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Abstract: Optical detection equipment (ODE) is subjected to vibrations that hamper the quality
of imaging. In this paper, an active vibration isolation and compensation system (VICS) for the
ODE is developed and systematically studied to improve the optical imaging quality. An active
vibration isolator for cameras is designed, employing a dual-loop control strategy with position
compensation and integral force feedback (IFF) control, and establishing the mapping relationship
between vibration and image quality. A performance metric for evaluating images is also proposed.
Finally, an experimental platform is constructed to verify its effectiveness. Based on the experimental
results, it can be concluded that the proposed VICS effectively isolates vibrations, resulting in
a reduction of 13.95 dB in the peak at the natural frequency and an 11.76 Hz widening of the isolation
bandwidth compared with the system without it. At the same time, the experiments demonstrate
that the image performance metric value increases by 46.03% near the natural frequency.

Keywords: vibration isolation; optical detection equipment; evaluation metric

1. Introduction

With the rapid development of unmanned driving and autonomous navigation, the
utilization of optical detection equipment (ODE) has expanded across various fields [1–5].
The requirements of the working environment for the ODE are quite stringent and can
effectively prevent reduced measurement accuracy due to vibrations [6,7]. Consequently,
research on vibration suppression in the ODE is currently garnering the attention of numer-
ous scholars.

To reduce the influence of unstable factors such as vibration during the optical imaging
process, some scholars use digital image enhancement methods to improve image quality
using computer compensation algorithms in the later stages [8–11]. This generates a large
volume of data accumulation during post-processing, which affects real-time performance.
This disadvantage also greatly reduces the adaptability of the ODE. Introducing a vibration
isolation and compensation system (VICS) between the ODE and vibration foundation has
been proven to be effective in improving image quality [12–14]. The key to determining the
performance of VICS in the ODE is to focus on three aspects: a VICS, an optical stabilization
control algorithm, and an evaluation of image performance related to vibration.

VICSs for improving the image quality of the ODE are studied. Li et al. [15] compared
the vibration reduction effect of different isolation dampers on cameras onboard unmanned
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aerial vehicles. Lin et al. [16] studied a double-layer VICS using a four-point support
symmetric radiation arrangement, which can reduce image motion to less than 0.1 pixels.
Verma et al. [17] designed a Stewart platform to reduce the vibration of drone image sensors.
Shao et al. [2] proposed an active suspension mechanical system to achieve stable image
acquisition for cameras mounted on moving vehicles. The effectiveness of adding an
isolation mechanism in reducing the impact of vibration on image quality is undoubtedly
evident, but more research seems less widespread.

Regardless of the ODE, extensive research is being conducted on VICSs [18–21].
Shin et al. [22] investigated a three-degree-of-freedom vibration isolator for unmanned
aerial vehicle detection systems and reduced the isolation performance in three directions
to 98.3%, 94.0%, and 94.5% in the range of 30–85 Hz. Jiang et al. [23] employed quadrilat-
eral mechanisms and lateral springs as a single layer, with a long rod as the connection
between each layer, to achieve a better vibration reduction performance with a smaller
device than other vibration isolators. Yan et al. [24] designed a biomimetic toe mechanism
inspired by the movements of felines and demonstrated that this mechanism has a wide
displacement range and performs well in low-frequency vibration reduction. Therefore,
VICS configurations in other fields can provide more new ideas for the ODE.

VICSs can be used to reduce the effects of vibrations on image quality. However, there
is still a difficulty that has not been solved. As the isolation performance is limited, a passive
vibration isolation system cannot be applied to higher-demand scenarios [25,26]. Active
vibration control can effectively compensate for the shortcomings of passive vibration
isolation systems with the use of control algorithms [27–30]. Chang et al. [31] designed
an active control technique with visual feedback using adaptive sliding mode control and
filtered LMS algorithms for vibration suppression comparison and verified the effectiveness
of both visual feedback-based active control methods in suppressing low-frequency vibra-
tions of equipment on translation or pitch platforms. Zhao et al. [32] employed a control
method combining a linear quadratic regulator with an adaptive neural network to control
a 1/4 suspension system. Negash et al. [33] and Cheng et al. [34] researched a feedback
control strategy based on a skyhook, with peak values of 67.83% and 15.2%, respectively.
To improve the image quality of the ODE, some scholars have found that this method is
also applicable. Zhao [35] et al. studied a variable rigid shock absorber using reinforcement
learning optimization stiffness control for remote sensing image satellites to improve image
quality. Sun et al. [36] proposed a bridge-type mechanism with a piezoelectric actuator for
stabilizing the images of infrared imaging systems, and the image stabilization performance
of the designed mechanism was verified through image sequence control and feedback
signal processing. In summary, image quality can indeed be raised by additional optical
stabilization control algorithms on the basis of passive VICSs.

