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Abstract: A Ag2S-Ag2O-Ag/poly-2-aminobenzene-1-thiol (P2ABT) nanocomposite was prepared us-
ing the photopolymerization reaction using AgNO3 as an oxidant. The size of the nanocomposite was
about 40 nm, in which the morphology was confirmed using TEM and SEM analyses. The functional
groups of Ag2S-Ag2O-Ag/P2ABT were confirmed using FTIR; also, XRD confirmed the inorganic
Ag2S, Ag, and Ag2O formation. This nanocomposite has great performance in supercapacitor appli-
cations, with it tested in acidic (1.0 M HCl) and basic mediums (1.0 M NaOH). This pseudo-capacitor
has great performance that appeared through the charge time in an acid medium in comparison to the
basic medium with values of 118 s and 103 s, correspondingly. The cyclic voltammetry (CV) analysis
further confirmed the excellent performance of the supercapacitor material, as indicated by the large
area under the cyclic curve. The specific capacitance (CS) and energy density (E) values (at 0.3 A/g)
were 92.5 and 44.4 F/g and 5.0 and 2.52 W·h·Kg−1 in the acidic and basic mediums, correspondingly.
The charge transfer was studied through a Nyquist plot, and the produced Rs values were 4.9 and
6.2 Ω, respectively. Building on these findings, our objective is to make a significant contribution to
the progress of supercapacitor technology through a prototype design soon.

Keywords: Ag2S-Ag2O-Ag/poly-2-aminothiophenol; nanocomposite; supercapacitor; acidic and
basic medium

1. Introduction

Under the increasing energy demand, renewable and sustainable energy devices have
emerged as a promising solution to address this pressing energy challenge [1,2].

Electrochemical devices used in energy storage are characterized by a longer life and
high energy and density, such as rechargeable batteries and rechargeable accumulators
and supercapacitors [3–5]. These devices work in complete harmony from a technical
point of view in terms of high energy density resulting from primitive capacitors and
higher energy than accumulators for electrical welding applications [6–8]. To reach the best
electrochemical performance, multiple electrolytes are used to create a voltage through
charge separation for the cell and electrodes that are nano-sized and have a high porous
structure [9,10]. To make the most of the electrochemical reactions, it is advisable to use
electrodes with a relatively large specific porosity. The greater the capacity of the conductor
to transport, the better the electrical conductivity.

Supercapacitors have three categories for the way the charges are stored. The first
type is double-layer electrochemical capacitors [11,12]. The second type of capacitors is
pseudo-capacitors, in which the electrodes are subjected to mutual oxidation and reduction
processes with the electrolytes [13,14]. The third category represents a mixture of these
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two types, in which the materials of the electrode are a mixture of these materials, carbon
mixed with redox materials. Carbon materials can be found in extensive studies for their
use as electrodes in supercapacitors to increase energy and density by depositing silver on
them [11,15,16]. Recent studies have investigated the use of novel materials for superca-
pacitors, such as ZnO and ZnO/G-ZnO composites, which achieved a CS of 61.7 F/g and
140 F/g, correspondingly [17,18]. Additionally, studies have explored the incorporation of
Ag-Ag2O composite materials to enhance the performance of supercapacitors, highlighting
their potential for use in these materials [19,20].

Polymer materials (semiconductors) [21,22] find their way into high technology de-
vices related to energy storage and transfer, and they have great compatibility and stability,
in addition to their low costs and availability [23–25]. These polymer materials are used
in pseudo-capacitors, in which these polymers have a redox property. With these great
advantages of polymer materials, there are several studies demonstrating using additive
materials for enhancing energy storage.

P2ABT has excellent optical and electrical properties for use in sustainable energy
storage devices, particularly due to its ability to undergo redox reactions facilitated by its
electronegative sulfur atom [26]. Additionally, its relatively simple synthesis process makes
it an attractive option for industrial applications as it can be produced cost-effectively and
efficiently [27–29].

Metal oxides consider the large and recommended materials for increasing energy
storage through composites with polymer materials [30–35]. Silver ions work to increase the
efficiency of transferring electrical charges and increase the electrochemical performance of
materials [36]. The good conductivity of Ag works as an active site inside the composite for
charge combination and then charge storage. The redox reaction of the composite causes
these charge storages [37]. Kim et al. [38] illustrated the effect of silver in a composite, in
which their study showed that silver nanoparticles increase the capacitance significantly,
and also, they work to increase the graphite fibers’ charge and the electrochemical use of
electrodes. Also, Atta et al. [39] studied a Ag2O/polyaniline composite in supercapacitor
fabrication, in which there was great enhancement in the specific capacitance under the
incorporation of this metal oxide with the polymer materials.

