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Abstract: Nanobodies (Nbs) are known as camelid single-domain fragments or variable heavy chain
antibodies (VHH) that in vitro recognize the antigens (Ag) similar to full-size antibodies (Abs) and
in vivo allow immunoreactions with biomolecule cavities inaccessible to conventional Abs. Currently,
Nbs are widely used for clinical treatments due to their remarkably improved performance, ease of
production, thermal robustness, superior physical and chemical properties. Interestingly, Nbs are
also very promising bioreceptors for future rapid and portable immunoassays, compared to those
using unstable full-size antibodies. For all these reasons, Nbs are excellent candidates in ecological
risk assessments and advanced medicine, enabling the development of ultrasensitive biosensing
platforms. In this review, immobilization strategies of Nbs on conductive supports for enhanced
electrochemical immune detection of food contaminants (Fcont) and human biomarkers (Hbio) are
discussed. In the case of Fcont, the direct competitive immunoassay detection using coating antigen
solid surface is the most commonly used approach for efficient Nbs capture which was characterized
with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) when the signal decays for
increasing concentrations of free antigen prepared in aqueous solutions. In contrast, for the Hbio
investigations on thiolated gold electrodes, increases in amperometric and electrochemical impedance
spectroscopy (EIS) signals were recorded, with increases in the antigen concentrations prepared in
PBS or spiked real human samples.

Keywords: nanobodies; conductive supports; biofunctionalization strategies; electrochemical
transductions; environmental toxicity; human biomarkers

1. Introduction

Nanobodies or VHH are found in sera of camelids (camels, llamas, and alpaca) [1,2],
and are intensively used in diagnostics due to their improved stability in in vitro and
in vivo conditions [3], non-invasive properties, imaging tissue characterization [4–7], and
high penetration properties into solid tumors [8,9]). Nbs are successfully recommended
for clinical treatments [10,11] and therapeutics [12], having a similar antigen (Ag) binding
capacity to conventional Abs [13] but with higher affinity [14] for inaccessible epitopes [15].
Moreover, Nbs are prescribed in monitoring the evolution of several human diseases
such as different types of inflammation, skin eczema, and blood/organ disorders within
the detection of PSA (soluble Ag)/PSMA (membrane Ag) in blood/prostate tissue [16],
viral [17–20] and non-viral infections [21,22], and allergy [23] symptoms.

Nbs (~15 kDa) smaller that Abs (~150 kDa) are obtained by cloning the variable
domain heavy-chain antibodies of camelids that make them attractive reagents for in vitro
diagnostics [24], food toxins [25], environmental pollutants [26], optical immunoassays,
and several types of biosensing platforms [27]. Unfortunately, Nbs are not available for
a wide variety of target analytes [28] as they have a high uptake in the kidneys, causing
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nephrotoxicity [29]. For these reasons, in vitro detection of environmental contaminants
and human biomarkers is preferred as much as possible (Figure 1).

Several electrochemical biosensors have been proposed for the detection of differ-
ent classes of raw (e.g., Ara 1 allergens [30], triazophoros insecticides [31], ricin bacterial
toxin [32]), and cooked (acrylamide [33]) food contaminants. However, problems have
arisen regarding the robustness of biofunctionalization due to the inevitable temperature
fluctuations that affect the activity of the whole Abs and/or enzyme label or prepared
oligonucleotides sequences. Therefore, the biosensor stability, target limit of detection
(LOD), and sensor selectivity in complex medium counter some difficulties. Similar prob-
lems are also noted for the electrochemical detection of human biomarkers in complex
and/or spiked real samples using benchtop immunosensors for traces of SARS-CoV-2
spike protein [34], alpha fetoprotein (AFP) [35], and prostate specific antigen (PSA) [36]. To
overcome these problems, Nbs with high thermal stability in the range of 50 ◦C to 90 ◦C
offer an elegant and inexpensive solution for future generations of miniaturized biosensors.
In addition, more devices connected to smartphones will continue to progress and play a
major role in real-time monitoring of human health regardless of the region of the globe
where temperatures can easily rise to 50 ◦C.

