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Abstract: A uniform and highly porous reduced graphene oxide/poly-2-aminobenzene-1-thiol multi-
layer (R-GO/P2ABT-ML) nanocomposite was synthesized and characterized. The uniform layer
structure and porosity of the nanocomposite, combined with its conductivity, make it an ideal
candidate for use as a pseudo supercapacitor. To enhance the capacitance behavior, a porous ball
structure polypyrrole (PB-Ppy) was incorporated into the nanocomposite. When tested at 0.2 A/g,
the capacitance values of the R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-Ppy were found to be
19.6 F/g and 92 F/g, respectively, indicating a significant increase in capacitance due to the addition
of PB-Ppy. The energy density was also found to increase from 1.18 Wh.kg−1 for R-GO/P2ABT-ML
to 5.43 Wh.kg−1 for R-GO/P2ABT-ML/PB-Ppy. The stability of the supercapacitor was found to be
significantly enhanced by the addition of PB-Ppy. The retention coefficients at 100 and 500 charge
cycles for R-GO/P2ABT-ML/PB-Ppy were 95.6% and 85.0%, respectively, compared to 89% and
71% for R-GO/P2ABT-ML without PB-Ppy. Given the low cost, mass production capability, and
easy fabrication process of this pseudo capacitor, it holds great potential for commercial applications.
Therefore, a prototype of this supercapacitor can be expected to be synthesized soon.

Keywords: poly-2-aminobenzene-1-thiol; reduced graphene oxide; polypyrrole; pseudo capacitor

1. Introduction

Over the past few years, many serious problems have been affecting the whole of
humanity and will continue into the future. One of the most important of these problems is
the depletion of natural resources, so it is important to search for alternative sources of clean
and renewable energy, especially due to the high demand for it because of technological
progress. The development in electrochemistry led to the development in the production
of electrochemical capacitors, and the focus of this study is of how energy can be stored
and converted [1–3].

In the recent past, as a result of the need to store energy for a large number of different
devices, capacitors with high speed and high power and some hybrid electrical devices
were produced [4,5]. The energy storage mechanism is either by absorbing ions in the
electrode (electrolyte), or by reversible high-speed faradic reactions. This type of capacitor
is called a pseudo-capacitor. Excellent extensive studies have been carried out on differ-
ent types of materials to find out whether these materials are suitable as electrodes for
a high-speed capacitor. After a large number of experiments and research, researchers
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have concluded that graphite produces promising results and is the focus of extensive
research. This is because it is carbon as a form of bonded carbon with special electronic and
mechanical properties, as well as being two-dimensional and containing a large surface
area at room temperature [6,7]. Advancements in nanoparticle technology have signif-
icantly improved the efficiency of supercapacitors by enhancing their electrochemical
performance. These advancements primarily involve increasing the surface area of the
electrodes, leading to enhanced charge storage and improved electrolyte diffusion within
the electrodes. By utilizing nanoparticles, the available surface area for ion adsorption and
charge storage is greatly increased, resulting in higher energy storage capacity and faster
charge/discharge rates. These developments have contributed to the remarkable progress
and efficiency improvements observed in supercapacitors. Graphite nanomaterials and
carbon nanotubes are typical electrodes. Commercial electrolytes combined with carbon
materials have dual advantages related to cost effectiveness and large production, which
has been the motivation behind the use of these materials for commercial supercapacitor
production [8–10].

The discovery of electrolytes with large pores and electrodes with high capacity has
enabled them to function effectively within integrated systems. These developments
have enabled the design and implementation of modern and sophisticated energy storage
systems [2,11,12]. The electrodes consist of carbon material with so-called claws, a large
surface area, high density, and a good conductor of electricity [13].