Vibration inevitably affects the image quality captured by the ODE [8,37]. As the am-
plitude of vibration increases, the image will become blurry [8,17]. Lee et al. [38] found that
the image quality of unmanned aerial vehicles decreases in image quality due to vibration
during a bridge inspection. However, the quantitative relationship between the amplitude
of vibration and image quality is unclear. For the image performance evaluation related to
vibration, Mohamed et al. [39] studied the impact of satellite micro-vibration on satellite
image quality and proposed an algorithm to simulate micro-vibration. Suresh et al. [40]
proposed an approach for the performance evaluation of complex image processing algo-
rithms. The performance of the proposed and existing algorithms was compared using
evaluation metrics. Some scholars [41–43] evaluated vibration through the frequency- and
time-domain analyses of the response, with evaluation metrics including natural frequency
values, peak natural frequency values, and isolation bandwidths. Negash et al. [33] used
the root-mean-square (RMS) value of the vertical displacement of a loaded mass as the eval-
uation criterion. After analyzing the literature, we found that a clearer mapping relationship
between the vibration amplitude and image quality has not yet been established.

Based on these points, in this paper, a new indicator is proposed to explore the
relationship between image quality and vibration, and a position compensation loop is
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proposed to counteract the impact of the vertical position of the ODE. Compared with
traditional indicators, the relationship between image quality and vibration amplitude
is more intuitively reflected in the IPEI. To better validate the IPEI, an active VICS for
cameras is designed to ensure the accurate alignment of the active actuation force of
the voice coil motor, utilizing tandem flexible hinges and membrane springs. An active
vibration algorithm is applied to the feedback control loop, working alongside the position
compensation loop as a dual-loop control strategy. The proposed system decreases the peak
at the camera’s inherent frequency and broadens the isolation bandwidth. Based on image
performance metrics, the proposed vibration isolation system can improve image quality.

The organization of this paper is as follows: In Section 2, the design principles for the
performance metric are outlined. In Section 3, the structure of the vibration isolation device
is proposed. In Section 4, the theoretical model is established while also considering the
weight impact of the ODE. The dual-loop control strategy is also described in this section.
In Section 5, the results of the experimental tests conducted for the verification of the
vibration isolation performance of the system and the validity of the proposed performance
metric are presented. Finally, the main conclusions are drawn in Section 6.

2. Design of the Image Performance Evaluation Index (IPEI)

In this section, we propose the design of the image performance evaluation index.
This metric mainly used to demonstrate that the image quality is affected by the amplitude
of transmissibility in vibration evaluation. Typically, the data collected using the ODE are
stored in the form of video footage, where the video continuously displays the sequence of
images. When the number of images viewed within a specific time interval exceeds a certain
threshold, the human eye perceives the image as being in motion. We can characterize
the motion of an object by examining the displacement of the image at identical positions
because the most prominent manifestation of vibration is the amplitude of the object’s
motion, which can be reflected through two consecutive image frames.

A pixel point in Image I is assumed as follows:

c = (Bh,w, Gh,w, Rh,w)I (1)

where B, G, and R represent the grey values of blue, green, and red, respectively, and h
and w are the pixel positions corresponding to the rows and columns, respectively. N(c) is
the neighborhood of the pixel point. In the subsequent frame image K, the neighborhood
N(c, δ) exists in (h′, w′)K, resulting in the following relationship:

Bh,w = Bh′ ,w′

Gh,w = Gh′ ,w′

Rh,w = Rh′ ,w′

(2)

The pixel point is c′ =
(

Bh′ ,w′ , Gh′ ,w′ , Rh′ ,w′
)

K, and Pixel Point c and Pixel Point c′

represent the same point. In this case, cc′ is the moving distance of the digitized image.
The imaging quality is affected by the distortion between the real image and the ideal
image, and the relative coordinates of the camera. Assuming the distortion coefficient K
and the parameter matrix M, there exists a conversion relationship between the real image
and the digitized image: f (K, M). The actual image movement distance can be expressed
as follows:

Y =
1

h ∗ w

h,w

∑
i=1,j=1

|| f−1(K, M)·(h, w)− f−1(K, M)·
(
h′, w′

)
||2 = β·Yunit, (3)

where β represents the distance scale factor, and Yunit is the unit distance.
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As shown in Figure 1, regarding Vibration Cases 1 and 2, the actual image moving
distances are Y1 and Y2, respectively. The following relationship exists:

Y1
Yunit

= β1

Y2
Yunit

= β2
, (4)
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Equation (4) can be modified as follows:

Y1

Y2
=

β1

β2
, (5)

When β1
β2

> 1, the vibration amplitude in Case 1 is greater than that in Case 2. When
β1
β2

< 1, the vibration amplitude in Case 1 is smaller than that in Case 2. Therefore, we can
conclude that there is a positive correlation between vibrations and image displacements.

In practical situations, directly obtaining image displacements is not easy. However, it
is observed that as the image displacement per unit of time increases, the image becomes
blurrier (lower image quality). External environmental factors also have an impact on
image quality [6]. Their mapping relationship is as follows:

Ψ(y) = Φ{φ(Y), ϕ(T, U, w)}, (6)

Ψ(y) ∝
1

φ(Y)
, (7)

where Ψ is the image quality; y is the pixel point’s moving distance; φ is the influence of
vibration; Y is the actual image moving distance, which is the amplitude of the vibration; ϕ
is the influence of environmental factors; T is the ambient temperature; U is the ambient
humidity; and w is the ambient wind speed. From the aforementioned analysis, it can
be deduced that the magnitude of vibration is negatively correlated with image quality.
Therefore, we propose the following image performance metric:

Pm = 10× log10

(
(2n − 1)2

1
n ∑n

i=1(In − Kn)
2

)
, (8)

where n represents the total number of pixel points, given by n = h×w, where h and w are
the dimensions of the image. In is the pixel grey value of Image I, while Kn corresponds to
the pixel grey value of Image K.
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The video frame rate is set at 25 frames per second (fps), which results in approximately
1500 frames for a one-minute video. Due to the substantial number of frames acquired
using the ODE, it is essential to compute the average pixel displacement between each pair
of adjacent frames:

P =
1
m

m

∑
i=1

Pm, (9)

Ψ(y) ∝ P, (10)

where m is the total number of frames.
We introduce P as a performance metric to assess image quality. As indicated by

Equation (10), a higher value of p signifies better image quality, while a lower value of p
demonstrates poorer image quality. The performance improvement can be expressed by
the following formula:

Performance improvement =
Improved IPEI−Original IPEI

Original IPEI
·100%, (11)

3. Design of an Active VICS for the ODE

In this paper, we design a VICS using the HIKVCSION camera. The product parame-
ters of the HIKVCSION camera are provided in Table 1.

Table 1. Product parameters of HIKVCSION camera.

Parameter Specifications

Model DS-2DE2204IW-DE3/W/XM
Size 125 × 137.6 mm

Weight 650 g

As shown in Figure 2a, the ODE is installed on the installation platform. To minimize
the impact of vibrations, it is necessary to install an active VICS between the installation
platform and the camera. Traditional VICSs typically consist of a mass–spring–damper
system, which has a narrow vibration isolation bandwidth and is not effective in suppress-
ing vibrations in the low-frequency range. Therefore, it is necessary to introduce an active
VICS. Voice coil motors (VCMs) are widely used as motors for providing active vibration
isolation. Their output power is controlled by modulating the current passing through the
coil, and they offer several advantages such as fast response, moderate stroke, and wide
control bandwidth.
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installation with the vibration isolation; (b) three-dimensional diagram of the vibration isolator.

Based on the above research, we designed an active VICS based on a VCM, as shown
in Figure 2b. The active VICS comprises several essential components: a load platform,
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a base platform, an active mechanism, a passive mechanism, two acceleration sensors, and
a controller.

