Low-Profile Millimeter-Wave Metasurface-Based Antenna with Enhanced Bandwidth
Abstract
:1. Introduction
2. Antenna Design
3. Parametric Study
4. Measured Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radavaram, S.; Pour, M. Wideband Radiation Reconfigurable Microstrip Patch Antenna Loaded with Two Inverted U-Slots. IEEE Trans. Antennas Propag. 2018, 67, 1501–1508. [Google Scholar] [CrossRef]
- Zaker, R.; Kheirdoost, A. Bandwidth and Isolation Improvement of Highly Coupled Printed Array Antenna Using Multiple Shorting Posts. IEEE Trans. Antennas Propag. 2021, 69, 7987–7992. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, S.; Li, Y.; Long, Y. Broadband Monopolar Microstrip Patch Antenna with Shorting Vias and Coupled Ring. IEEE Antennas Wirel. Propag. Lett. 2013, 13, 39–42. [Google Scholar] [CrossRef]
- Yang, D.; Zhai, H.; Guo, C.; Li, H. A Compact Single-Layer Wideband Microstrip Antenna with Filtering Performance. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 801–805. [Google Scholar] [CrossRef]
- Midya, M.; Bhattacharjee, S.; Mitra, M. Broadband Circularly Polarized Planar Monopole Antenna With G-Shaped Parasitic Strip. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 581–585. [Google Scholar] [CrossRef]
- Nishiyama, E.; Aikawa, M. Wide-band and high-gain microstrip antenna with thick parasitic patch substrate. Proc. IEEE Antennas Propag. Soc. Int. Symp. 2004, 1, 273–276. [Google Scholar] [CrossRef]
- Ding, C.; Liu, L.; Luk, K.-M. An Optically Transparent Dual-Polarized Stacked Patch Antenna with Metal-Mesh Films. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1981–1985. [Google Scholar]
- Yang, W.; Zhou, J.; Yu, Z.; Li, L. Single-Fed Low Profile Broadband Circularly Polarized Stacked Patch Antenna. IEEE Trans. Antennas Propag. 2014, 62, 5406–5410. [Google Scholar] [CrossRef]
- Sarkar, T.; Ghosh, A.; Singh, L.K.; Chattopadhyay, S.; Sim, C.-Y. DGS-Integrated Air-Loaded Wideband Microstrip Antenna for X- and Ku-Band. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 114–118. [Google Scholar] [CrossRef]
- Mosallaei, H.; Sarabandi, K. Novel artificial reactive impedance surface for miniaturized wideband planar antenna design: Concept and characterization. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunc-tion with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450), Columbus, OH, USA, 22–27 June 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. 403–406. [Google Scholar]
- De Cos, M.E.; Álvarez, Y.; Las-Heras, F. Enhancing patch antenna bandwidth by means of uniplanar EBG-AMC. Microw. Opt. Technol. Lett. 2011, 53, 1372–1377. [Google Scholar] [CrossRef]
- Hadarig, R.C.; De Cos, M.E.; Las-Heras, F. Microstrip patch antenna bandwidth enhancement using AMC/EBG structures. Int. J. Antennas Propag. 2012, 2012, 843754. [Google Scholar] [CrossRef] [Green Version]
- De Cos, M.E.; Alvarez-Lopez, Y.; Andres, F.L.H. On the influence of coupling AMC resonances for RCS reduction in the SHF band. Prog. Electromagn. Res. 2011, 117, 103–119. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yang, H.; Li, Q.; Jidi, L.; Cao, X.; Gao, J. Broadband Low-RCS and High-Gain Microstrip Antenna Based on Concentric Ring-Type Metasurface. IEEE Trans. Antennas Propag. 2021, 69, 5325–5334. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, C.; Ding, J.; Vandenbosch, G.A.E. A Broadband Low-RCS Metasurface for CP Patch Antennas. IEEE Trans. Antennas Propag. 2020, 69, 3529–3534. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, X.; Gao, J.; Yao, X.; Liu, X. A Low-RCS and High-Gain Slot Antenna Using Broadband Metasurface. IEEE Antennas Wirel. Propag. Lett. 2015, 15, 290–293. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, X.; Gao, J.; Yao, X.; Liu, T.; Li, W.; Li, S. Broadband Low-RCS Metasurface and Its Application on Antenna. IEEE Trans. Antennas Propag. 2016, 64, 2954–2962. [Google Scholar] [CrossRef]
- Pan, Y.M.; Hu, P.F.; Zhang, X.Y.; Zheng, S.Y. A Low-Profile High-Gain and Wideband Filtering Antenna with Metasur-face. IEEE Trans. Antennas Propag. 2016, 64, 2010–2016. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.; Xue, Q.; Che, W.; Shen, G.; Feng, W. Novel Filtering Method Based on Metasurface Antenna and Its Application for Wideband High-Gain Filtering Antenna with Low Profile. IEEE Trans. Antennas Propag. 2018, 67, 1535–1544. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Zhou, J.; Wen, L.; Hong, W. Millimeter-Wave Filtering Metasurface Antenna Array with Printed RGW Technology. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1622–1626. [Google Scholar] [CrossRef]
- Guo, J.; Chen, Y.; Yang, D.; Ma, B.; Liu, S.; Pan, J. Design of a Circuit-Free Filtering Metasurface Antenna Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2022, 70, 12322–12327. [Google Scholar] [CrossRef]
- Xue, M.; Wan, W.; Wang, Q.; Cao, L. Low-Profile Millimeter-Wave Broadband Metasurface Antenna with Four Resonances. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 463–467. [Google Scholar] [CrossRef]
