Entropy by Neighbor Distance as a New Measure for Characterizing Spatiotemporal Orders in Microscopic Collective Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Simulated Boid System
2.2. Active Colloids
2.3. Robotic Swarm
3. Conclusions and Discussion
4. Methods
4.1. Boids Simulation
- ➢
- Algorithm
- ➢
- Definition of neighbors who has mutual interaction
4.2. Data Analysis
- ➢
- Calculation of average velocity
- ➢
- Calculation of Entropy by neighbor distance
- ➢
- Particle tracking
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowick, M.J.; Fakhri, N.; Marchetti, M.C.; Ramaswamy, S. Symmetry, Thermodynamics, and Topology in Active Matter. Phys. Rev. X 2022, 12, 010501. [Google Scholar] [CrossRef]
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of Soft Active Matter. Rev. Mod. Phys. 2013, 85, 1143–1189. [Google Scholar] [CrossRef] [Green Version]
- Lauga, E. Life around the Scallop Theorem. Soft Matter 2011, 7, 3060–3065. [Google Scholar] [CrossRef] [Green Version]
- Battle, C.; Broedersz, C.P.; Fakhri, N.; Geyer, V.F.; Howard, J.; Schmidt, C.F.; MacKintosh, F.C. Broken Detailed Balance at Mesoscopic Scales in Active Biological Systems. Science 2016, 352, 604–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicsek, T.; Zafeiris, A. Collective Motion. Phys. Rep. 2012, 517, 71–140. [Google Scholar] [CrossRef] [Green Version]
- Makris, N.C.; Ratilal, P.; Symonds, D.T.; Jagannathan, S.; Lee, S.; Nero, R.W. Fish Population and Behavior Revealed by Instantaneous Continental Shelf-Scale Imaging. Science 2006, 311, 660–663. [Google Scholar] [CrossRef]
- Anderson, C.; Fernandez-Nieves, A. Social Interactions Lead to Motility-Induced Phase Separation in Fire Ants. Nat. Commun. 2022, 13, 6710. [Google Scholar] [CrossRef]
- Worlitzer, V.M.; Jose, A.; Grinberg, I.; Bär, M.; Heidenreich, S.; Eldar, A.; Ariel, G.; Be’er, A. Biophysical Aspects Underlying the Swarm to Biofilm Transition. Sci. Adv. 2022, 8, eabn8152. [Google Scholar] [CrossRef]
- Zhang, H.P.; Be’er, A.; Florin, E.-L.; Swinney, H.L. Collective Motion and Density Fluctuations in Bacterial Colonies. Proc. Natl. Acad. Sci. USA 2010, 107, 13626–13630. [Google Scholar] [CrossRef]
- Yu, J.; Wang, B.; Du, X.; Wang, Q.; Zhang, L. Ultra-Extensible Ribbon-like Magnetic Microswarm. Nat. Commun. 2018, 9, 3260. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Chen, J.; Jin, Y.; Wen, Y.; Mu, Y.; Wu, C.; Wang, Y.; Tong, P.; Li, Z.; Hou, X.; et al. Photochromism from Wavelength-Selective Colloidal Phase Segregation. Nature 2023, 617, 499–506. [Google Scholar] [CrossRef]
- Bricard, A.; Caussin, J.-B.; Desreumaux, N.; Dauchot, O.; Bartolo, D. Emergence of Macroscopic Directed Motion in Populations of Motile Colloids. Nature 2013, 503, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Meredith, C.H.; Castonguay, A.C.; Chiu, Y.-J.; Brooks, A.M.; Moerman, P.G.; Torab, P.; Wong, P.K.; Sen, A.; Velegol, D.; Zarzar, L.D. Chemical Design of Self-Propelled Janus Droplets. Matter 2022, 5, 616–633. [Google Scholar] [CrossRef]
- Che, S.; Zhang, J.; Mou, F.; Guo, X.; Kauffman, J.E.; Sen, A.; Guan, J. Light-Programmable Assemblies of Isotropic Micromotors. Research 2022, 2022, 9816562. [Google Scholar] [CrossRef]
- Li, L.; Yu, Z.; Liu, J.; Yang, M.; Shi, G.; Feng, Z.; Luo, W.; Ma, H.; Guan, J.; Mou, F. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. Nano-Micro Lett. 2023, 15, 141. [Google Scholar] [CrossRef]
- Mou, F.; Zhang, J.; Wu, Z.; Du, S.; Zhang, Z.; Xu, L.; Guan, J. Phototactic Flocking of Photochemical Micromotors. iScience 2019, 19, 415–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mou, F.; Li, X.; Xie, Q.; Zhang, J.; Xiong, K.; Xu, L.; Guan, J. Active Micromotor Systems Built from Passive Particles with Biomimetic Predator–Prey Interactions. ACS Nano 2020, 14, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Noguchi, A.; Kishino, A.; Yanagida, T. Sliding Movement of Single Actin Filaments on One-Headed Myosin Filaments. Nature 1987, 326, 805–808. [Google Scholar] [CrossRef]