Currently, Fcont are often detected using immunosensor-based Nbs/proteins labeled
with HRP enzyme related to target concentrations in the presence of active redox substrates
in an aqueous electrolyte. In contrast, Hbio were detected with label-free immunosensors
limiting the non-specific contamination of the electrode surface, avoiding possible problems
with the activity/stability of HRP in complex fluids and temperature fluctuations.
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Figure 1. Electrochemical methods for the detection of food contaminants and human disease bio-
markers. (Amp—amperometry, CV—cyclic voltammetry, DPV—differential pulse voltammetry,
EIS—electrochemical impedance spectroscopy, SWV—square wave voltammetry; VHH—camelid
family variable-single domain antibodies named nanobodies.

In this review, the latest developments of electrochemical biosensors using Nbs immo-
bilized on conductive supports for the detection of traces of various chemical and biological
targets presented in body fluids (blood, saliva, and urine) and spiked aqueous solutions
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are herein discussed. Interestingly, Nbs are widely used in drug treatments, but not in the
construction of electrochemical immunosensors as bioreceptors on solid surfaces.

2. Generation of Nanobodies

The smallest antibodies (Nbs of about 15 kDa) are composed of only heavy protein
chains that provide high affinity and specificity for antigenic molecules. Nbs are gener-
ated through three types of libraries, named the immune (106–108 CFU/mL), the naïve
(109–1011 CFU/mL), and the synthetic library (109–1015 CFU/mL) [37]. Thus, Nbs are ob-
tained from immunized camelids with non-toxic antigens, while other alternative routes are
considered for antigens that are highly toxic, pathogenic, or nonimmunogenic. In such situ-
ations, synthetic phage display library is the most common procedure to obtain Nbs with
high specificity and affinity against harmful antigens. For example, 1.65× 109 CFU/mL
is considered a large library for obtaining high affinity clones [38]. Fortunately, unique
and robust Nbs can be efficiently expressed in large quantities at low cost, most likely in
Esche-richia coli bacteria, and not in mammalian cells as required for full-size Abs, which is
a much more complicated, temperature-dependent, and expensive approach. Nowadays,
there are only a few examples of the use of Nbs for rapid electrochemical investigations of
toxic compounds found in food products and bodily fluids reported in recent literature.

3. Immobilization Strategies of Nanobodies

Nbs have been covalently attached to conductive surfaces using two generic ap-
proaches referred to herein as direct and indirect tube/drop functionalizations based
on classical enzyme-linked immunosorbent assay (ELISA) developed with whole Abs.
To obtain a low limit of detection, the electrodes were often modified with biocompati-
ble polymeric films decorated with different types of nanomaterials (AuNPs, NiONPs,
SWCNTs/MWCNTs, and nylon fibers) which increased the density of Nbs on the sur-
face of the working electrodes. Moreover, some works adopted the silane [39] and thiol
chemistries [40] with two functionalization steps (Nbs/target Ags) that also provided
performant immune-nanobody sensing schemes. Finally, an important parameter that
validates the biofunctionalization steps on different types of electrodes concerned the
choice of the redox probe and its optimal concentration, which was either freely present
in an electrolyte solution, mixed with Nbs, or deposited on electrogenerated or colloidal
nanomaterial-coated electrodes.

3.1. Direct Surface Functionalization

Substrates modified with gold layers or AuNPs are used for direct functionaliza-
tion with Nbs carrying cysteine at the C-terminal end for 24 h [41], while HaloTagged-
Nbs/proteins are often proposed for one-step biocoating of supports [42]. Interestingly, the
SpyTag/SpyCatcher technology provides control over Abs/Nbs orientations [43] on gold
electrodes modified with chemical self-assembled monolayers (SAM) made of synthetic
SpyTag peptide on HDT monolayer [44]. In 2014, carbon-based support as SPCE was
used in the development of the first sandwich nanoimmunoassay with linked capture
Nbs though EDC/NHS chemistry for the detection of target human epidermal growth
factor receptor (HER2) using a second Nbs-labeled horseradish peroxidase (HRP) [45,46].
Moreover, Nbs were successfully modified with lysine (Lys)/histidine (His) amino acids
for selective one-step immobilization on supports [47].