In recent years, great interest has been paid to electrodes produced from graphite
and its derivatives due to its excellent chelating, mechanical, and electrical properties in
addition to its electrochemical stability. The utilization of R-GO in supercapacitors is a
highly promising concept due to its exceptional properties. R-GO offers a high surface area,
facilitating efficient ion adsorption and subsequent charge storage. Additionally, R-GO
exhibits excellent electrical conductivity, making it an ideal material for supercapacitor
electrodes. The cost-effectiveness and favorable electrical properties of R-GO provide
strong motivation for researchers to employ it in supercapacitor applications [14–16]. These
catalytic characteristics have resulted in these electrodes being used in a wide range of
current and potential applications and led to the improvement of graphite derivatives and
the production of new compounds [17].

Polymer nanomaterials represent a novel and great choice for supercapacitors. Con-
ductive polymers such as (polythiophene, polypyrrole, polyaniline and its derivatives)
are considered promising materials for charge storage instead of other oxide or sulfide
materials [18,19]. Hat et al. [20] studied the incorporation of carbon materials with polymer
materials and they achieved CS of 0.03 F/cm−2. Some recent studies have advised and
promoted the incorporation of polymer as a composite for supercapacitor application; the
fabricated device combines the electrical and then the charge storage behavior of all the
incorporated materials [21–23].

Herein, this study presents the synthesis and characterization of a uniform and highly
porous R-GO/P2ABT-ML nanocomposite, along with the synthesis and characterization
of PB-Ppy. These materials were used to fabricate a supercapacitor device with two
symmetrical electrodes. The device’s performance was evaluated using charge and CV
studies to determine the CS and E parameters to evaluate the capacitance performance.
The unique properties of this device make it a promising candidate for various industrial
applications.

2. Experimental Section
2.1. Materials

Graphite powder and KMnO4 were acquired from Pio-Chem Co. in Giza, Egypt, while
Nafion and pyrrole were obtained from Sigma Aldrich in the St. Louis, MO, USA and
Darmstadt, Germany, respectively. The 2-aminobenzene-1-thiol was purchased from Merk
Co in Germany. HCL, H2O2, and K2S2O8 were obtained from El Naser Co. in Egypt.
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2.2. Brocken-Ball Shape P2ABT Preparation

The preparation of broken-ball shaped P2ABT involved the oxidative polymerization
of 2-aminobenzene-1-thiol using K2S2O8. The monomer (0.12 M) was dissolved in HCl
(0.6 M), which acted as both an acid medium and solvent. The addition of the oxidant
triggered a rapid polymerization process, resulting in the formation of BB-P2ABT with a
unique morphology characterized by broken-ball shapes.

2.3. R-GO Preparation

The preparation of GO involved using the modified Hummer method [24], where
KMnO4 was used as an oxidant to oxidize graphite sheets in a highly concentrated acid
medium. A total of 1.0 g of graphite was used as the carbon source in the reaction. This
process led to the production of graphene oxide sheets and the formation of GO. R-GO was
prepared by reducing GO (weak oxidant) using 2-aminobenzene-1-thiol (reductant). GO
was mixed with this monomer for 1 h, resulting in the formation of R-GO, in which the
oxidizing groups of the GO facilitated its reaction with 2-aminobenzene-1-thiol.

2.4. R-GO/P2ABT-ML Nanocomposite

To prepare the R-GO/P2ABT nanocomposite, a suspension of 20 mL of GO (11 mg/mL)
with the monomer was created and left for 1 h. The polymerization process was com-
pleted by adding K2S2O8 (as mentioned earlier), to form the R-GO/P2ABT nanocomposite.
The composite was then cleaned and dried, resulting in a unique morphology for the
R-GO/P2ABT-ML.

2.5. PB-Ppy Preparation

PB-Ppy was prepared by oxidizing pyrrole monomer using K2S2O8 in an acid medium
(0.5 M HCl). The resulting PB-Ppy exhibited a unique morphology characterized by porous
ball-shapes, indicating the presence of a large surface area and active sites that make it
suitable for coating with additional materials.