The composite made of polymer materials with a metal oxide has a great property
that combines both the advantages of these two materials, in which the polymer material
increases the charge storage and the metal oxide with its stability increases the lifetime and
stability of the synthesized supercapacitor. The ability of the polymer for charge storage
may be related to the resonance phenomena, in which the polymer material has a great
ability to accept additional electrons for redox reactions [37].

To our knowledge, no previous studies have examined Ag2S-Ag2O-Ag/P2ABT
nanocomposites. Herein, the photopolymerization technique is demonstrated for the
synthesis of a Ag2S-Ag2O-Ag/P2ABT nanocomposite from an acid medium (acetic acid),
while P2ABT is synthesized using K2S2O8 as an oxidant. TEM, SEM, FTIR, and XRD analyses
were performed to confirm all of the nanocomposite properties. This nanocomposite is applied
as a paste for a supercapacitor from acid and basic mediums, in which the performance is
greater in an acid medium. The electrochemical charge is demonstrated, in which the CS and
E parameters are measured. Moreover, the cycle voltammetry and impedance are investigated
from both mediums. All the electrochemical parameters confirmed that the behavior of the
fabricated pseudo-capacitor is greater in the acid medium.

2. Experimental Section
2.1. Materials

The 2-aminobenzene-1-thiol, ethanol, and nafion (in methanol) were obtained from
Merk (Darmstadt, Germany), VWR (Darmstadt, Germany), and Sigma Aldrich (St. Louis,
MO, USA), respectively. The graphite powder, potassium persulfate (K2S2O8), acetic acid,
and HCl were supplied by Pio-Chem Co., Giza, Egypt.
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2.2. Preparation of P2ABT and Ag2S-Ag2O-Ag/P2ABT

The P2ABT nanocomposite was prepared through the oxidation of 2-aminobenzene-
1-thiol (0.12 M) using the oxidant K2S2O8 (0.15 M) and 0.5 M HCL. First, the monomer
was stirred well in the presence of the acid medium; moreover, the oxidant dissolved
well. Through the sudden addition of the oxidant over the monomer, the reaction was
completed. During the polymerization reaction, a dark green precipitate represents the
polymer deposition. This polymer was collected, purified, and dried well.

On the other hand, the Ag2S-Ag2O-Ag/P2ABT nanocomposite was prepared through the
photopolymerization of (0.12 M) 2-aminothiophenol using (0.15 M) AgNO3, in which acetic
acid was used as the acid and solvent. Through this reaction, the Ag2S-Ag2O-Ag/P2ABT
nanocomposite formed with its grayish-green color (Figure 1).
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Figure 1. Schematic diagram of the photopolymerization reaction of 2-aminothiophenol to the
Ag2S-Ag2O-Ag/P2ABT nanocomposite using AgNO3 as an oxidant.

2.3. Supercapacitor Fabrication

The fabrication of the supercapacitor was demonstrated through the loading of a paste
made of the Ag2S-Ag2O-Ag/P2ABT nanocomposite into two Au plates with a 1.0 cm2

surface area. The paste was prepared through suspending the 0.04 g Ag2S-Ag2O-Ag/P2ABT
nanocomposite in 0.005 g graphite powder, 100 µL nafion, and 750 µL ethanol; then, this paste
(0.003 g) was loaded onto the two electrodes. Whatman paper saturated by 1.0 M of NaOH
or 1.0 M of the HCl electrolyte was used. Then, the supercapacitor was closed well using
adhesive tape.

The electrochemical workstation (CHI608E) measured the supercapacitor’s perfor-
mance through determining the CV and charges in a potential window from 0.0 to 1.0 V.
Moreover, the stability and impedance were evaluated to determine the lifetime and charge
transfer through the electrodes. Finally, the Cs, E, and power density (P) were calculated as
an indication of the supercapacitor’s efficiency.

2.4. Characterization

The characterization procedure took place to confirm the various morphological and
structural characteristics of the manufactured materials. The chemical composition of the
produced materials was verified using X-ray diffraction (X’Pert Pro, Almelo, Holland). SEM
(ZEISS SUPRA 55 VP, Jena, Germany) and TEM (JEOL JEM-2100, Tokyo, Japan) analyses
were evaluated for the 3D and 2D materials, respectively.