The load platform is used to support the ODE (such as the camera), while the base
platform is fixed to the installation platform. The passive mechanism consists of spring
components and connection components, with the springs ensuring the load-bearing
capacity of the isolation system and acting as passive isolation elements. The active
mechanism includes a VCM, a diaphragm spring, and a flexible hinge. With the low
radial stiffness of the flexible hinge and the high radial stiffness of the diaphragm spring,
the VCM ensures co-axiality, and the installation is easy. The low radial stiffness of the
flexible hinge and the high radial stiffness of the diaphragm spring ensure that the force
on the output shaft of the VCM is always aligned with the load platform, compensating
for any eccentricity introduced by the load platform without losing the transmission of
axial motion. The high axial stiffness of the flexible hinge and the low axial stiffness of the
diaphragm spring ensure that the excitation force generated by the VCM is transmitted
axially, effectively suppressing vibrations caused by excitation components in the vertical
direction while compensating for displacements in other directions. An acceleration sensor
is installed on the load platform to collect residual vibration signals, which are transmitted
to the controller. After processing using the built-in feedback algorithm, the controller
outputs control signals to the VCM to drive it to suppress vibrations. Another acceleration
sensor is installed on the base platform to collect ground vibration signals. The vibration
reduction performance of the designed VICS can be evaluated by processing the data
collected from these two sensors.

4. Modeling and Active Control Algorithm Strategies
4.1. Modeling of the VICS for the ODE

The classical simplified schematic diagram of the vibration isolator mechanism is
presented in Figure 3. Elastic components such as the coil spring, diaphragm spring, and
flexible hinge are equivalent to a stiffness element with a stiffness of K. The equivalent
damping of the system is C. The load platform is equivalent to a mass block with a mass
of M, and the base platform is equivalent to a mass block with a mass of m. The VICS we
designed is a single-degree-of-freedom system. We modeled it based on Newton’s Second
Law to obtain an analytical solution for its vibration transmission rate. The simplified
isolation mechanism has a dynamic model:{

M
..
x1 + Ke(x1 − x0) + C

( .
x1 −

.
x0
)
+ u = 0

u = F f b
, (12)

where M is the mass of the load platform, Ke is the equivalent stiffness of the system, C is the
equivalent damping between the load platform and the base platform, x1 is the vibration
displacement of the load platform, x0 is the vibration displacement of the base platform,
and Ff b is the feedback output force from the VCM. The M, Ke, and C are calibrated using
system identification methods, as shown in Table 2.
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Table 2. The parameters of system identification.

Parameters Values

Payload Mass M (Kg) 1.5
System stiffness Ke (N/m) 11,066

System damping C (N S/m) 33

The impact of camera mass cannot be ignored since the camera mass and load platform
mass have similar orders of magnitude. To ensure that the vertical position of the ODE is
not affected by the VICS, we studied the relationship between the static displacement of
the ODE and the system stiffness in the vertical direction. The VICS is simplified, as shown
in Figure 4. The load platform is simplified as a flat plate with a mass of M. The coil and
diaphragm springs are connected in parallel and therefore are equivalent to a spring with
a length of h, and their equivalent stiffness is as follows:

Ke = KC+KD, (13)

where KC is the stiffness of the coil spring, and KD is the stiffness of the diaphragm spring.
The installation platform is rigidly connected to the base platform, which is simplified as
a flat plate with a mass of m. Figure 4b is the schematic diagram of the VICS when there is
a load platform. G is the geometric center of the position of a hypothetical camera with no
weight. By analyzing the forces acting on it, the following equation can be obtained:

M·g = Ke·(h− z), (14)

where g is the local gravity acceleration, taken as g = 9.8 N/m2; h represents the ini-
tial length of the spring, while z is the length of the spring after being subjected to the
gravitational force of the load platform, which is determined as follows:

z = h− M·g
Ke

, (15)
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Figure 4c illustrates the schematic diagram of the VICS with the load platform and
camera. By conducting a force analysis on it, we can obtain the following equation:

(M + ∆m)·g = Ke·[h− (z− ξ)], (16)
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where ξ represents the displacement variation in the vertical direction of the camera’s
center. It can be expressed using the following equation:

ξ =
∆m·g

Ke
. (17)

Thus, the relationship between the vertical static displacement of the ODE and the
system stiffness is given as follows:

ξ =
∆m·g

KC+KD
. (18)

Consequently, Equation (12) can be rewritten as follows:{
(M + ∆m)

..
x1 + K(x1 − x0) + C

( .
x1 −

.
x0
)
+ u = 0

u = F f b + Fpc
, (19)

where Fpc is the position compensation force output by the VCM.