2.6. Supercapacitor Fabrication

To synthesize the R-GO/P2ABT-ML nanocomposite supercapacitor, a paste composed
of 0.04 g nanocomposite and 0.005 g graphite was loaded onto each Au-plate. A binder
solution containing 0.1 mL of Nafion and 0.75 mL of ethanol was used. PB-Ppy (0.01 g)
was added to the nanocomposite paste to enhance its performance. A Whatman paper
saturated with 1.0 M HCl was used to prevent short-circuiting between the plates. The
electrochemical reactions of charge, cyclic voltammetry, EIs, and lifetime were tested using
a CHI608E power station. The CS and E values were calculated to determine the efficiency
of the device.

2.7. Characterization

The materials were characterized using various analytical techniques. X-ray diffrac-
tion (XRD) was performed using X’Pert Pro (Holland) to analyze the crystal structure
of the materials. Fourier transform infrared spectroscopy (FTIR) was conducted using
a Jasco apparatus (Kyoto, Japan) to study the functional groups present in the samples.
Energy-dispersive X-ray spectroscopy (EDX) was performed to determine the elemental
composition of the samples using AXIS-NOVA, UK. The 3D morphology was also deter-
mined using SEM ZEISS, Germany. Transmission electron microscopy (TEM) 2100 (USA)
was used to study the topography and 2D morphology of the samples.

3. Results and Discussion
3.1. Analyses

The XRD analysis was conducted on PB-Ppy, GO, BB-P2ABT, and R-GO/P2ABT-ML
nanocomposite materials to study their crystalline behavior. The results, as shown in
Figure 1, indicate that both PB-Ppy and BB-P2ABT polymers have a crystalline structure,
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with peaks in the 2 Theta region between 24.3 and 29.5◦, suggesting their potential for
energy storage applications in supercapacitors. To improve the crystallinity of BB-P2ABT,
a R-GO/P2ABT-ML nanocomposite was prepared, which exhibited a higher degree of
crystallinity compared to BB-P2ABT alone. The peaks related to BB-P2ABT became more
pronounced, and the peaks related to GO appeared at 12.9◦ for the growth direction (001),
along with an additional peak at 47.8◦ for R-GO materials. The crystal size (D) of BB-P2ABT
within the composite was estimated to be 14 nm, while the crystal size of R-GO was found
to be 201 nm, using Scherrer’s equation (Equation (1)) [25,26], which relates the full width
half maximum (ß) and the 2 Theta angle (θ):

D = 0.94λ/ßcosθ (1)

The functional groups of PB-Ppy, GO, BB-P2ABT, and R-GO/P2ABT-ML nanocom-
posite materials were determined using FTIR, as demonstrated in Figure 1b. Table 1
summarizes the functional groups and their corresponding band positions for each mate-
rial. The PB-Ppy showed a main ring function group at 1545 cm−1, while GO exhibited C-O,
C=O, and O-H oxidizing groups at 1155 and 1049, 1630, and 3400 cm−1, respectively. The
characteristic functional groups of BB-P2ABT were identified at 3743, 3373, and 1304 cm−1

for N-H, S-H, and C-N, respectively. After the incorporation of R-GO in the nanocomposite,
some shifts to the blue or red side were observed, indicating changes in the functional
groups due to the presence of R-GO [27].
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Figure 1. (a) XRD and (b) FTIR of PB-Ppy, BB-P2ABT, and R-GO/P2ABT-ML nanocomposite.

Table 1. The FTIR band position for the characteristic group of PB-Ppy, GO, BB-P2ABT, and R-
GO/P2ABT-ML nanocomposite materials.

