Nevertheless,
we would like to emphasize that our proposed sensor presents a simple and cost-effective
solution that provides rapid analysis, wide concentration measurement capabilities (in-
cluding high concentrations), and user-friendly operation. In [43–48], the sensors exhibit
high sensitivity and require a small sample size. However, these sensors necessitate the
use of two ports for measurement. Moreover, the integration of microfluidics introduces
a complex process of sensor fabrication and assembly. Consequently, the cost of building
such sensors is also elevated. In [38], the sensor demonstrates a high level of sensitivity
while utilizing only one measurement port. However, such sensors need to be combined
with the lump elements. Furthermore, the integration of microfluidics adds complexity to
the fabrication and assembly processes of these sensors. As a result, the construction cost
of such sensors is also increased. However, the sensitivity of the sensor presented in this
study is determined based on measurements of a mixed DMSO/water concentration. Pre-
vious studies that utilized microfluidic microwave sensors employed different substances
and concentration units, which is frankly inconsistent with the parameters of this study.
Consequently, making reasonable comparisons becomes challenging.
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Table 2. The comparisons of microwave sensors for DMSO concentration detection.

Ref. Method Specimen Concentration Data Sensitivity

[9] GC Mixed
DMSO/water 0.0001–0.01% v/v Voltage NA

[10] HPLC Mixed
DMSO/water 0–0.005% v/v Absorbance NA

[11] MS Mixed DMSO/
water/NH3

0–80 × 10−12% v/v
Phase with solar
radiation peaks NA

[12] NIR Mixed
DMSO/water 0–20% v/v Transmission NA

[13] OSSCAR DMSO/DMSP 0–1.23% v/v Voltage NA

[22] Soft X-ray Mixed
DMSO/water 0–100% v/v Emission intensity NA

[26] Dielectric spectroscopy Mixed
DMSO/water 0–47.62% v/v S21 NA

[29] Infrared absorption
spectroscopy

Mixed
DMSO/water 0–0.24% v/v Intensity NA

[30] Infrared absorption
spectroscopy

Mixed
DMSO/water 0–47.62% v/v Absorbance NA

[31] Raman spectroscopy Mixed
DMSO/water 0–90% v/v Raman intensity NA

[38]
Open-ended

microstrip transmission
line loaded CSRR

Glucose 0−5 mg/mL S11, Fr

0.5 (dB/(mg/mL))
0.5 × 10−3

(MHz/(mg/mL))

[43] Microstrip coupled
CSRR Ethanol 0–100% v/v S21, Fr NA

[44]
Microstrip

transmission line
loaded series LC

Ethanol 0–100% v/v Fr 0.695%

[45]

Microstrip
complementary

split-ring resonator
(MCSRR)

Ethanol 0–100% v/v Fr 0.626%

[46] Microstrip line loaded
CSRR Ethanol 0–100% v/v Fr 0.98%

[47]

Microstrip
transmission line

loaded a
shunt-connected series

LC
resonator

Methanol 0–100% v/v S21, Fr 0.9%

[48]

Microstrip
transmission line
terminated with a

series RLC resonator

Glycerol 0–90% v/v
∣∣∣SDC

11

∣∣∣ 0.446 (dB/%)

This proposes IDC loaded HCRR Mixed
DMSO/water 0–75% v/v S11, Fr

0.138(dB/%)
0.2(MHz/%)

NA—data not available.

4. Conclusions

This research presents the design and evaluation of a microwave sensor for measur-
ing DMSO levels in aqueous solutions. The sensor, using an IDC loaded with an HCRR,
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generates an intense electric field capable of detecting changes in the electrical properties
of the specimens. The measured S11 spectra and simulation results agreed well within
the frequency range of 1 to 5 GHz. The study illustrates a linear correlation between
DMSO concentrations and four parameters, namely S11, Fr, ∆S11, and ∆Fr, with maximum
sensitivities of 0.138 dB/% (for S11 and ∆S11) and 0.2 MHz/% (for Fr and ∆Fr), respectively.
In conclusion, this research provides a thorough investigation of the microwave sensor’s
potential for measuring DMSO levels in aqueous solutions. The proposed method is a sim-
ple and cost-effective technique that can effectively analyze a broad range of concentrations,
including highly concentrated solutions, in a quick and straightforward manner.
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