3.2. Indirect “In Tube” and “In Drop” Surface Functionalization

Polythiophene modification of SPCE was carried out for tracking the immunocoplexes
made of cancer biomarker epidermal growth factor receptor (EGFR) antigen and Nbs labeled-
Fe3O4/N-trimethyl chitosan/AuNPs formed initially “in Eppendorf tube” [48]. Additionally,
haptens coupled to protein carriers such ovalbumin (OVA) and bovine serum albumin
(BSA) [49] were used for conjugation with Nbs, using “in drop” competition for binding
to Nbs-HRP between free target and target haptens-OVA/BSA attached on SPCE supports.
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Moreover, a sensitive sandwich immunoassay using biotinylated Nbs was developed and
applied to biotin-streptavidin-based ELISA [50] and electrochemical sensors.

4. Nanobodies for the Electrochemical Detection of Food Contaminants

Recent research papers have mentioned the great potential in the use of camelid
VHHs for monitoring environmental chemicals for safe agricultural production. In this
section, some examples of toxic chemicals detected using optimal selection of Nbs and
different electrochemical approaches on screen-printed carbon electrodes (SPCE) and gold-
coated supports for efficient and effective biofunctionalization protocols are provided
(Figure 2, Table 1).

4.1. Allergens

Peanuts may cause fatal allergic disease in humans. The responsible allergen molecules
belong to different protein families named Ara 1–17, where Ara h 1–3 induce the highest
allergic reaction to IgE. To monitor traces of Ara h 1 allergen, optimized Nbs-pair (Nb152-
hemagglutinin-HA/Nb152 biotin-B) are proposed in the construction of an electrochemical
CV immunosensor using SPCE modified with electrogenerated chitosan/gold nanoparticles
(AuNPs) mixed with carboxyl-ferrocene/anti-HA IgG/BSA for staining with alkaline
phosphatase conjugated streptavidin (SA-ALP). In the presence of usual p-aminophenol
phosphate (APP) and NADH substrates for ALP enzyme [51], it was found that such a
sensing scheme provided about 11 times higher sensitivity and shorter operation time
than classical ELISA. Spiked milk and chocolate were confirmed with the above Nbs-based
sensor [52].

4.2. Insecticides

Triazophos insecticides used in agricultural products in provenance from Asian and
African countries were detected with one-step ELISA immunoassay. The authors used
VHH T1 Nbs genetically fused with alkaline phosphatase (AP) that had a half-maximum
inhibition concentration of 6.6 ng/mL triazophos. Authors mentioned negligible influence
of cross-reactivity in the presence of organophosphate pesticides (<0.1%) and good average
recoveries of triazophos from water, soil, and apple samples [53]. Interestingly, after contact
with phrethroid insecticide, the toxic phenoxybenzoic acid (3-PBA) metabolite is formed in
human urine. One study proposed the detection of 3-PBA in aqueous solutions (PBS and
human urine) using differential pulse voltammetry (DPV) for an immunosensor scheme
on SPCE. Specifically, 3-PBA-conjugated with BSA were covalently immobilized on SPCE
modified with nylon nanofibrous membranes/citric acid (CA)/BSA-3-PBA and exposed
to Nbs-ALP that compete with unbound 3-PBA in aqueous solutions (PBS/urine) in the
presence of specific ALP substrate (1-naphthyl phosphate -1-NP). This immunosensor was
tested in ten-fold diluted urine (0.01 to 0.5 ng mL−1 3-PBA) [54].

4.3. Pesticides

Even though safety rules are ongoing, sometimes vegetables and fruits are contam-
inated with parathion, a banned organophosphorus pesticide. Therefore, there is ur-
gent need of a sensitive biosensor method to detect parathion traces in food products
(e.g., cabbages, cucumbers, and oranges). Herein, SPCE were laminated with polyvinyl
alcohol polymer (PVA)/citric acid (CA) nanofibers. The resulting electrodes were used for
covalent immobilization of parathion hapten (H1) conjugated with ovalbumin (OVA) for
testing its affinity capability to horseradish peroxidase Nbs (VHH9-HRP), which compete
with free parathion recorded by cyclic voltammetry (CV) showing changes of reduction
peak current before and after the addition of H2O2 substrate. The immunosensor was
tested in spiked food samples for parathion at 0.05 and 0.10 ng/g food [55].
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4.4. Bacterial Toxins

Traces of toxin Cry1C protein produced by Bacillus thuringiensis bacteria [56] in ge-
netically modified (GM) crops were detected on glassy carbon electrode (GCE) using a
sandwich immunosensor with Nb51 for coating electrode and Nb54/graphene oxide (GO)-
thionine (Th) for in-tube functionalization steps. In this study, different concentrations of
Cry1C were prepared in PBS, while spiked corn extracts (0.1, 1, 10, 100 ng·mL–1) were suc-
cessful detected using the SWV immunosensors. Additionally, the Cry1C immunosensor
was operational in the pg/mL range compared to the ELISA-based mAb in the ng/mL
range [57].

