Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Brocken-Ball Shape P2ABT Preparation
2.3. R-GO Preparation
2.4. R-GO/P2ABT-ML Nanocomposite
2.5. PB-Ppy Preparation
2.6. Supercapacitor Fabrication
2.7. Characterization
3. Results and Discussion
3.1. Analyses
3.2. Electrochemical Behavior of the Fabricated R-GO/P2ABT-ML Supercapacitor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rabia, M.; Essam, D.; Alkallas, F.H.; Shaban, M.; Elaissi, S.; Ben Gouider Trabelsi, A. Flower-Shaped CoS-Co2O3/G-C3N4 Nanocomposite for Two-Symmetric-Electrodes Supercapacitor of High Capacitance Efficiency Examined in Basic and Acidic Mediums. Micromachines 2022, 13, 2234. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Huang, J.; Xiao, Y.; Zhang, G.; Dai, C.; Li, Z.; Zhao, Y.; Jiang, L.; Qu, L. A Seamlessly Integrated Device of Micro-Supercapacitor and Wireless Charging with Ultrahigh Energy Density and Capacitance. Nat. Commun. 2021, 12, 2647. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V.K.; Nardekar, S.S.; Sahoo, S.; Kim, S.J. Probing the Energy Conversion Process in Piezoelectric-Driven Electrochemical Self-Charging Supercapacitor Power Cell Using Piezoelectrochemical Spectroscopy. Nat. Commun. 2020, 11, 2351. [Google Scholar] [CrossRef] [PubMed]
- Forse, A.C.; Griffin, J.M.; Merlet, C.; Carretero-Gonzalez, J.; Raji, A.R.O.; Trease, N.M.; Grey, C.P. Direct Observation of Ion Dynamics in Supercapacitor Electrodes Using in Situ Diffusion NMR Spectroscopy. Nat. Energy 2017, 2, 16216. [Google Scholar] [CrossRef] [Green Version]
- Hameed, S.A.; Ewais, H.A.; Rabia, M. Dumbbell-like Shape Fe2O3/Poly-2-Aminothiophenol Nanocomposite for Two-Symmetric Electrode Supercapacitor Application. J. Mater. Sci. Mater. Electron. 2023, 34, 1181. [Google Scholar] [CrossRef]
- Balu, R.; Sundaram, S.K.; Rameshkumar, S.; Aravinth, K.; Ramasamy, P. Controlled Growth of 2D Structured Cu2WS4 Nanoflakes for High-Performance All-Solid-State Supercapacitors. J. Electroanal. Chem. 2022, 922, 116718. [Google Scholar] [CrossRef]
- Javed, M.S.; Shah, S.S.A.; Najam, T.; Siyal, S.H.; Hussain, S.; Saleem, M.; Zhao, Z.; Mai, W. Achieving High-Energy Density and Superior Cyclic Stability in Flexible and Lightweight Pseudocapacitor through Synergic Effects of Binder-Free CoGa2O4 2D-Hexagonal Nanoplates. Nano Energy 2020, 77, 105276. [Google Scholar] [CrossRef]
- Huang, G.; Ghalei, B.; Pournaghshband Isfahani, A.; Karahan, H.E.; Terada, D.; Qin, D.; Li, C.; Tsujimoto, M.; Yamaguchi, D.; Sugimoto, K.; et al. Overcoming Humidity-Induced Swelling of Graphene Oxide-Based Hydrogen Membranes Using Charge-Compensating Nanodiamonds. Nat. Energy 2021, 6, 1176–1187. [Google Scholar] [CrossRef]
- Lim, Y.S.; Tan, Y.P.; Lim, H.N.; Huang, N.M.; Tan, W.T.; Yarmo, M.A.; Yin, C.Y. Potentiostatically Deposited Polypyrrole/Graphene Decorated Nano-Manganese Oxide Ternary Film for Supercapacitors. Ceram. Int. 2014, 40, 3855–3864. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, A.M.; Alkallas, F.H.; Trabelsi, A.B.G.; AlFaify, S.; Shkir, M.; Alrebdi, T.A.; Almugren, K.S.; Kusmatsev, F.V.; Rabia, M. Photodetection Enhancement via Graphene Oxide Deposition on Poly 3-Methyl Aniline. Micromachines 2023, 14, 606. [Google Scholar] [CrossRef]