- Badoual, M.; Jülicher, F.; Prost, J. Bidirectional Cooperative Motion of Molecular Motors. Proc. Natl. Acad. Sci. USA 2002, 99, 6696–6701. [Google Scholar] [CrossRef] [PubMed]
- Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 1995, 75, 1226–1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrödinger, E. What Is Life? Cambridge University Press: Cambridge, UK, 1944; ISBN 978-1-107-60466-7. [Google Scholar]
- Martiniani, S.; Chaikin, P.M.; Levine, D. Quantifying Hidden Order out of Equilibrium. Phys. Rev. X 2019, 9, 011031. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, J.H.E.; Mackay, A.L. Beyond Crystals: The Dialectic of Materials and Information. Phil. Trans. R. Soc. A 2012, 370, 2807–2822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenkel, M.; Fedorets, A.A.; Dombrovsky, L.A.; Nosonovsky, M.; Legchenkova, I.; Bormashenko, E. Continuous Symmetry Measure vs Voronoi Entropy of Droplet Clusters. J. Phys. Chem. C 2021, 125, 2431–2436. [Google Scholar] [CrossRef]
- Krivovichev, S. Topological Complexity of Crystal Structures: Quantitative Approach. Acta Cryst A 2012, 68, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Krivovichev, S.V. Which Inorganic Structures Are the Most Complex? Angew. Chem. Int. Ed. 2014, 53, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Varn, D.P.; Crutchfield, J.P. Chaotic Crystallography: How the Physics of Information Reveals Structural Order in Materials. Curr. Opin. Chem. Eng. 2015, 7, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gardi, G.; Malgaretti, P.; Kishore, V.; Koens, L.; Son, D.; Gilbert, H.; Wu, Z.; Harwani, P.; Lauga, E.; et al. Order and Information in the Patterns of Spinning Magnetic Micro-Disks at the Air-Water Interface. Sci. Adv. 2022, 8, eabk0685. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.W. Flocks, Herds and Schools: A Distributed Behavioral Model. SIGGRAPH Comput. Graph. 1987, 21, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Bär, M.; Großmann, R.; Heidenreich, S.; Peruani, F. Self-Propelled Rods: Insights and Perspectives for Active Matter. Annu. Rev. Condens. Matter Phys. 2020, 11, 441–466. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; He, Y. Recent Advances in Self-Propelled Particles. Sci. China Chem. 2017, 60, 1293–1304. [Google Scholar] [CrossRef]
- Wang, W.; Duan, W.; Ahmed, S.; Sen, A.; Mallouk, T.E. From One to Many: Dynamic Assembly and Collective Behavior of Self-Propelled Colloidal Motors. Acc. Chem. Res. 2015, 48, 1938–1946. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, D.; Liang, S.; Dai, Y.; Bai, X.; Song, B.; Zhang, D.; Chen, H.; Feng, L. Recent Advances in Field-Controlled Micro–Nano Manipulations and Micro–Nano Robots. Adv. Intell. Syst. 2022, 4, 2100116. [Google Scholar] [CrossRef]
- Shields, C.W.; Velev, O.D. The Evolution of Active Particles: Toward Externally Powered Self-Propelling and Self-Reconfiguring Particle Systems. J. Chem. Prac. 2017, 3, 539–559. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano 2021, 15, 149–174. [Google Scholar] [CrossRef] [PubMed]
- Cates, M.E.; Tailleur, J. Motility-Induced Phase Separation. Annu. Rev. Condens. Matter Phys. 2015, 6, 219–244. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Yu, H.; Zhang, X.; Malgaretti, P.; Kishore, V.; Wang, W. Microscopic Swarms: From Active Matter Physics to Biomedical and Environmental Applications. Micromachines 2022, 13, 295. [Google Scholar] [CrossRef] [PubMed]
- Theurkauff, I.; Cottin-Bizonne, C.; Palacci, J.; Ybert, C.; Bocquet, L. Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling. Phys. Rev. Lett. 2012, 108, 268303. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; Pane, S.; Iacovacci, V.; Koukourakis, N.; Czarske, J.; Menciassi, A.; Medina-Sánchez, M.; Schmidt, O.G. Medical Imaging of Microrobots: Toward In Vivo Applications. ACS Nano 2020, 14, 10865–10893. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, H.; Xu, T.; Yu, J. An Overview of Micronanoswarms for Biomedical Applications. ACS Nano 2021, 15, 15625–15644. [Google Scholar] [CrossRef]