The 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme derived from
Agrobacterium sp. strain CP4 protein (CP4-EPSPS) was introduced by genetic manipu-
lation in GM crops with strong resistance to herbicide glyphosate. CP4-EPSPS protein
was detected in PBS and spiked nontransgenic soybean samples (1, 10, 100 ng/mL) using
electrochemical immunosensors constructed on GCE modified with ordered mesoporous
carbon (OMC) decorated with AuNPs and Nbs mixed with Th redox probe, which moni-
tored the current changes by differential pulse voltammetry (DPV). The sensitivity of such
an immunosensor was at least three orders of magnitude higher than other methods and
the commercial CP4-EPSPS kit [58].

Another toxin, ricin chain A, is produced in the castor oil plant, Ricinus communis [59],
and was detected on dithiobis succinimidyl propionate (DTSP), formed a self-assembled
monolayer (SAM) on gold coated interdigitated microelectrode (IDE), and functionalized
with Nbs. The immunosensor proved advantages in terms of thermal stability and shelf-life
of the Nbs over the conventional polyclonal and monoclonal antibodies when two hours
for SAM formation was employed for maximum CV current peak responses in PBS (pH 7.4
with redox probes). EIS method was also employed for the detection of a single ricin
concentration (1 pg/mL PBS). No data using real samples were reported [60].

4.5. Thermal Processing Product—Acrylamide

Acrylamide (AA) toxic product formed during heat treatment of foods was detected in
PBS and spiked samples (potato chips and biscuits) using an electrochemical immunoassay
monitoring the changes in electrocatalytic cathodic current of biofunctionalized SPCEs
before and after the addition of H2O2 substrate. Thus, the electrodes were systematically
modified with an electrogenerated film of Prussian blue chitosan nanoparticle (PB-CS–NP)
film/xanthyl-derivatized acrylamide (XAA)-OVA/skimmed milk/diluted Nb-7E mixed
with AA concentrations (1:40)/HRP-goat anti-VHH IgG. Such a sensing scheme has shown
three-fold improvements in LOD over classical ELISA [61].
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Figure 2. Electrochemical methods for the detection of food contaminants in PBS buffer and
spiked real samples such as EIS (F), CV (A,C,F,G), DPV (B,E), and SWV (D). CA—citric acid;
CP4-EPSPS—Agrobacterium sp. strain CP4 protein; CS—chitosan; GO—graphene oxide; OMC—ordered
mesoporous carbon; DTSP—dithiobis (succinimidyl propionate); PVA—polyvinyl alcohol polymer;
Pb—Prussian blue; SAM—self-assembled monolayer. (A) [52], (B) [54], (C) [55], (D) [57], (E) [58], (F) [60],
and (G) [61]. For each electrochemical method, arrows indicate the upward or downward trend of the
recorded signals for increasing concentrations of targets.
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Table 1. Electrochemical methods using nanobodies as sniffer bioreceptors of food contaminants in
saline buffer and spiked real samples.

Conductive
Supports Method Redox Probe Analyte Nanobodies

(Nbs) Linear Range Sensor Signal
Stability LOD Ref

SPCE/
Chitosan/
AuNPs+

Fc-COOH

CV 0.1 mM APP,
2 mM NADH

Ara h 1
1,3,5,10,

15,30,50,100 ng/mL

Nb152-HA
(100 µg/mL)/

Nb152-B
(100 µg/mL)

4.5–55 ng/mL 15 days
at 4 ◦C 0.86 ng/mL [52]

SPCE/
nylon + CA DPV 1 mg/mL

1-NP

3-PBA
8 × 10−4; 1 × 10−3,
5 × 10−3, 1 × 10−2,
5 × 10−2, 1 × 10−1,

5 × 10−1,
1 ng/mL

&
3-PBA-BSACAT

(10 µg/mL)

Nb-ALP
(400 µg/mL) 0.8–1000 pg/mL 5 weeks

at 4 ◦C 0.64 pg/mL [54]

SPCE
CV

(cathodic
peak)

0.5 mM HQ/
1.5 mM H2O2

Parathion
10−2–102 ng/mL

&
parathion

H1-OVACAT
(5 µg/mL)

VHH9-HRP
(9 µg/mL)

10−2–102 ng/mL
(8 conc.)