Materials/Band Position (cm−1) Characteristic Group

PB-Ppy GO BB-P2ABT R-GO/P2ABT-ML

3743 3756 N-H

3400 O-H [28]
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Table 1. Cont.

Materials/Band Position (cm−1) Characteristic Group

3373 3383 S-H [29]

1702 2570 2601 C-H

1630 C=O

1622 1514 and 1560 1632 C=C quinoid

1420 1387 1399 C=C benzene

1312 1304 1293 C-N

1155 and 1049 C-O epoxide [28]

798 757 873 Para disubstituted ring

578 593 C-H out of plane [30–32]

The morphology of materials can greatly affect their electrical properties, so SEM and
TEM were used to analyze the topography and morphology of the materials, as shown
in Figure 2. BB-P2ABT material (Figure 2a) has a broken ball-like shape with a diameter
ranging from 125 to 500 nm, which provides a large surface area for the material and allows
for the formation of composites with other materials. PB-Ppy (Figure 2b), on the other
hand, had a uniform diameter of 150 nm and exhibited a great porosity with a wrinkle
behavior on the surface. These morphological properties are important for optimizing the
performance of the materials [33–35].
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Figure 2. SEM of (a) BB-P2ABT, (b) PB-Ppy, and (c,d) R-GO/P2ABT-ML nanocomposite. (e,f) TEM of
R-GO/P2ABT-ML nanocomposite at different magnification.

The BB-P2ABT and R-GO composite displays a new morphological behavior with
highly uniform multilayers (Figure 2c,d), where the spherical bead-like shape decorates
these layers uniformly. The high porosity of the composite allows for highly active sites for
charge storage [36], making it suitable for supercapacitor applications. The TEM images
(Figure 2e,f) confirmed the morphology of the composite, with spherical shapes (dark color)
decorating R-GO sheets (grey color). Therefore, the excellent morphology of R-GO/P2ABT-
ML composite indicates its potential for supercapacitor applications, due to its charge
storage behavior.

3.2. Electrochemical Behavior of the Fabricated R-GO/P2ABT-ML Supercapacitor

The electrochemical behavior of a R-GO/P2ABT-ML supercapacitor was studied with
and without the addition of PB-Ppy nanomaterials using CHI608E measurements and
1.0 M HCl as the electrolyte. The charge/discharge curves were estimated using the proton
jump phenomenon, which involves the movement of H+ ions through two symmetrical
Au plates. The curves represent the charge storage into the plates under different current
density (J) values ranging from 0.2 to 0.8 A/g (Figure 3).

The results indicate that as the J value increases, the charge time decreases, indicating
limited charge storage at higher J values [37–39]. On the other hand, at lower current densi-
ties, a longer charge time is observed, which suggests a higher capacitance for the pseudo
capacitor. Additionally, the inclusion of PB-Ppy nanomaterials results in an enhancement of
the charge time due to its high semi-conductivity values and morphology behavior, which
play a role in charge storage.

The specific capacitance (CS) values of the supercapacitor were calculated using
Equation (2) [40,41], which takes into account the mass (m), current, time (∆t), and potential
(∆V). CS values were calculated for both R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-Ppy
nanocomposites at different J ranging from 0.2 to 0.8 A/g. At a current density of 0.2 A/g,
the CS values are 19.6 F/g and 92 F/g for R-GO/P2ABT-ML and R-GO/P2ABT-ML/PB-
Ppy, respectively. These results indicate a significant enhancement in the CS values upon
the addition of PB-Ppy nanomaterials to the composite:

Cs = 4I.∆t/∆V.m (2)

Equation (3) [40,41] was utilized to calculate the energy density (E values) by taking
into account the minimum and maximum potential values of the potential windows. Prior
to the addition of PB-Ppy nanomaterials, the E value was computed to be 1.18 W.h.kg−1.
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However, it significantly increased to 5.43 Wh.kg−1 after their integration into the superca-
pacitor:

E = 0.5Cs.
(

V2
max − V2

min

)
/3.6 (3)
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Figure 3. The effect of PB-Ppy nanomaterials on the enhancement of the charge and CS values
of R-GO/P2ABT-ML supercapacitor: (a,b) charge and (c,d) CS values before and after the PB-Ppy
incorporation, correspondingly.