3. Results and Discussion

The surface characteristics of the prepared P2ABT were determined through SEM
analyses (Figure 2a). This figure suitably illustrates the formation of the broken ball-like-
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shaped P2ABT with a large surface area. This polymer has a particle size of about 120 to
800 nm; this confirms the formation of nano/micropolymers. The great surface area of
this polymer motivates the composite formation through the reaction in the presence of
additional materials [40–42].
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Figure 2. (a) SEM and (e) roughness modeling of the P2ABT. (b) TEM, (c,d) SEM, and (f) roughness
modeling of the Ag2S-Ag2O-Ag/P2ABT nanocomposite.

The SEM images in Figure 2c,d showcase the morphology of the synthesized
Ag2S-Ag2O-Ag/P2ABT nanocomposite at different magnifications. The nanocompos-
ite exhibits nonuniform or semi-spherical particle structures, with the Ag2S-Ag2O-Ag
particles well-coated within the polymer material. The average size of the nanocomposite
particles was determined to be 40 nm. This morphology indicates a large surface area,
which in turn suggests the presence of numerous active sites that facilitate efficient charge
storage within the material.

The TEM of the prepared Ag2S-Ag2O-Ag/P2ABT nanocomposite is demonstrated
in Figure 2b. The formation of the nanocomposite was proven, in which the Ag2S, Ag,
and Ag2O were present as dark colored materials (15 to 18 nm) embedded in the polymer
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materials (a faint gray color, about 40 nm). The great enhancement in the nanocomposite
size related to the reaction with the Ag2S, Ag, and Ag2O materials under the construction
of the Ag2S-Ag2O-Ag/P2ABT nanocomposite was demonstrated.

The cross-section and modeling studies for the P2ABT and Ag2S-Ag2O-Ag/P2ABT
nanocomposite are illustrated in Figure 2e,f, correspondingly, in which the size distribution
charts are inserted inside the figure. Great uniformity was observed for the nanocomposite
with an average particle size of 45 nm, while the P2ABT had a nonuniform size distribution
of 550 nm.

The XRD pattern for the prepared P2ABT and Ag2S-Ag2O-Ag/P2ABT nanocomposite
are shown in Figure 3a. The P2ABT (black curve) has an abroad peak, but there are
two semi-sharp peaks located at 24.6 and 28.0; this behavior illustrates the formation of
crystalline polymer materials [43].
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Figure 3. (a) The XRD and (b) FTIR for the prepared P2ABT and Ag2S-Ag2O-Ag/P2ABT nanocomposite.

After composite formation, resulting in Ag2S-Ag2O-Ag/P2ABT, there were great
enhancements in the XRD pattern; this appeared through the formation of additional peaks
characteristic of P2ABT and Ag and Ag2O nanomaterials. The P2ABT had four peaks
located at 19.22◦, 22.28◦, 23.96◦, and 27.94◦. Moreover, the Ag2O materials had four peaks
located at 38.05◦, 43.99◦, 64.67◦, and 76.44◦ for the growth directions (111), (200), (220), and
(311) for JCPDS 76-1393, respectively [44,45]. On the other hand, Ag2S appeared through
the peaks at 32.3, 40.1, and 59.8 for the growth directions (112), (031), and (042) for JCPDS
no. 14-0072, respectively [46]. While the Ag nanomaterial had one characteristic peak
located at 39.54◦ for the growth direction of (200) for JCPDS NO. 04-0783 [44,47].

The FTIR of the P2ABT and Ag2S-Ag2O-Ag/P2ABT nanocomposite through the
detection of the functional groups is illustrated in Figure 3b. All of the functional groups
were confirmed well, in which the N-H and S-H vibration band values were located at
(3743 and 3754 cm−1) and (3373 and 3120 cm−1), respectively [48]. The C-N group was
present at 1126 and 1114 cm−1 after polymer formation. The C=C aromatic quinoid band
values appeared at 1514 and 1560 cm−1, while the C=C aromatic benzenoid bands were
located at 1305 and 1387 cm−1. The C-H in the plan values was at 1126 and 1114 cm−1. The
shifts in the bands were due to the Ag2S, Ag, and Ag2O connections in the composite [49].
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The Electrochemical Study