63 days
for selected 0.1
and 1 ng/mL

parathion
after

regeneration
cycles

2.26 pg/mL [55]

GCE SWV 2 mM
K3[Fe(CN)6]

Cry1C -protein
(1, 10, 102,
10−1, 10−2,

10−3 ng/mL)

Nb51
(100 µg/mL
on electrode)

&
Nb54

(1 mg/mL
added in
GO-Th

supernatant)

1, 10, 102, 10−1,
10−2,

10−3 ng/mL

Nbs stable at
70 ◦C

&
Immuno-

sensor stable
for 15 days at

4 ◦C

3.2 pg/mL [57]

GCE/OMC +
AuNPs DPV

N2-saturated
100 mM

PBS pH 7.4

EPSPS -
enzyme

(1, 10, 102,
10−1, 10−2,

10−3 ng/mL)

Nb
(10 µg/mL)

&
Th

(100 µg/mL)

1, 10, 102,
10−1, 10−2,

10−3 ng/mL

Nbs stable
at 70 ◦C

(~60% activity)
&

Immunosensor
stable over

14 days at 4 ◦C
(~80% from

initial activity
at 10 ng/mL

Ag)

0.72 pg/mL [58]

Au-IDE
CV
&

EIS

5 mM
K3[Fe(CN)6]/
K4[Fe(CN)6]

Ricin
chain-A

10−3, 1, 103,
106 pg/mL

&
1 pg/mL

Ricin Nbs
(5.2 mg/mL)

10−3, 1, 103,
106 pg/mL

up to 40 ◦C
with a

shelf-life of
1 week

1 fg/mL [60]

SPCE/chitosan
NPs

CV
(cathodic

peak)

1 mM HQ/
6% H2O2

AA
(0.39, 0.78, 1.56, 3.125,
12, 5, 25, 50 µg/mL)

&
XAA-OVACAT
(10 µg/mL)

Nb-7E
(7.45 µg/mL,
used at 1:40

dilution
~18 µg/mL)

0.39 to
50.0 µg/mL

bind to Ag at
95 ◦C due to

four Cys
involve in two

disulfide
bonds

0.033 µg/mL [61]

Abbreviations: AA—acrylamide; APP—p-aminophenyl phosphate; ALP—alkaline phosphatase; BSA—bovine
serum albumin; CA—citric acid; Fc-COOH—carboxyl ferrocene; CAT—electrode coating antigen; Cys—cysteine;
EPSPS—5-enolpyruvylshikimate-3-phosphate synthase; HQ—hydroquinone; HRP—horseradish peroxi-
dase; GO-Th—graphene oxide thionine; 3-PBA—3 phenoxybenzoic acid; H1-OVA—hapten 1 ovalbumin;
OMC—ordered mesoporous carbon; 1-NP—1-naphthyl phosphate; 3-PBA—3-phenoxybenzoic acid; XAA—9-
xanthyldrol-derivatized acrylamide

In conclusion, Nbs-based immunosensors for the detection of environmental contami-
nants showed very good stability over at least 15 days up to 63 days (Table 1), while it was
noticed that, in the case of the thermoformed acrylamide product, the immune bin-ding
events between Nbs-AgAA occurred at an abnormally high temperature of 90 ◦C, which is
not possible with full-size Abs.

5. Nanobodies for the Electrochemical Detection of Human Biomarkers

In recent years, few works have been reported on the electrochemical detection of
human biomarkers using nanobodies. In this section, bioreceptors of tumors such as
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glycoproteins and various proteins present in complex body fluidics are detected using
different types of Nbs and electrochemical methods. As expected, the SPCE electrodes
and gold-coated supports were also used for performant biofunctionalization protocols
(Figure 3, Table 2).