4.2. Dual-Loop Control Strategy of the ODE

In this section, the control strategy developed for the proposed VICS of the ODE is
presented. The IPEI will not really affect the active effect as an evaluation system. Figure 5
illustrates the flowchart of our control strategy, which comprises two independent control
loops: the position compensation loop and the feedback vibration control loop. The position
compensation loop serves to counteract the impact of the vibration isolation platform on
the vertical position of the ODE. In accordance with the preset parameters, the position
compensation controller is used to calculate the position compensation control signal. After
filtering the noise signal, the VCM output is adjusted by the position compensation control
transfer function, enabling the ODE to achieve position compensation at the designated
location. The feedback control loop is employed to suppress vibrations. Within the feedback
control loop, the feedback acquisition sensor gathers the load platform’s vibration signal.
After noise filtering, the control parameters are computed using the feedback controller,
and the parameters are added. Following the passage of the control signal, which is
calculated using feedback control, through the filter, the residual vibration after control is
obtained via the control transfer function. This residual vibration acts on the load platform
in conjunction with the vibrations following open-loop transmission and the vibrations
after position compensation control, thus completing a comprehensive control set. The
control strategy of each loop is detailed below.
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In the previous section, we derived a relationship between the static displacement
variation in the vertical direction of the ODE and the system stiffness. We propose a method
of position compensation for the ODE to compensate for static displacement. In our vibra-
tion isolation strategy for optical detection systems, active vibration reduction is primarily
accomplished using a VCM. The operating principle of the VCM relies on the Ampere force
principle, whereby an energized conductor produces a force F within a magnetic field, as
expressed using the following formula:

F = nBLI = αI, (20)

where B is the magnetic induction intensity, I is the electric current flowing through the
conductor, and L is the wire length. There is a linear positive correlation between F and I,
while α signifies the output coefficient of the VCM. Consequently, the VCM output can be
controlled by adjusting the magnitude of I. Based on Equations (18) and (20), the current
bias can be obtained as follows:

∆I = −∆m·g
α

, (21)

where ∆I is the current bias, ∆m is the camera mass, and g is the local gravitational
acceleration. The current required to control the VCM can be expressed as follows:

Ia = ∆I + I f b, (22)

where Ia is the current that controls the VCM, ∆I is the current bias, and I f b is the current
calculated using the feedback control algorithm. The position compensation force output
of the VCM can be expressed as follows:

Fpc = α·∆I. (23)

In the design of the vibration isolation scheme presented in this paper, we consider the
issues of high natural frequency and narrow vibration isolation frequency bands inherent
in traditional passive mechanisms. As a result, we developed an active control algorithm
to lower the natural frequency and broaden the vibration isolation frequency band. The
skyhook control algorithm is commonly used in engineering, and the integral force feedback
(IFF) control algorithm is a special form of the skyhook control algorithm. The IFF can
alter the system’s damping through the integral component, creating a skyhook damping
effect, which ensures high-frequency attenuation rates while suppressing the amplitude
of vibrations at the resonance peak, achieving a skyhook damping effect. Therefore, we
designed an IFF algorithm for the vibration isolation scheme. The control of the IFF can be
expressed as follows:

Ff b(s) = FIFF(s) =
1
s
·(M·γ)·a f eedback(s) =

1
s
·(M·γ)·s2, (24)

where kI = M · γ is the integral gain coefficient, and a f eedback is the acceleration sensor reading.
The transfer function of the IFF control algorithm adopted in this paper can be ex-

pressed as follows:

GIFF(s) =
Cs + ke

M ·s2 + (C + kI)·s + ke
≈ 1

1
ω2

n
·s2 + γ

ω2
n
·s + 1

, (25)

