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Abstract: This paper presents a flexible method for designing a bandpass filter (BPF) using pixel
structure and genetic algorithm (GA) optimization. The pixel structure is made up of a grid of
metallic microstrip stubs, and the GA is utilized to determine the connections between these stubs.
The pixel structure enables the construction of step impedance and shunt branches, which are used
to design a traditional BPF. To enhance the design freedom, one side of the discrete grids is connected
to the ground via metallic holes. For verification, a BPF was designed, simulated, and measured.
The experimental results showed that the 10 dB return loss bandwidth ranges from 1.1 to 1.9 GHz
and the insertion loss is approximately 2.5 dB. There is good agreement between the calculation,
EM simulation, and measurement results. The proposed GA-based design method offers significant
advantages in terms of one-time EM simulation, feasibility, and labor time savings, making it more
convenient than the traditional design method.

Keywords: bandpass filter (BPF); genetic algorithm (GA); pixel structure; wideband; EM simulation

1. Introduction

In modern wireless communication systems, filters play a crucial role in receiving
and transmitting links. Various types of filters, such as multimode resonators (MMRs),
step impedance resonators (SIRs), parallel-coupled microstrip lines (PCMLs), split-ring
resonators (SRRs), and multi short-circuited stubs, have been developed [1,2]. One such
example is the compact quadruple-mode wideband BPF design proposed in [3], which
introduces an L-shaped feed-line to achieve a wide bandwidth through four different
modes generated by a pair of feed lines. In [4], a compact dual-mode BPF with a half-mode
substrate integrated waveguide (HMSIW) cavity is presented, using TE102, TE301, and
TE101 modes to create two transmission zeros (TZs) and two poles. Additionally, coplanar
strip-line stub resonators are given in [5] to form passband and stopband filters. A novel
stopband compact BPF design with an ultra-wide bandwidth based on five-stage SIRs is
proposed in [6], which enables the miniaturization and suppression of harmonics. In [7], a
dual-band BPF is designed using one zero-value transmission pole (TP), three nonzero TPs,
and four transmission zeros. Moreover, ref. [8] demonstrates a high-order dual-port quasi-
absorptive BPF composed of a reflective-type coupled-line filter and a quarter-wavelength
transmission line, which can remove out-of-band reflections and enhance the roll-off
coefficient of the filter. Similarly, ref. [9] presents a quasi-reflectionless microstrip BPF
with high out-of-band suppression, utilizing a high-impedance transmission line and a
shunt-connected band-stop section. In [10], a novel coupling structure is implemented in
a SIW BPF with the modes of TE101 and TE102, improving the inhibition level of the wide
stopband. The resonant unit comprises two identical complementary split-ring resonators
(CSRRs) etched on the top surface of the SIW. In [11,12], the stub loaded multiple mode
resonator (SL-MMR) technique is employed to design a BPF with a wider bandwidth and
better out-of-band rejection performance. However, the aforementioned design techniques

Micromachines 2023, 14, 1389. https://doi.org/10.3390/mi14071389 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14071389
https://doi.org/10.3390/mi14071389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-2364-0372
https://orcid.org/0000-0003-4519-792X
https://doi.org/10.3390/mi14071389
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14071389?type=check_update&version=1


Micromachines 2023, 14, 1389 2 of 8

are based on the traditional design theory of microwave filters, which usually require
complex and time-consuming tuning procedures.

To solve this problem, a novel BPF design technique is proposed, which utilizes pixel
structure and GA optimization. The key innovation of this approach is that it requires only
a one-time EM simulation, significantly simplifying the design process and saving time.
To construct the metal microstrip pixel grid structure, the appropriate number and size of
pixel stubs are selected. The GA is then used to identify the optimal connection path in
the grid, which is expressed using binary codes 0 and 1. This optimal solution is used to
model the BPF in EM-simulation software, and the resulting calculation closely aligns with
the simulation results. Finally, a prototype is designed to validate the performance of the
proposed BPF.

The paper is organized as follows. In Section 2, the pixel structure and BPF design
principle are proposed. And the influence of some key parameters on the optimization
results is studied. Subsequently, a novel BPF based on pixel structure and GA is designed
and fabricated in Section 3. Finally, the conclusion is described in Section 4.

2. Proposed Design Method

FR4 with a dielectric constant of 4.4, a loss tangent of 0.02, and a thickness of 0.8 mm
was selected to fabricate the proposed pixel structure. Figure 1a shows the layout structure
of the proposed BPF, which includes the pixel structure part, the feed line, and the transmis-
sion line. The pixel structure consists of a grid of metallic stubs (3 × 32) and some shorting
vias. Meanwhile, each metallic stub and connection line have the size of Wd × Ld and
g1 × g2, respectively. The connection line is inserted between two adjacent stubs, which
is determined according to design formulas (described in [13]). In order to achieve the
short-circuited microstrip line, one side of the metallic stubs is connected to the ground
by shorting vias. The grid number and size can be further expanded when more design
freedom is needed.
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Figure 1. Structure of the proposed BPF: (a) layout and (b) definition of port numbers. W = 50, L = 
90, W1 = 5, L1 = 3, W2 = 1.5, L2 = 70, Wd = 1.8, Ld = 6, g1 = 0.2, g2 = 0.2, and r = 0.2 (unit: mm). 