The cyclic voltammetry of the R-GO/P2ABT-ML supercapacitor with and without the
addition of PB-Ppy nanomaterials is demonstrated in Figure 4a and Figure 4b, respectively.
In both cases, an increase in the area under the curve and the produced J values is observed
with the scan rate ranging from 50 to 300 mV s−1. However, the greatest enhancement is
achieved after the incorporation of PB-Ppy materials. The appearance of oxidation and
reduction peaks related to the pseudo capacitance behavior is observed, which is related to
the change in the oxidation state of S atoms from P2ABT and N atoms from Ppy during the
charge and discharge reaction.

The impedance of a supercapacitor made with R-GO/P2ABT-ML and using 1.0 M
HCl was studied, both in the absence and presence of PB-Ppy nanomaterials. The results
are shown in Figure 5, which illustrates a Nyquist plot. The Randle cell represents the
behavior of the supercapacitor, and the R1 (RS, series resistance) and R2 (RCT) indicate
the series and charge transfer resistance [7,42,43], respectively. In the absence of PB-Ppy
nanomaterials, the values of R1 and R2 are 4.63 and 0.37 Ω, respectively. However, in the
presence of PB-Ppy nanomaterials, the values of R1 and R2 are 4.64 and 0.6 Ω, respectively.
This indicates the enhancement of charge storage related to the series resistance value.

The small values of resistance after the addition of PB-Ppy materials indicate that there
is a great charge transfer, which is facilitated by the conductivity behavior of the PB-Ppy
materials. This behavior is confirmed by the smaller semi-circle observed in the Nyquist
plot after the addition of PB-Ppy. Overall, these results suggest that the addition of PB-Ppy
nanomaterials improves the performance of the supercapacitor, as it reduces the charge
transfer resistance and increases the charge transfer efficiency [42,43].
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Figure 5. The impedance characteristics of a pseudo capacitor made with R-GO/P2ABT-ML were
investigated using 1.0 M HCl in both the absence and presence of PB-Ppy nanomaterials.

The stability of R-GO/P2ABT-ML was evaluated in the presence and absence of PB-
Ppy nanomaterials, as shown in Figure 6a and Figure 6b respectively. The charging behavior
of the supercapacitor was tested for 500 cycles, and the retention coefficient was calculated
based on the results presented in Figure 6. The stability of the supercapacitor was found to
be 90% and 95.6% in the absence and presence of PB-Ppy nanomaterials, respectively, after
100 cycles. These values decreased to 71% and 85% after 500 cycles, respectively.

The high stability of the supercapacitor confirms the beneficial role of PB-Ppy materials,
which can facilitate the charging and discharging process due to their porous structure.
This structure allows for easy extraction and shrinkage under repeated charging cycles,
thus maintaining the stability of the supercapacitor.
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4. Conclusions

A highly uniform R-GO/P2ABT-ML nanocomposite is prepared and fully charac-
terized to illustrate the outstanding uniformity in morphological properties. The great
layer structure and porosity of this composite, combined with the conductivity behavior,
promote its application as a pseudo supercapacitor. Moreover, the insertion of the prepared
porous ball structure PB-Ppy is performed to increase the capacitance behavior through a
uniform diameter of 150 nm and a highly porous structure.

The pseudo capacitor consists of a uniform nanocomposite paste on both of the two
electrodes. At 0.2 A/g, the CS values are 19.6 F/g and 92 F/g for R-GO/P2ABT-ML and
R-GO/P2ABT-ML/PB-Ppy, respectively. With the same treatment, the energy density
(E) values are 1.18 and 5.43 Wh.kg-1, correspondingly. The stability also has the same
enhancement behavior through the incorporation of PB-Ppy, in which the addition of
PB-Ppy increases the lifetime of the charge cycles with very noticeable behavior; at 100
and 500 charge cycles, the stability of 95.6 and 85.0%, respectively, which is greater than 89
and 71% without PB-Ppy nanomaterials. The low cost and mass production with the easy
fabrication of this pseudo capacitor are instrumental behind the expected synthesis of a
prototype of this supercapacitor for commercial applications.
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