where the system is a vibration system without equivalent damping when γ � C, and
ωn is the natural frequency of the system. The stability of the IFF control used is mainly
caused by time delay. When kI values are very radical, time delay is increased. Therefore,
to maintain the stability of the system, the IFF gain parameters should be taken within the
limit value.
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A schematic representation of the feedback control loop strategy is depicted in
Figure 6a. The external excitation signal, after passing through the vibration isolation
platform, is collected using the feedback sensor as a feedback signal, which is then filtered
and output to the controller. The controller subsequently outputs the feedback control
signal to the driver, driving the VCM to counteract the vibration and achieve vibration
control. As illustrated in Figure 6b, X(s) is the external excitation, G1(s) is the transfer
function of the external excitation X(s) transmitted to the base platform, D(s) signifies
the response of the external excitation X(s) transmitted to the base platform, and E1(s)
indicates the difference between the response transmitted to the base platform using the
external excitation X(s) and the feedback control force, which corresponds to the residual
vibration after feedback control. G2(s) is the open-loop transfer function of the isolation
device, and the response of the residual vibration E1(s) after passing through the isola-
tion device is Y(s). The feedback collection sensor collects the signal G2(s) and transmits
it to the feedback controller P(s), which outputs the feedback control force Ff b(z). The
calculation formula is as follows:

[X(s)G1(s)− Y(s− 1)P(s)]G2(s) = Y(s) (26)
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5. Experiment
5.1. Experimental Platform Construction

On the basis of the above research, we manufactured an active VICS, with detailed
materials shown in Table 3. To verify the effectiveness of the position compensation
loop, we built an experimental platform and conducted experiments on it. The position
compensation was achieved using the current bias, and the conversion relationship between
the two in practical applications is shown in Figure 7 (the model of the experimental
equipment is also shown). In the position compensation loop, the load quality (camera
quality) was sent to a computer and then transmitted to the PXI controller. The PXI
controller was used to calculate the position compensation control signal, which is an
analog voltage signal. This signal was sent to the driver of the VCM, and the driver
outputted a current signal to drive the VCM to generate a position compensation control
force. The output coefficient of the VCM used was 28 N/A, the output coefficient of the
VCM diver was 0.077 A/V, and the camera quality was 650 g. Using Equation (21), the
analytical solution of the current ∆I was obtained as 0.227 A, and the voltage was 2.95 V.
As shown in Figure 8, noncontact laser displacement sensors were used to measure the
distance between the load platform and the sensor under three different vibration isolation
device states. The experimental results are shown in Figure 9. From 0 to 5 s, no camera
was placed, while from 5 to 10 s and from 10 to 15 s, the position compensation control
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force was applied. If the initial position was 0 when the camera was not placed, starting
from 5 s, due to the placement of the camera, the load platform would move down. At
10 s, the control was turned on, and the load platform returned to the initial position. This
experiment demonstrated the effectiveness of the position compensation loop well.

Table 3. Material of the various components of the vibration isolation.

Name Material

Load platform, base platform, flexible hinge,
side panels, motor output shaft, fixed ring. Al6061

Guide shaft support S45C
Linear bearings, guide shaft GCr15

Diaphragm spring, coil spring 65Mn
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Figure 9. The results of the position compensation experiment: In Case 1, the camera head was not
placed; in Case 2, the camera was placed; and in Case 3, the position compensation control force
was applied.

5.2. Experiment of the Vibration Isolation Performance

Next, we set up experiments to test the vibration isolation and compensation perfor-
mance. As shown in Figure 10, the real-time active control system consisted of an accel-
eration sensor, a charge amplifier, a controller, a driver, and the VICS. The spectrum test
and analysis system consisted of two acceleration sensors, a power amplifier, a vibration
exciter, and a data acquisition system. The camera was mounted on the load platform,
and the base platform was placed on the vibration exciter. Two acceleration sensors were
installed on the load platform and the exciter platform and were connected to a sensor
signal conditioner. The vibration exciter was driven by inputting a control signal to a power
amplifier via a spectrum analyzer (data acquisition system) to generate an excitation signal
to simulate interference with the camera. When the vibration exciter operated, the vibration
signal passed through the vibration isolator and reached the camera. The acceleration
sensor on the load platform collected the signal, which represented the acceleration of the
camera and was also the feedback signal. The signal was modulated using a sensor signal
conditioner and then inputted to a junction block of the controller. The feedback algorithm
built into the controller calculated the feedback control signal, which was sent to the driver
of the VCM to produce the feedback control force. The base platform was connected to the
vibration exciter, and the base sensor collected the ground disturbance acceleration. The
acceleration signals of the base and load platform were inputted to the spectrum analyzer
(data acquisition system) to obtain the system transfer function for analyzing the vibration
attenuation situation. The upper computer could monitor and process the data in real time,
including the image captured using the camera and the vibration transfer function curve.
Table 4 lists the model numbers of the experimental equipment.