- Nasser, S.S.S.; Liu, W.; Chen, Z.N. Wide Bandwidth and Enhanced Gain of a Low-Profile Dipole Antenna Achieved by Integrated Suspended Metasurface. IEEE Trans. Antennas Propag. 2018, 66, 1540–1544. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Liu, A.; Guo, M.; Wei, Z. Broadband Metamaterial-Based Dual-Polarized Patch Antenna with High Isolation and Low Cross Polarization. IEEE Trans. Antennas Propag. 2021, 69, 7941–7946. [Google Scholar] [CrossRef]
- Liu, W.E.I.; Chen, Z.N.; Qing, X.; Shi, J.; Lin, F.H. Miniaturized Wideband Metasurface Antennas. IEEE Trans. Antennas Propag. 2017, 65, 7345–7349. [Google Scholar] [CrossRef]
- Feng, G.; Chen, L.; Xue, X.; Shi, X. Broadband Surface-Wave Antenna with a Novel Nonuniform Tapered Metasurface. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2902–2905. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, W.; Hu, W.; Sun, S.-Y.; Gong, S.-X. Wideband Multimode Filtering Circular Patch Antenna. IEEE Trans. Actions Antennas Propag. 2021, 69, 7249–7259. [Google Scholar] [CrossRef]
- Cao, T.N.; Nguyen, M.T.; Phan, H.L.; Nguyen, D.D.; Vu, D.L.; Nguyen, T.Q.H.; Kim, J.-M. Millimeter-Wave Broadband MIMO Antenna Using Metasurfaces for 5G Cellular Networks. Int. J. RF Microw. Comput. Aided Eng. 2023, 2023, 9938824. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.N. A Dual-Band Metasurface Antenna Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2018, 66, 5620–5624. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Sun, K.; Zhang, X.; Xiang, Y. Design of Single-Layer Broadband Omnidirectional Metasurface Antenna Under Single Mode Resonance. IEEE Trans. Antennas Propag. 2021, 69, 6947–6952. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Zhang, X.; Xiang, Y. Compatible Integration of Circularly Polarized Omnidirectional Metasurface Antenna with Solar Cells. IEEE Trans. Antennas Propag. 2019, 68, 4155–4160. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Wu, L.; Sun, K.; Hu, J.; Chen, Y. A Dual-Polarized Omnidirectional Metasurface Antenna Designed via Characteristic Mode Analysis. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 1010–1014. [Google Scholar] [CrossRef]
- Xu, Y.; Wen, S.; Dong, Y. Vertically Polarized Loop-Fed Slot Antenna with Top-Loading Metasurface for Omnidirectional LTE Base Station Application. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2397–2401. [Google Scholar] [CrossRef]
- Chen, D.; Yang, W.; Che, W.; Xue, Q. Broadband Stable-Gain Multiresonance Antenna Using Nonperiodic Square-Ring Metasurface. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1537–1541. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Pan, J. A Low-Profile Broadband Dual-Circularly-Polarized Metasurface Antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1395–1399. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Sun, K.; Zhang, X.; Xiang, Y. Low-Profile Broadband Metasurface Antenna Under Multimode Resonance. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1696–1700. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Probe-fed broadband low-profile metasurface antennas using characteristic mode analysis. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017. [Google Scholar]
- Li, T.; Chen, Z.N. Design of dual-band metasurface antenna. In Proceedings of the 2018 International Workshop on Antenna Technology (iWAT), Nanjing, China, 5–7 March 2018. [Google Scholar]
- Lin, F.H.; Chen, Z.N. A Method of Suppressing Higher Order Modes for Improving Radiation Performance of Metasurface Multiport Antennas Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2018, 66, 1894–1902. [Google Scholar] [CrossRef]
- Liu, J.; Weng, Z.; Zhang, Z.-Q.; Qiu, Y.; Zhang, Y.-X.; Jiao, Y.-C. A Wideband Pattern Diversity Antenna with a Low Profile Based on Metasurface. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 303–307. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Truncated Impedance Sheet Model for Low-Profile Broadband Nonresonant-Cell Metasurface Antennas Using Characteristic Mode Analysis. IEEE Trans. Antennas Propag. 2018, 66, 5043–5051. [Google Scholar] [CrossRef]
Par. | Val. | Par. | Val. | Par. | Val. |
---|---|---|---|---|---|
2.65 | 0.2 | 2.3 | |||
2.94 | 0.45 | 1.08 | |||
2.6 | 0.2 | 0.15 | |||
2.53 | 0.3 | 0.2 | |||
2.41 | 2 | 1.2 | |||
0.2 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Yan, Y.; Yan, Z.; Wang, C. Low-Profile Millimeter-Wave Metasurface-Based Antenna with Enhanced Bandwidth. Micromachines 2023, 14, 1403. https://doi.org/10.3390/mi14071403
Han K, Yan Y, Yan Z, Wang C. Low-Profile Millimeter-Wave Metasurface-Based Antenna with Enhanced Bandwidth. Micromachines. 2023; 14(7):1403. https://doi.org/10.3390/mi14071403
Chicago/Turabian StyleHan, Ke, Yuchu Yan, Ze Yan, and Chongwei Wang. 2023. "Low-Profile Millimeter-Wave Metasurface-Based Antenna with Enhanced Bandwidth" Micromachines 14, no. 7: 1403. https://doi.org/10.3390/mi14071403
APA StyleHan, K., Yan, Y., Yan, Z., & Wang, C. (2023). Low-Profile Millimeter-Wave Metasurface-Based Antenna with Enhanced Bandwidth. Micromachines, 14(7), 1403. https://doi.org/10.3390/mi14071403