The charge/discharge study was performed through 0.3 to 0.7 A/g as illustrated
in Figure 4a,b from the HCl and NaOH medium, respectively. The current density has
a great effect on the charging behavior of the supercapacitor; the reverse relation of the
current density with the charge storage appears clearly through the charge curves. Under
high values of current density, the supercapacitor does not have sufficient time for charge
storage [11,13,50]. There is greater enhancement in the charging behavior in the acid
medium, in which the produced charge times are 118 s and 103 s. In addition to this greater
time, the produced curve shows greater performance. This performance confirms the high
mobility of the H+ ion and then the charge storage that motivates the role of the fabricated
pseudo-capacitor; this matched with the previous literature [51,52], in which this ion has
the ability as a proton jump that accelerates movement, and then, this ion has a great
interaction with the composite for charge storage [53]. At the same time, the high porosity of
the nanocomposite facilitates the penetration of these ions to its surface [54,55]. Despite OH−

(basic medium) having the same phenomenon of proton jumping, the basic nature effects on
the polymer material decrease its conductivity [56], and then, the energy storage decreases.

The specific capacitance (CS) of the Ag2S-Ag2O-Ag/P2ABT nanocomposite fabricated
pseudo-capacitor is demonstrated through Equation (1) [57,58], in which the loaded mass
is the main parameter in this equation, besides the potential windows (∆V) that are applied
on the electrodes and the produced discharge time (∆t). Through the observed values of
CS in Figure 4c,d, the produced CS depends on the electrolyte medium of the fabricated
pseudo-capacitor. In the acidic medium (Figure 4c), the CS values decrease from 92.5 to
9.98 F/g with the current from 0.3 to 0.7 A/g, correspondingly. Through this current density
range, the CS values, for the basic medium (Figure 4d), decrease from 44.4 to 5.7 F/g. These
results reflect the role of the acid medium for charge storage, which depends mainly on the
H+ ion mobility through the proton jump phenomenon, while the basic medium reduces
the conductivity of the P2ABT polymer, and then the produced Cs value is reduced.

In the same way, the E values were calculated for the pseudo-capacitor in acidic and
basic mediums. This calculation was applied through Equation (2) [57,58]; the square of
potential windows was the main parameter through this equation besides the CS values.
The E values for the prepared supercapacitor were 5.0 and 2.52 W·h·kg−1 in the acidic and
basic mediums, correspondingly, at a current density of (0.3 A/g). The power density (P)
was illustrated using Equation (3) [13]. Moreover, the gravimetric capacitance (Cg) was
calculated using Equation (4) [12], using the values of the scan rate (s); these values are 0.9
and 0.74 F/cm2 in the acidic and basic mediums, correspondingly.

Cs = 4I·∆t/∆V·m (1)

E = 0.5Cs·
(

V2
max − V2

min

)
/3.6 (2)

P = 3600 E/∆t (3)

Cg =
4
∫ vn

v1
idv

ms∆V
(4)

The fabricated Ag2S-Ag2O-Ag/P2ABT nanocomposite pseudo-capacitor showed dif-
ferent behavior for the produced cyclic voltammetry study in the acidic and basic mediums
as demonstrated in Figure 5a,b, correspondingly. When increasing the applied scan rate
from 50 to 300 mV·s−1, the produced area under the cyclic curve increases well; this is
related to the charge storage enhancements with scan rate values that are reflective of the
redox reactions inside the supercapacitor [59,60]. From Figure 5a,b, the acid medium has a
great effect on the enhancement of the charge storage, in which the produced cyclic curve
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is almost rectangular with a great area under the curve, while in the basic medium, the
curve has a narrow area related to the small energy storage on the plates.
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The statement describes the charge transfer behavior of the Ag2S-Ag2O-Ag/P2ABT
nanocomposite pseudo-capacitor (Figure 6). The charge transfer was evaluated by a
Nyquist plot [14], which shows the real and imaginary impedance of the system. The
Nyquist plot is represented by a black curve for the acid medium (1.0 M HCL) and a red
curve for the base medium (1.0 M NaOH).
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The Nyquist plot analysis reveals that the charge transfer process is more favorable in
the acid medium (HCl) compared to the base medium (NaOH), as evidenced by the smaller
semicircle observed in the former. This indicates that the presence of H+ ions facilitates
the mobility of charges within the system. Furthermore, the acid medium enhances the
conductivity of the polymer composite, thereby positively impacting its performance
as a capacitor. This finding underscores the significance of the medium in which the
charge transfer occurs and its consequential influence on the overall performance of the
Ag2S-Ag2O-Ag/P2ABT nanocomposite pseudo-capacitor.