- Huang, Y.; Zhong, M.; Huang, Y.; Zhu, M.; Pei, Z.; Wang, Z.; Xue, Q.; Xie, X.; Zhi, C. A Self-Healable and Highly Stretchable Supercapacitor Based on a Dual Crosslinked Polyelectrolyte. Nat. Commun. 2015, 6, 10310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obodo, R.M.; Onah, E.O.; Nsude, H.E.; Agbogu, A.; Nwanya, A.C.; Ahmad, I.; Zhao, T.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Performance Evaluation of Graphene Oxide Based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO Electrodes for Supercapacitors. Electroanalysis 2020, 32, 2786–2794. [Google Scholar] [CrossRef]
- Ben Gouider Trabelsi, A.; Elsayed, A.M.; Alkallas, F.H.; Al-Noaimi, M.; Kusmartsev, F.V.; Rabia, M. A Fractal, Flower Petal-like CuS-CuO/G-C3N4 Nanocomposite for High Efficiency Supercapacitors. Coatings 2022, 12, 1834. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Zainal, Z.; Huang, N.M.; Harrison, I.; Andou, Y. Flexible Graphene-Based Supercapacitors: A Review. J. Phys. Chem. C 2016, 120, 4153–4172. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, Z.; He, L.; Li, H. Three-Dimensional High Graphitic Porous Biomass Carbon from Dandelion Flower Activated by K2FeO4 for Supercapacitor Electrode. J. Energy Storage 2022, 52, 104889. [Google Scholar] [CrossRef]
- Lamba, P.; Singh, P.; Singh, P.; Singh, P.; Bharti; Kumar, A.; Gupta, M.; Kumar, Y. Recent Advancements in Supercapacitors Based on Different Electrode Materials: Classifications, Synthesis Methods and Comparative Performance. J. Energy Storage 2022, 48, 103871. [Google Scholar] [CrossRef]
- Lei, Y.; Huang, Z.H.; Yang, Y.; Shen, W.; Zheng, Y.; Sun, H.; Kang, F. Porous Mesocarbon Microbeads with Graphitic Shells: Constructing a High-Rate, High-Capacity Cathode for Hybrid Supercapacitor. Sci. Rep. 2013, 3, srep02477. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Chu, X.; Wang, Y.; Zhang, H.; Yang, W. Three-Dimensional Polymer Networks for Solid-State Electrochemical Energy Storage. Chem. Eng. J. 2020, 391, 123548. [Google Scholar] [CrossRef]
- Doroodmand, M.M.; Owji, S. Alternate Layer by Layered Self Assembly of Conjugated and Unconjugated Salen Based Nanowires as Capacitive Pseudo Supercapacitor. Sci. Rep. 2021, 11, 18768. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yun, J.; Keum, K.; Jeong, Y.R.; Park, H.; Lee, H.; Lee, G.; Oh, S.Y.; Ha, J.S. High Performance Wire-Type Supercapacitor with Ppy/CNT-Ionic Liquid/AuNP/Carbon Fiber Electrode and Ionic Liquid Based Electrolyte. Carbon 2019, 144, 639–648. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Takehi, T.; Sokabe, S.; Tanaka, M.; Ishizawa, M.; Abe, H.; Watanabe, M.; Honma, I.; Nakayasu, Y. Series Module of Quinone-Based Organic Supercapacitor (>6 V) with Practical Cell Structure. Sci. Rep. 2022, 12, 3915. [Google Scholar] [CrossRef] [PubMed]
- Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T Phase MoS2 Nanosheets as Supercapacitor Electrode Materials. Nat. Nanotechnol. 2015, 10, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Liu, P.; Chen, C.; Cong, H.P.; Yu, S.H. A Multi-Responsive Healable Supercapacitor. Nat. Commun. 2021, 12, 4297. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Rabia, M.; El-Sayed, A.M.A.; Ahmed, A.; Sayed, S. Photocatalytic Properties of PbS/Graphene Oxide/Polyaniline Electrode for Hydrogen Generation. Sci. Rep. 2017, 7, 14100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahzan, S.; Darminto, D.; Nugroho, F.A.A.; Prayogi, S. Synthesis and Characterization of ZnO Thin Layers Using Sol-Gel Spin Coating Method. J. Penelit. Dan Pengkaj. Ilmu Pendidik. E-Saintika 2021, 5, 182–194. [Google Scholar] [CrossRef]
- Saad, R.; Gamal, A.; Zayed, M.; Ahmed, A.M.; Shaban, M.; BinSabt, M.; Rabia, M.; Hamdy, H. Fabrication of ZnO/CNTs for Application in CO2 Sensor at Room Temperature. Nanomaterials 2021, 11, 3087. [Google Scholar] [CrossRef]
- Xiao, X.; Engelbrekt, C.; Zhang, M.; Li, Z.; Ulstrup, J.; Zhang, J.; Si, P. A Straight Forward Approach to Electrodeposit Tungsten Disulfide/Poly(3,4-Ethylenedioxythiophene) Composites onto Nanoporous Gold for the Hydrogen Evolution Reaction. Appl. Surf. Sci. 2017, 410, 308–314. [Google Scholar] [CrossRef]
- Zaki, S.E.; Basyooni, M.A.; Shaban, M.; Rabia, M.; Eker, Y.R.; Attia, G.F.; Yilmaz, M.; Ahmed, A.M. Role of Oxygen Vacancies in Vanadium Oxide and Oxygen Functional Groups in Graphene Oxide for Room Temperature CO2 Gas Sensors. Sens. Actuators A Phys. 2019, 294, 17–24. [Google Scholar] [CrossRef]
- Azzam, E.M.S.; Abd El-Salam, H.M.; Aboad, R.S. Kinetic Preparation and Antibacterial Activity of Nanocrystalline Poly(2-Aminothiophenol). Polym. Bull. 2019, 76, 1929–1947. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. A High-Sensitivity Potentiometric Mercuric Ion Sensor Based on m-Toluidine Films. IEEE Sens. J. 2016, 16, 1541–1548. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Shaban, M.; Aly, A.H.; Ahmed, A.M.; Rabia, M. Preparation and Characterization of a High-Efficiency Photoelectric Detector Composed of Hexagonal Al2O3/TiO2/TiN/Au Nanoporous Array. Mater. Sci. Semicond. Process. 2022, 139, 106348. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Rabia, M.; Shaban, M.; Aly, A.H.; Ahmed, A.M. Preparation of Hexagonal Nanoporous Al2O3/TiO2/TiN as a Novel Photodetector with High Efficiency. Sci. Rep. 2021, 11, 17572. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.A.; Ewais, H.A. Kinetics and Mechanism of the Redox Reaction between Malachite Green and Iron(III) in Aqueous and Micellar Media. Transit. Met. Chem. 2014, 39, 199–204. [Google Scholar] [CrossRef]
- Ewais, H.A.; Ahmed, S.A.; Abdel-Khalek, A.A. Kinetics and Mechanism of Oxidation of Chromium(III)-Guanosine 5-Monophosphate Complex by Periodate. J. Chin. Chem. Soc. 2004, 51, 713–718. [Google Scholar] [CrossRef]
- Ewais, H.A.; Al-Otaibi, F.D.; Abdel-Khalek, A.A. Kinetics and Mechanism of Oxidation of Iminodiacetatochromium(III) by Periodate. Inorg. React. Mech. 2006, 6, 39–47. [Google Scholar] [CrossRef]
- Gamal, A.; Shaban, M.; BinSabt, M.; Moussa, M.; Ahmed, A.M.; Rabia, M.; Hamdy, H. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. Nanomaterials 2022, 12, 817. [Google Scholar] [CrossRef] [PubMed]
- Javed, M.S.; Zhang, X.; Ali, S.; Mateen, A.; Idrees, M.; Sajjad, M.; Batool, S.; Ahmad, A.; Imran, M.; Najam, T.; et al. Heterostructured Bimetallic–Sulfide@layered Ti3C2Tx–MXene as a Synergistic Electrode to Realize High-Energy-Density Aqueous Hybrid-Supercapacitor. Nano Energy 2022, 101, 107624. [Google Scholar] [CrossRef]