5.1. Glycoproteins in Tumour Cells

The transmembrane glycoprotein located at the cell surface named epithelial growth
factor receptor-EGFR is presented in different tumor cell lines such as SW480 (stage II)
and SW620 cell lines derived from a colon adenocarcinoma and a lymph node metastasis.
This protein was detected with a label-free EIS immunosensor on SPCE support modified
with either electrodeposited nanostructures (NiO NPs) or with electrogenerated poly (thio-
phene acetic acid) film- PTAA) in about 60 min. Such supports were used in immobilized
orientation-controlled nanobodies due to their modification with short peptide tail with
lysine (Lys)/histidine (His) named Nb9G8m. In this study, EIS monitored the resistance to
electron transfer of different EGFR concentrations in saline buffer (PBS at pH 7.4 containing
the redox probe) providing low LODs for two immunosensor configurations. Moreover,
EGFR in the whole membrane of three tumor cell lines (1 × 106 each cell line/mL) was
detected with both sensing platforms, confirming that A431 cells collected from epidermoid
carcinoma expressed the highest level of EGFR, followed by SW480 cells (from colon adeno-
carcinoma), SW620 cells (from a lymph node metastasis), and HEK293 cells (non-neoplastic
control cell line) [62].

5.2. Proteins in Complex Media—Saliva, Cell Lysate, Serum, Urine

Saliva is a preferred medium for diagnostic applications due to its simplicity/non-
invasive collection [63] which minimizes the interaction between patients and medical
staff. An alternating current electrothermal flow (ACET)-integrated n-type organic elec-
trochemical transistor (OECT)-based immunosensor was proposed for 2 min detection of
SARS-CoV-2 spike proteins in PBS and 4× diluted saliva. The amperometric immunosensor
used a gate electrode with 100 nm Au coating on glass substrate which was systematically
(bio)functionalized with 1,6-hexanedithiol (HDT)/maleimide-modified SpyTag peptide
solution in PBS (0.1 mg/mL)/SpyCatcher Ty1-Nbs (for specific S protein bindings) or
GFP- Nbs (for control)/S-target. In this work, the immunoreactions occurred at RT over
30 min before electrochemical investigations using 100 nW power consumption for n-
type OECT-sensing platform with 100 nA drain current and 100 mV saturation voltage
regime [64].

The SpyTag/SpyCatcher protein conjugation system was also used for the electro-
chemical detection of C-reactive protein (CRP), a sensitive serum biomarker of inflamma-
tory/infectious processes, including cardiovascular diseases [65]. In healthy individuals,
the concentration of CRP should be below 5 µg/mL [66]. In this work, CRP prepared in
PBS buffer was tested with CV/EIS methods using the affinity of recombinant nanobodies
NbE12 fused to SpyTag immobilized on SpyCatcher coated gold electrode. So far, all
immunodetections concerned only five CRP concentrations. No data with real samples
were provided [67].

Nanobody NbIII.15, derived from a synthetic yeast surface display library, was engi-
neered to bind with high affinity and specificity to the human enzyme UCH37—a predictor
biomarker of the hepatocellular carcinoma [68] in heterogeneous media, such as cell lysate,
without added purification or preconcentration steps. For DPV investigations, graphite
felt was modified with 3-aminopropyl)trimethoxysilane (APTMS)/6-chlorohexanoic acid
(CHA) and freshly used for covalent binding of recombinant NbIII.15 modified with versa-
tile HaloTag protein labelling [69], and further encapsulated into a photogenerated thin
hydrogel layer made of poly (2-hydroxyethyl methacrylate) (PHEMA) that created an
homogenous coating matrix on the graphite sheet. The use of such a polymer was essential
to minimize false positive signals due to nonspecific biomolecules adsorption from complex
composition of saliva. This immunosensor was tested using DPV method, which displayed
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current decreases upon antigen binding to NbIII.15 in bench prepared concentrations in PBS
and into unpurified HEK293 cell lysate without the need to include the redox probe [70].

Alpha fetoprotein (AFP) is the most important used and accepted serum predictive
biomarker of hepatocellular carcinoma (HCC), with 20 ng/mL for HCC screening and
diagnosis or 200 and/or 400 ng/mL for treatment stratification [71]. Recently, traces of AFP
in the pg/mL range were detected with an electrochemical immunosensor based on Nbs
A1-C4bp α heptamer with 90 min incubation time on GCE modified with AuNPs on ZIF-8
as an interesting nanocarrier that enhanced the heptamer loading at the electrode surface.
This immunosensor showed good selectivity in the presence of prostate-specific antigen
(PSA), carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) interfering
proteins (each of them at 10 ng/mL) when AFP showed DPV peak current change of about
220 µA versus 30 µA for the other three proteins [72].