To verify the effectiveness of the designed VICS, we conducted two sets of experiments
(fixed connected camera and fixed connected camera with VICS), using white noise to
excite the device and using acceleration sensors to measure acceleration. The data were
processed in LMS software.

Figure 11 presents the transmissibility curves under two different conditions: one con-
dition in which the camera was directly mounted on the installation platform (red line)
and another condition in which a designed VICS was placed between the camera and the
installation platform (blue line).
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Figure 10. Experimental setup diagram of the vibration isolation performance test system. The labels
are as follows: (1) upper computer; (2) camera; (3) acceleration sensor; (4) target; (5) VICS; (6) data
acquisition system; (7) DC power supply; (8) power amplifier; (9) vibration exciter; (10) junction
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Table 4. Model of the experimental equipment.

System Composition Equipment Model

Data acquisition system LMS SCADAS Mobile SCM205
Power amplifier SA-PA050
Vibration exciter SA-JZ020

Acceleration sensor PCB-356A17
Sensor signal conditioner PCB-482C05

NI controller NI PXIe-1082, PXIe-8880, PXIe-6378, BNC-2110
DC power supply MAISHENG MT-152D

VCM driver BEL-090-06
VCM AVM 50-HF-10

Upper computer
LMS Testlab software
NI LabVIEW software

HIKVCSION SADP
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Regarding the red line, the camera and installation platform cannot be considered
rigid bodies because there is no true fixed connection. The red line is the line oscillating
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near 0 dB. Regarding the blue line, the natural frequency of the vibration isolation system
under passive control is 13.67 Hz, and the resonance peak can reach 12.11 dB. In the figure,
the vibration isolation performance is approximately equivalent at 19.25 Hz, 39.65 Hz,
and 42.75 Hz for both conditions. The performance is better when the curve is low but
worse when the curve is high. In the blue regions (I, III) of the figure, adding the passive
VICS is counterproductive for vibration suppression, while in the red regions (II, IV), it is
beneficial. However, the areas of Regions I and III are much smaller than the combined
areas of Regions II and IV, indicating that the addition of the isolator reduces the isolation
performance in the blue regions but optimizes it in the red regions (which are larger).

To expand the advantage at a natural frequency and further compensate for the
isolation performance at the isolation bandwidth, we introduced an active control algorithm
to the VICS. In previous research work, we found that applying the IFF control suppresses
the peaks at natural frequencies, which are mostly where reduced isolator performance occurs.
Therefore, we added the IFF control to reduce the isolator performance of natural frequencies.

As shown in Figure 12, we compared the transmissibility curves under three different
conditions: the red line represents the case in which the camera was rigidly attached to the
installation platform, the blue line represents the case with the addition of a designed VICS
between the camera and the installation platform, and the green line represents the case
with the addition of the IFF control.
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Figure 12. Comparison of the experimental results on the transmissibility of passive and integral
force feedback (IFF) controls.

In the blue regions (I, III) of the figure, adding the IFF control to the VICS contributes
to vibration suppression, while in the red regions (II, IV), it is beneficial. However, the
areas of Regions I and III are much smaller than the combined areas of Regions II and IV,
suggesting that the addition of the VICS reduces the isolation performance in the blue
regions but significantly improves it in the red regions. Moreover, the area of the blue
regions in Figure 12 is much smaller than that in Figure 11, indicating that the isolation
performance reduction achieved with the addition of the IFF control algorithm is less than
that achieved with the passive control strategy. After incorporating the IFF control, the
peak at the natural frequency of 13.67 Hz decreased from 12.11 dB to −1.84 dB, resulting in
a 13.95 dB attenuation. This demonstrates that the IFF control had a significant vibration
reduction effect on the system and could effectively suppress the resonance phenomenon
under a natural frequency. The system’s initial isolation frequency decreased from 19.25 Hz
to 7.49 Hz. Furthermore, the isolation bandwidth widened by 11.76 Hz, which improves
the vibration isolation performance.