- Javed, M.S.; Shaheen, N.; Hussain, S.; Li, J.; Shah, S.S.A.; Abbas, Y.; Ahmad, M.A.; Raza, R.; Mai, W. An Ultra-High Energy Density Flexible Asymmetric Supercapacitor Based on Hierarchical Fabric Decorated with 2D Bimetallic Oxide Nanosheets and MOF-Derived Porous Carbon Polyhedra. J. Mater. Chem. A 2019, 7, 946–957. [Google Scholar] [CrossRef]
- Javed, M.S.; Mateen, A.; Ali, S.; Zhang, X.; Hussain, I.; Imran, M.; Shah, S.S.A.; Han, W. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. Small 2022, 18. [Google Scholar] [CrossRef]
- Yu, J.; Fu, N.; Zhao, J.; Liu, R.; Li, F.; Du, Y.; Yang, Z. High Specific Capacitance Electrode Material for Supercapacitors Based on Resin-Derived Nitrogen-Doped Porous Carbons. ACS Omega 2019, 4, 15904–15911. [Google Scholar] [CrossRef] [Green Version]
- Naveed ur Rehman, M.; Munawar, T.; Nadeem, M.S.; Mukhtar, F.; Maqbool, A.; Riaz, M.; Manzoor, S.; Ashiq, M.N.; Iqbal, F. Facile Synthesis and Characterization of Conducting Polymer-Metal Oxide Based Core-Shell PANI-Pr2O–NiO–Co3O4 Nanocomposite: As Electrode Material for Supercapacitor. Ceram. Int. 2021, 47, 18497–18509. [Google Scholar] [CrossRef]
- Javed, M.S.; Shah, S.S.A.; Hussain, S.; Tan, S.; Mai, W. Mesoporous Manganese-Selenide Microflowers with Enhanced Electrochemical Performance as a Flexible Symmetric 1.8 V Supercapacitor. Chem. Eng. J. 2020, 382, 122814. [Google Scholar] [CrossRef]
- Xu, W.; Jiang, Z.; Yang, Q.; Huo, W.; Javed, M.S.; Li, Y.; Huang, L.; Gu, X.; Hu, C. Approaching the Lithium-Manganese Oxides’ Energy Storage Limit with Li2MnO3 Nanorods for High-Performance Supercapacitor. Nano Energy 2018, 43, 168–176. [Google Scholar] [CrossRef]
Materials/Band Position (cm−1) | Characteristic Group | |||
---|---|---|---|---|
PB-Ppy | GO | BB-P2ABT | R-GO/P2ABT-ML | |
3743 | 3756 | N-H | ||
3400 | O-H [28] | |||
3373 | 3383 | S-H [29] | ||
1702 | 2570 | 2601 | C-H | |
1630 | C=O | |||
1622 | 1514 and 1560 | 1632 | C=C quinoid | |
1420 | 1387 | 1399 | C=C benzene | |
1312 | 1304 | 1293 | C-N | |
1155 and 1049 | C-O epoxide [28] | |||
798 | 757 | 873 | Para disubstituted ring | |
578 | 593 | C-H out of plane [30,31,32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabia, M.; Elsayed, A.M.; Salem, A.M.; Abdallah Alnuwaiser, M. Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial. Micromachines 2023, 14, 1424. https://doi.org/10.3390/mi14071424
Rabia M, Elsayed AM, Salem AM, Abdallah Alnuwaiser M. Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial. Micromachines. 2023; 14(7):1424. https://doi.org/10.3390/mi14071424
Chicago/Turabian StyleRabia, Mohamed, Asmaa M. Elsayed, Ahmed M. Salem, and Maha Abdallah Alnuwaiser. 2023. "Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial" Micromachines 14, no. 7: 1424. https://doi.org/10.3390/mi14071424
APA StyleRabia, M., Elsayed, A. M., Salem, A. M., & Abdallah Alnuwaiser, M. (2023). Highly Uniform Multi-Layers Reduced Graphene Oxide/Poly-2-aminobenzene-1-thiol Nanocomposite as a Promising Two Electrode Symmetric Supercapacitor under the Effect of Absence and Presence of Porous-Sphere Polypyrrole Nanomaterial. Micromachines, 14(7), 1424. https://doi.org/10.3390/mi14071424