Detection of prostate cancer implies the presence of prostate specific antigen (PSA) in
serum samples [73] and of annexin A3 (ANXA3) protein (<1 fg/mL) [74] as a noninvasive
urine biomarker [75]. Several sensing methods were proposed using conventional anti-PSA
antibodies but very few used ANXA3 and even fewer used Nbs. For example, different
levels of PSA in the nanomolar range were detected with an electrochemical immunosensor
using a sandwich pair of Nb40/Nb2 with fused SBP tag nanobodies on GCE initially
modified with reduced graphene oxide (rGO)/AuNPs. The proposed immunosensor
proved good selectivity in the presence of interfering compounds such as HSA, human
IgG, vitamin C, and glucose, and good correlation within positive real serum samples [76].
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trimethoxysilane; CHA—6-chlorohexanoic acid, EGFR—epithelial growth factor receptor; HDT—1,6-
hexanedithiol; HEMA—2-hydroxyethyl methacrylate; PHEMA—poly(2-hydroxyethyl methacrylate;
PTAA—poly (thiophene acetic acid). (A) [62], (B) [64], (C) [67], (D) [70], (E) [72], (F) [76]. For each
electrochemical method, arrows indicate the upward or downward trend of the recorded signals for
increasing concentrations of targets.

Table 2. Electrochemical methods using nanobodies as sniffer bioreceptors of human biomarkers in
saline buffer and spiked real samples.

Conductive
Supports Method Redox Probe Analyte

(Ag)
Nanobodies

(Nbs) Linear Range Sensor Signal
Stability LOD Ref

SPCE/
NiO NPs

&
SPCE/

PTAA film

EIS
5 mM

K3[Fe(CN)6]/
K4[Fe(CN)6]

EGFR
0.25, 1,

5, 10, 15, 25, 50 µg/mL−1

(on NiO NPs)
&

EGFR
0.5, 1, 5, 10,

15, 25, 50 µg/mL−1

(on PTAA)

Nb9G8m
with Lys/His
(50 µg/mL)

0.25 to
50 µg/mL

(on NiO NPs)
&

0.5 to
50 µg/mL(on

PTAA)

up to
40 ◦C
with

shelf-life of
1 week

0.48 µg/mL
(NiO NPs)

&
1.14 µg/mL

(PTAA)

[62]

Glass/Au/
HDT Amperometric

10 mM
K3[Fe(CN)6]/
K4[Fe(CN)6]

SARS-CoV-2 spike
10−9, 10−10, 10−11,
10−12, 10−13 10−14,

10−15, 10−16,
10−17, 10−18 M

(in PBS)
&

SARS-CoV-2 spike
3 × 10−7, 3 × 10−9,

3 × 10−12, 3 × 10−15,
3 × 10−17 M

(in 4 × dil. saliva)

on n-OECT
gate

sensor:Nbs
Ty1with

SpyCatcher
linker

20 × 10−6 M
on n-OECT
gate sensor

&
Nbs GFP1
× 10−9 M

(as control)

NA
Current
stability
over 1 h

10−16 M [64]

Gold
CV
&

EIS

5 mM
K3[Fe(CN)6]/
K4[Fe(CN)6]

CRP
0.25; 0.35; 0.5;

1; 1.50 µg/mL
(for CV/EIS)

NbE12 with
SpyTag linker

2.5 µg/mL

0.25; 0.35;
0.5; 1µg/mL
(for CV/EIS)

NA 0.21 µg/mL [67]

Graphite felt DPV
5 mM

K3[Fe(CN)6]/
K4[Fe(CN)6]

UCH37
3 × 101, 1 × 102,

2.5 × 102, 5 × 102,
1 × 103, pmoL (in PBS)

&
~ 50 pmol UCH37/mL

PBS in
1 mg cell lysate

NbIII.15 with
HaloTag

protein tail
(5 × 106 M)

NA NA

25–30 pmol
in PBS

&
cell lysate

[70]

GCE/
nanocarrier DPV 5 mM

K3[Fe(CN)6]

AFP
1, 10, 102, 10−1,

10−2, 10−3,
10−4 ng/mL(in PBS)

&
6.289, 12.564,

37.320, 72.693 ng/mL
(in 4 human sera

10× dil. with PBS)

NbA1-C4bp α
with Cys tail

assembled
intoheptamer

structure
(10 µg/mL)