Figure 1. Structure of the proposed BPF: (a) layout and (b) definition of port numbers. W = 50, L = 90,
W1 = 5, L1 = 3, W2 = 1.5, L2 = 70, Wd = 1.8, Ld = 6, g1 = 0.2, g2 = 0.2, and r = 0.2 (unit: mm).
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2.1. Design Procedures

An analytical formula was developed to determine where the connection lines should
be placed. Figure 1b shows the schematic of adding discrete ports to the pixel structure,
which can be regarded as a (2 + 189)-port network. Port 1 and port 2 are external feed ports,
and ports 3–191 are internal feed ports. In the simulation, all the ports are set as discrete
ports. By running a one-time EM simulation, the Y-parameters of the 191-port network can
be obtained. Furthermore, the voltage–current relationship of the network can be written
as follows: [

I1
I2

]
=

[
Y11 Y12
Y21 Y22

] [
V1
V2

]
(1)

where, Y11, Y12, Y21, and Y22 are submatrices of the Y-matrix (as illustrated in [13]).
When the connecting conditions are determined, the internal ports will be replaced

by corresponding loads while the external port remains unchanged. Then, the 191-port
network will become a 2-port network with 189 loads. The diagonal load matrix YL is used
to indicate the loading of the auxiliary port, and the specific matrix form of YL is:

YL = diag[y1 y2 · · · y189] (2)

where diagonal elements of YL correspond to the load of the auxiliary port.
Using the method introduced in [13], the relationship between the resulting Y-parameters

and the different loading conditions can be derived. Here, we use “0” and “∞” to denote
short and open connecting conditions, respectively. “0” indicates the presence of a connect-
ing line and “1” represents the condition without a connecting line. Since each internal port
has two possible connection states and there are 189 internal ports, therefore, there are 2189

different connection schemes. The Y-parameters (YA) of the newly obtained 2-port network
can be rigorously derived as follows:

YA = Y11 −Y12(YL + Y22)
−1Y21 (3)

Finally, the Y-parameters are converted into S-parameters ([SA]), and the conversion
formula is shown as follows:

[SA] =

[
s11 s12
s21 s22

]
= ([U]− [YA])

(
[U] + [Y]−1

)
(4)

where [U] represents the identity matrix. Then, the reflection and transmission coefficients
are directly obtained. The GA optimization method is used to search for optimal solutions.
The design procedure of the proposed BPF is summarized as follows:

(1) Construct the model of the pixel structure with (2 + 189) ports in EM software. Run
the simulation to obtain the Y-parameters of the (2 + 189)-port network.

(2) Construct the fitness function of the GA using the obtained Y-parameters and design
variables (loading conditions). The binary vector X = {x1, x2, . . . , x189}, xi ε {0,1}, is
used to represent the variables during optimization. Referring to [13], the fitness
function can be formulated as follows:

min
X

{
∑k1

k=1

[
w21 × (|s21(X, fk)| − t21)

o]+ ∑k2
k1

[
w11 × (|s11(X, fk)| − t11)

o]
+∑k

k2

[
w21 × (|s21(X, fk)| − t21)

o]
}

s.t.xi ∈ (0, 1) (5)

where |s11 (X, fk)| and |s21 (X, fk)| represent the reflection and transmission coefficients of
the BPF at the considered frequency fk (k is the number of selected frequency points). k1 and
k2 represent the upper and lower frequencies of the designed filter passband, respectively.
w11/w21 represent the weighting, and t11/t21 are the threshold values. (a)◦ = max (0, a) for
arbitrary a ε R
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(3) Return to steps 1 and 2 when the target results (passband return loss and out-of-band
rejection) are not satisfied and increase the design freedom of the pixel structure, such
as increasing the number of pixel units or adjusting the size of the pixel units.

(4) When the optimal solution obtained by the GA satisfies the optimization goal, elim-
inate all the internal ports. Then, according to the resulting optimal solution X, “1”
indicates the connecting line should be added and “0” means the gap should be
reserved. Finally, the layout of the BPF is finished.

2.2. Parametric Study

It is worth mentioning that the choice of pixel structure and optimization goal will
affect the finally realized performance. Among them, the number of pixel units and the
size of the grids are important factors. In addition, shorting some units to the ground can
also provide more design freedom. Figure 2 shows the different optimized results using
different pixel structures.
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Changing the pixel unit size affects the optimal results obtained. As shown in Figure 2a,
when the length and width of the pixel elements are adjusted from 1.8 mm × 4 mm to
1.8 mm × 6 mm, the filter performance is significantly improved. Another factor that
affects the best optimal solution is whether shorting vias are added to the edge-row pixel
units. As shown in Figure 2b, the optimal results with shorting vias are better than that
of the structure without vias in terms of out-of-band rejection and passband performance.
This is because the design freedom is increased by adding the shorting vias.