Therefore, by introducing the IFF control algorithm for the VICS, we reduced the areas
in which the isolation performance deteriorated to some extent and achieved superior
vibration suppression effects.
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As shown in Figure 13a, the blue line represents the transmissibility curve of the
passive system, while the green line signifies the transmissibility curve of the active system
with the incorporated IFF control. Figure 13b–e show the system’s acceleration response
under single-frequency excitation at 10 Hz, 14 Hz, 20 Hz, and 60 Hz, respectively. The blue
line represents the acceleration response of the load platform for the passive system, while
the green line indicates the acceleration response of the load platform for the active system
with the incorporated IFF control. When the excitation frequency was near the system’s
natural frequency (i.e., at 14 Hz), the amplitude attenuation was the greatest among the
four frequency points, reaching 0.300 g. The specific experimental data are recorded in
Table 5. These results also indicate that the IFF control could effectively suppress the
system’s resonance phenomenon, thereby reducing the system’s vibration amplitude and
enhancing its stability and reliability.
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Resonance Peak at
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10 Hz
Passive / ±0.254 g 0.160 g
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Figure 14b–e display the partial image data captured using the camera under 10 Hz,
14 Hz, 20 Hz, and 60 Hz single-frequency excitations as well as white noise excitation,
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respectively. The first three images were captured under passive conditions, while the
latter three images were captured after adding the IFF control. The image quality was
better when control was applied. Using our designed performance metric P, we processed
the collected image data. Figure 14a displays the scatter plot of the image data collected
using our designed performance metric P, with blue points representing data under passive
conditions and green points representing data after adding the IFF control. In passive
conditions, P was the smallest at 14 Hz, which, according to our assumption, indicates
that the image data quality collected under 14 Hz single-frequency excitation was rela-
tively poor. From previous experiments, we know that 14 Hz is near the resonance peak,
i.e., the frequency point with the largest vibration. Thus, we concluded that the smaller
the performance metric P was, the larger the vibration, which is consistent with our earlier
assumption. When the IFF control was added, the value of P increased with the frequency,
improving the image quality. We can also infer from Figure 13 that the vibration decreased
as the frequency increased, indicating that the larger the performance metric was, the
smaller the vibration. This suggests that our designed performance metric P can effectively
reflect the system’s vibration status, thereby evaluating the system’s vibration reduction
effect. The calculated results of the performance metric P are listed in Table 6. Under
open-loop control with white noise excitation, the image quality’s p value was 23.36274.
After applying the IFF feedback algorithm, the p value increased to 25.53195. This also
proves the effectiveness of the IFF control algorithm in reducing the impact of vibrations
on image quality.
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Table 6. Image performance index data recorded for different conditions.

Conditions White Noise 10 Hz 14 Hz 20 Hz 60 Hz

Passive 23.36274 19.63535 16.31451 27.28037 28.13014
IFF 25.53195 23.12428 23.82355 27.54754 28.11190

Performance
improvement 9.28% 17.77% 46.03% 0.98% −0.06%
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6. Conclusions

In this paper, we proposed an active VICS for the ODE. The isolation performance
was validated using a real-time active control system, and the transmissibility curve was
obtained using a spectrum test and analysis system. A dynamic model was established
using Newton’s method, and the analytical solution of the isolator’s transfer rate was
obtained. Two control loops were designed: the position compensation control loop
was used to counteract the influence of the vibration isolation platform on the vertical
position of the ODE during operation, while the feedback control loop was used for
vibration suppression. An experimental prototype was built, and the accuracy of the test
verification model and isolation performance evaluation were examined. The experimental
results showed that the vibration isolation bandwidth starting frequency decreased from
19.25 Hz to 7.49 Hz, the peak at the natural frequency decreased from 12.11 dB to −1.84 dB,
and the image performance metric value increased by 46.03% near the natural frequency.
Through experimental case studies, the effectiveness of the proposed VICS for the ODE
was confirmed.

Additionally, we proposed a performance metric P, which quantifies the impact of
vibrations on image quality through the mapping relationship between the image quality
collected using the image acquisition system and the vibration, thereby evaluating the
system’s vibration reduction effect. In the constructed prototype test, the smaller the
value of the performance metric P was, the worse the image quality and the larger the
vibration; the larger the value of the performance metric P was, the better the image quality
and the smaller the vibration. This is consistent with our hypothesis, indicating that our
designed performance metric P can effectively reflect the system’s vibration status, thereby
evaluating the system’s vibration reduction effect. In the future, we will further optimize
the design of the performance metric to better characterize the system’s vibration status.
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