1, 10,
102, 10−1,

10−2, 10−3,
10−4 ng/mL

14 days
at 4 ◦C

0.033 pg/mL
in PBS [72]

GCE/rGO
+AuNPs DPV

1 mM HQ,
10 mM H2O2
in deaerated

PBS

PSA
10−1, 5 × 10−1, 1,

2.5, 5, 7.5, 15,
2 × 10, 3 × 10,

5 × 10, 102 ng/mL

Nb40
on sensor

(80 µg/mL)
&

Nb2-SBP
for sandwich
(90 µg/mL)

10−1 to
102 ng/mL

over
4 weeks
at 4 ◦C

0.08 ng/mL [76]

Abbreviations: AFP—alpha fetoprotein; A1—AFP nanobodies A1; C4bpα—C-terminal fragment of C4-binding
protein; CRP—protein C reactive; Lys—lysine; HDT—1,6-hexanedithiol; His—hexahistidine tag (6xHis-tag);
n-OECT—n-type organic polymer electrochemical transistor; NiO NPs—nickel oxide nanoparticles; PTAA—poly
(thiophene acetic acid) (PTAA); GFP—green fluorescence protein; UCH37—ubiquitin C-terminal hydrolases, one
sub-family of de-ubiquitinating enzyme, also called UCH-L5; MWCNTs—multiwalled carbon nanotube with
lengths of 10∼30 µm; nanocarrier—AuNPs decorated zeolitic imidazolate matrix; rGO—reduced graphene oxide;
SBP—streptavidin-binding peptide.

Interestingly, it was noticed that the concentrations of Nbs used in the construction
of immunosensors are much lower than those of standard Abs, namely 2.5 µg/mL versus
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90 µg/mL (Table 2). Moreover, the conjugation time is often fixed at 1 h (Nbs) at 25 ◦C
versus 12 h (Abs) at 4 ◦C.

6. Conclusions and Perspectives

Due to their superior chemical and physical properties, single-domain nanobodies
as biorecognition probes will continue to interest researchers in developing the next gen-
eration of biosensors with high benefits for commercialization and in situ lateral flow
immunoassays (LFAs) compatible with those using full-size Abs conjugated to colloidal
nanomaterials. These inexpensive and dual visual ultrasensitive electrochemical methods
will focus on the detection of analytes in complex food products and body fluid matrices.

Currently, there are only a few electrochemical biosensing schemes using mono-
/multimeric Nbs for the detection of contaminants in food products and human biomar-
kers spiked in PBS-diluted samples (saliva, urine, and blood). This review provides readers
with currently validated Nbs-based immunodetection schemes in PBS buffer and spiked
real samples using amperometry, CV, DPV, EIS, and SWV methods. As expected, carbon
and gold-based materials were used as supporting electrodes. Moreover, their surfaces
in several studies were nanostructured to provide higher binding site density to Nbs on
the support and therefore increase the electrochemical sensing performance in terms of
high sensitivity/specificity, low limit of detection, rapid sensor response, wide linear range,
high sensor stability, as well as shelf-life (at least more than 14 days).

Despite their significant advantages over full-size antibodies, the production of Nbs
for clinical applications using electrosensors is somewhat limited, due to either the lack
of access to animals that generate Nbs, missing skills to express them in bacteria, or their
commercial unavailability. Therefore, well-established classical Abs production is still
preferred by researchers and companies interested in medical applications where wide
varieties of analytes are either poorly soluble in aqueous solutions or highly toxic for safe
handling. In this regard, efforts to design miniaturized sensing platforms will balance the
limitations of Nbs accessibility and bring future developments to large-scale electroche-
mical sensing with smartphones.

In addition, Nbs and their ultra-performant and accessible epitopes will be strategically
used in the development of vaccines that will efficiently prevent mortality from pandemics
(e.g., SARS-CoV-2 virus [77,78]) and greatly contribute to successful treatments of various
infections/brain diseases, cancers, and drug intracellular deliveries [79]. The impact of
nano technologies [80,81] on conventional electrochemical methods combined with artificial
intelligence [82], sandwich enzyme-linked immunosorbent assay-based synthetic Nbs, and
combinatorial binders enabling selection for the detection of small (bio)molecules [83] will
provide a cutting edge for rapid and efficient selective diagnostics [84,85] and therapeu-
tics [86,87].
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