- Nelson, B.J.; Kaliakatsos, I.K.; Abbott, J.J. Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85. [Google Scholar] [CrossRef] [Green Version]
- Buttinoni, I.; Bialké, J.; Kümmel, F.; Löwen, H.; Bechinger, C.; Speck, T. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles. Phys. Rev. Lett. 2013, 110, 238301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittkowski, R.; Tiribocchi, A.; Stenhammar, J.; Allen, R.J.; Marenduzzo, D.; Cates, M.E. Scalar Φ4 Field Theory for Active-Particle Phase Separation. Nat. Commun. 2014, 5, 4351. [Google Scholar] [CrossRef] [Green Version]
- Palacci, J.; Sacanna, S.; Steinberg, A.P.; Pine, D.J.; Chaikin, P.M. Living Crystals of Light-Activated Colloidal Surfers. Science 2013, 339, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Sokolov, A.; Snezhko, A. Reconfigurable Emergent Patterns in Active Chiral Fluids. Nat. Commun. 2020, 11, 4401. [Google Scholar] [CrossRef] [PubMed]
- Vásárhelyi, G.; Virágh, C.; Somorjai, G.; Nepusz, T.; Eiben, A.E.; Vicsek, T. Optimized Flocking of Autonomous Drones in Confined Environments. Sci. Robot. 2018, 3, eaat3536. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R.; Carey, K.; Abruzzo, B.; Korpela, C. What Is A Robot Swarm: A Definition for Swarming Robotics. In Proceedings of the 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 0074–0081. [Google Scholar]
- Rubenstein, M.; Cornejo, A.; Nagpal, R. Programmable Self-Assembly in a Thousand-Robot Swarm. Science 2014, 345, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G.; Procaccini, A.; et al. Interaction Ruling Animal Collective Behavior Depends on Topological Rather than Metric Distance: Evidence from a Field Study. Proc. Natl. Acad. Sci. USA 2008, 105, 1232–1237. [Google Scholar] [CrossRef]
- Wallace, D.C. Statistical Mechanical Theory of Liquid Entropy. Int. J. Quantum Chem. 1994, 52, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Piaggi, P.M.; Parrinello, M. Entropy Based Fingerprint for Local Crystalline Order. J. Chem. Phys. 2017, 147, 114112. [Google Scholar] [CrossRef]
- Wallace, D.C. On the Role of Density Fluctuations in the Entropy of a Fluid. J. Chem. Phys. 1987, 87, 2282–2284. [Google Scholar] [CrossRef]
- Floreano, D.; Wood, R.J. Science, Technology and the Future of Small Autonomous Drones. Nature 2015, 521, 460–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm Robotics: A Review from the Swarm Engineering Perspective. Swarm Intell. 2013, 7, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Midtvedt, B.; Helgadottir, S.; Argun, A.; Pineda, J.; Midtvedt, D.; Volpe, G. Quantitative Digital Microscopy with Deep Learning. Appl. Phys. Rev. 2021, 8, 011310. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Wu, Z.; Zhan, S.; Yang, J.; Gardi, G.; Kishore, V.; Malgaretti, P.; Wang, W. Entropy by Neighbor Distance as a New Measure for Characterizing Spatiotemporal Orders in Microscopic Collective Systems. Micromachines 2023, 14, 1503. https://doi.org/10.3390/mi14081503
Fu Y, Wu Z, Zhan S, Yang J, Gardi G, Kishore V, Malgaretti P, Wang W. Entropy by Neighbor Distance as a New Measure for Characterizing Spatiotemporal Orders in Microscopic Collective Systems. Micromachines. 2023; 14(8):1503. https://doi.org/10.3390/mi14081503
Chicago/Turabian StyleFu, Yulei, Zongyuan Wu, Sirui Zhan, Jiacheng Yang, Gaurav Gardi, Vimal Kishore, Paolo Malgaretti, and Wendong Wang. 2023. "Entropy by Neighbor Distance as a New Measure for Characterizing Spatiotemporal Orders in Microscopic Collective Systems" Micromachines 14, no. 8: 1503. https://doi.org/10.3390/mi14081503
APA StyleFu, Y., Wu, Z., Zhan, S., Yang, J., Gardi, G., Kishore, V., Malgaretti, P., & Wang, W. (2023). Entropy by Neighbor Distance as a New Measure for Characterizing Spatiotemporal Orders in Microscopic Collective Systems. Micromachines, 14(8), 1503. https://doi.org/10.3390/mi14081503