The statement further clarifies the charge transfer behavior of the Ag2S-Ag2O-Ag/P2ABT
nanocomposite pseudo-capacitor by introducing the Randles circuit [11], represented in
Figure 6a. The solution resistance (Rs) and charge transfer resistance (Rct) of the system
are illustrated from the Randles circuit. In the acid medium, the Rs and Rct values of the
Ag2S-Ag2O-Ag/P2ABT nanocomposite pseudo-capacitor were found to be 4.9 and 1.5 Ω,
respectively. This is indicated by the small semicircle observed in the Nyquist plot. On the
other hand, in the basic medium, the Rs and Rct values are 6.2 and 1.6 Ω, respectively. The
results obtained from the Randles circuit analysis support the conclusion that the acid medium
facilitates the charge transfer process in the system. This is consistent with the findings from
the Nyquist plot analysis. In summary, the Randles circuit analysis provides further evidence
to support the role of the acid medium in enhancing the charge transfer performance of the
Ag2S-Ag2O-Ag/P2ABT nanocomposite pseudo-capacitor. Under the great charge transfer
of the nanocomposite using the HCl electrolyte, a magnified curve is inserted in Figure 6.
The Ragone plot [61] indicates the greater enhancement of the power energy (P) in the acid
medium (Figure 6b).

For the fabricated Ag2S-Ag2O-Ag/P2ABT nanocomposite pseudo-capacitor’s stability,
its performance was determined through an electrochemical charge study until 500 cycles
from the acidic and basic mediums, Figure 7a,b, correspondingly. At 0.3 A/g, from these
figures, the medium has a great effect on the stability of the fabricated pseudo-capacitor.
The supercapacitor has retention stability values of 87% and 79% in the acidic and ba-
sic mediums, respectively, until 200 cycles. The capacitance retention and the coulomb
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efficiency (ï, using Equation (5)) [62] under these different electrolytes are represented
in Figure 7c,d, correspondingly. This good stability under an acid medium confirms the
conductivity enhancement of the polymer under the effect of H+ ions on the prepared
polymer materials [13,63]. For additional information, we compared the efficiency of this
fabricated supercapacitor with previous studies as mentioned in Table 1.

ï = (Discharge time/Charget ime) ∗ 100 (5)
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Table 1. Comparison of the current work with other studies for supercapacitor performance.

Supercapacitor Material Used Electrolyte Current
Density A/g

Capacitance
(First Cycle) (F/g)

Capacitance
(500th Cycle) (F/g)

Ppy/metal composite [64] poly(vinyl alcohol)/H3PO4 0.005 70 50
CaO/G-C3N4 [65] 6 M NaOH 0.5 84 --
NiO/nanowalls [66] 1 M KOH - - --
G-C3N4 [67] 1 M NaOH 1 20.5 19
β-Ni(OH)2 [67] 1 M NaOH 1 14.2 13.1

Carbon nanotube/Ag [68]
Gel electrolyte (polymethyl
methacrylate, acetone,
H2O, H3PO4)

0.001 88 --

Ag2S-Ag2O-Ag/P2ABT
(current work) 1 M HCl 0.3 92.5 74
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4. Conclusions

A highly efficient Ag2S-Ag2O-Ag/P2ATH nanocomposite with a small particle size
(around 40 nm) was synthesized through a photopolymerization reaction and characterized
using various analytical techniques. XRD and FTIR analyses confirmed the Ag2S, Ag, and
Ag2O nanomaterials’ formation, while morphological analyses confirmed their diffusion
inside the P2ABT polymer. The resulting nanocomposite was applied on both electrodes
of a pseudo-capacitor, which was then tested in both acidic and basic mediums. The
charge/discharge time was 118 s and 103 s for the acidic and basic mediums, respectively.
The efficiency of the device was determined through its CS and E values (at 0.3 A/g),
which were 92.5 and 44.4 F/g and 5 and 2.52 W·h·Kg−1 in the acidic and basic mediums,
correspondingly. The Nyquist plot (impedance value) and Ragone plot (energy and power
density values) confirmed the superiority of the acid medium for the charge storage inside
this supercapacitor. Due to the excellent properties of the device in an acidic medium, our
team is currently working on developing a low-cost and easily fabricated prototype for
industrial applications.
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