On the other hand, adjusting the optimization target will also affect the optimization
result. The solid red line in Figure 3 shows the optimization results obtained by setting
the passband return loss threshold tii and the out-of-band rejection threshold tij to −30 dB.
The optimization result obtained with the above optimization target is within the expected
range. Then, by adjusting tii and tij to −10 dB, the blue dashed line and black dotted line
shown in Figure 3 are obtained, respectively. Comparing the three different optimization
target settings above, it can be found that the optimization target setting also affects the
final performance of the designed BPF.
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Compared to traditional designs, this proposed method has an attractive feature.
One-time EM simulation based on GA optimization can quickly find the optimal solution.
Next, the EM simulation and experimental results were utilized to verify the correctness of
the directly calculated results.

3. Experimental Validation and Results

According to the design procedures introduced in Section 2, the designed pixel struc-
ture is shown in Figure 4. The small green squares stand for the metallic connection lines,
which are built in between two adjacent metallic stubs and between the metallic stubs and
the transmission line. The dimensions of the proposed bandpass are listed in Figure 1.
In order to obtain the optimal filter performance, the weight (w11 = w21 = 1), the total
number of frequency points (k = 200, uniform sampling from 0.5–2.5 GHz), upper and
lower frequencies of the passband (k1 = 50 corresponds to 1 GHz; k2 = 150 corresponds to
2 GHz), and the threshold (t11 = t21 = −30 dB) of the fitness function were carefully selected.
The optimum solution is shown in Table 1; it can be seen that there are 189 binary codes
corresponding to the connection status of the metallic connection lines. After obtaining
the optimum solution, the proposed BPF was modeled in EM-simulation software. The
simulation and calculation results are shown in Figure 5a. Comparing the two results shows
a high degree of agreement between them, while a small difference in the out-of-band
characteristics still exists. The difference is mainly caused by the connection lines, whose
electromagnetic responses are considered in the EM-simulation software but not in the
numerical calculation software MATLAB. From the simulation results, it can be seen that
the proposed pixel BPF has an operating frequency band from 1.2 to 1.98 GHz with a
reflection coefficient under −10 dB. Moreover, the insertion loss is less than 2.2 dB in the
operating frequency band.
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Table 1. The optimum solution of X for port 3 to port 191.

Port Number Optimal X

3~18 0010100110111001
19~34 0101010100011011
35~50 0010001100011101
51~66 1110101111010101
67~82 1001011010000010
83~98 0010110011100111

99~114 0100110111001010
115~130 1010100011011001
131~146 0001100011101111
147~162 0101111010101100
163~178 1011010000010001
179~191 0110011100111
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The theory of GA optimization was proven. Next, a prototype was designed to
demonstrate it. The prototype of the fabricated BPF is shown in Figure 5b. The measured
results of the proposed BPF are depicted in Figure 5c, the 10 dB return loss (S11) bandwidth
ranges from 1.1 to 1.9 GHz, and the insertion loss (S21) is approximately 2.5 dB. It can
be seen that there is a small frequency deviation between the measurement and the EM
simulation. The error may be caused by the actual dielectric constant error of the substrate,
welding, and the test environment. Meanwhile, there is still consistency between EM
simulation and the measurement. Table 2 presents a comparison of the proposed BPF with
other recently published designs. This design performs competitively compared to other
proposals and does not require tedious EM optimization procedures, shortening the design
cycle and saving labor costs.

Table 2. Comparison between the proposed BPF and other designs.

Ref. No.
(Year)

Design
Method

Center
Frequency

(GHz)

−10 dB
Bandwidth

(%)

Return
Loss (dB)

Insertion
Loss (dB)

BPF
Size (mm2)

EM
Optimization

[3]
2021

L-shaped
feed-line 2.20 38.0 15 0.4 28 × 28 Required

[4]
2021 HMSIW 10.00 5.3 18 2.5 36 × 40 Required

[5]
2018

Coplanar
Strip line 5.00 40.0 11 - 3 × 7 Required

[11]
2021

Stub-loaded
resonator 3.95 14.0 19 2.4 25 × 50 Required

This Work GA+
Pixel structure 1.50 53.3 12 2.5 18 × 68 Not

Required

4. Conclusions

This paper proposes a novel method for the fast design of a BPF. The proposed method
is based on a 191-ports network, and a GA was utilized to deal with the network to satisfy
the designed specification. Through only a one-time calculation, MATLAB will show the
optimum binary codes. Based on the calculation codes, connection lines are added or not
added between every two metallic stubs. Electromagnetic software was adopted to verify
the correctness of the calculation results. Finally, the proposed BPF was fabricated and
measured, the measured results show the accuracy of the fabricated BPF. The proposed
method based on the pixel structure can save design time and improve efficiency, which
determines it to be a good choice in the passive device design field.
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