
Citation: An, Z.; Wang, W.; Li, W.; Li,

S.; Zhang, D. Securing Embedded

System from Code Reuse Attacks: A

Lightweight Scheme with Hardware

Assistance. Micromachines 2023, 14,

1525. https://doi.org/10.3390/

mi14081525

Academic Editor: Arman Roohi

Received: 24 June 2023

Revised: 26 July 2023

Accepted: 28 July 2023

Published: 29 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Securing Embedded System from Code Reuse Attacks:
A Lightweight Scheme with Hardware Assistance
Zhenliang An, Weike Wang *, Wenxin Li, Senyang Li and Dexue Zhang *

College of Electronic and Information Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; anzhenliang@sdust.edu.cn (Z.A.); wenxin_li@sdust.edu.cn (W.L.);
lisenyang@sdust.edu.cn (S.L.)
* Correspondence: wangweike@sdust.edu.cn (W.W.); dexuezhang@sdust.edu.cn (D.Z.)

Abstract: The growing prevalence of embedded systems in various applications has raised concerns
about their vulnerability to malicious code reuse attacks. Current software-based and hardware-
assisted security techniques struggle to detect or block these attacks with minor performance and
implementation overhead. To address this issue, this paper presents a lightweight hardware-assisted
scheme to enhance the security of embedded systems against code reuse attacks. We develop an on-
chip lightweight hardware shadow stack to validate target addresses at runtime for backward-edge
control flow integrity, which backs up valid return addresses during function calls and automatically
verifies actual return addresses during the return phase. Additionally, we propose a lightweight
stream cipher circuit that encrypts and decrypts critical stack data related to control flow manipulation,
preventing attackers from analyzing or tampering with them. When designing and implementing
the security mechanism for embedded systems, we fully consider the constraints of limited system
resources and performance, optimizing both the architecture design and implementation of the
proposed hardware. Finally, we integrate both the proposed lightweight hardware shadow stack
and the runtime data encryption hardware into the OR1200 processor. We have verified the system
security function on the Terasic DE1-SoC FPGA platform and evaluated the system performance as
well as implementation overhead. The results show that the proposed lightweight hardware-assisted
scheme can provide a dedicated defense capability against code reuse attacks for embedded systems,
with an average system performance overhead of 0.39% and an area footprint of 0.316 mm2.

Keywords: embedded system; code reuse attack; control flow integrity; hardware-assisted
lightweight scheme

1. Introduction

With the widespread application of embedded systems in various fields, security issues
caused by malicious attacks have become increasingly prominent. The code reuse attack
(CRA) leverages existing valid gadgets in a program to construct an attack, tampering with
the control flow transfers and hijacking the program execution, which has become one of
the most effective methods to compromise the embedded systems. Some representative
software-based and hardware-assisted security techniques such as Write XOR eXecution
(WˆX), address space layout randomization (ASLR), and code integrity checkers, can hardly
detect or block the code reuse attacks.

Some researchers have proposed several solutions to defend against code reuse attacks,
mainly focused on detecting invalid program behaviors at runtime or preventing attacks
before their conduction. Exploiting control flow transfer vulnerability is one of the most
direct ways to launch code reuse attacks. The control flow integrity (CFI) checking mecha-
nism is an effective method to detect abnormal control flow transfers. In these methods, the
valid transfer paths are analyzed first. Then, the runtime transfer path is monitored, and
the alarms will be triggered if any control flow transfer path deviates from the legitimate

Micromachines 2023, 14, 1525. https://doi.org/10.3390/mi14081525 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi14081525
https://doi.org/10.3390/mi14081525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi14081525
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi14081525?type=check_update&version=2

Micromachines 2023, 14, 1525 2 of 23

path [1]. The current mechanisms for control flow integrity checking can be classified
as either fine-grained or coarse-grained, depending on the level of granularity in their
analysis.

The fine-grained CFI performs static analysis on the code before execution, constructs
corresponding control flow graphs, and verifies the validity of all transfer instructions at
runtime. Although fine-grained checking mechanisms offer high security, they typically
lead to considerable performance overhead [2], which makes their practical application
in embedded systems difficult. Hu proposed the unique code target (UCT) CFI attribute
and developed an uCFI prototype based on this attribute. This prototype is responsible for
checking control flow transfer instructions, recording relevant information, and determin-
ing whether the program’s control flow violates the rules based on the runtime-monitored
ICT targets. The uCFI model introduced approximately 10% performance overhead [3].
Chen proposed a fine-grained CFI-based detection method to defend against kernel-level
code reuse attacks. This model improves the reliability and security of the detection method
based on the CFI tag instruction tool and CFI constraint rules. The results showed that this
method’s performance overhead is about 60% [4]. Park proposed a random CFI (RCFI)
detection mechanism to reduce the performance overhead of fine-grained CFI. RCFI adopts
a randomly selective verification strategy, reducing the performance overhead by decreas-
ing the number of indirect branch verifications. However, while RCFI reduces the actual
verification quantity, it also leads to more potential detection vulnerabilities and reduced
security [5].

Coarse-grained CFI mechanisms primarily rely on inspecting the sensitive metadata
of code reuse attacks, resulting in a significant reduction in performance overhead but
inadequate security. To defend against stack buffer overflow attacks, Zhang designed a
dynamic shadow stack (RS-Stack) to store sensitive data such as return addresses. Ran-
domizing the address of the shadow stack serves as a preventive measure against attackers
attempting to locate it. However, this protection mechanism may result in increased per-
formance overhead [6]. Hardware-implemented shadow stacks can store sensitive data,
such as return addresses and pointers, but they have high hardware resource overhead and
limited capacity. Dang’s software-implemented shadow stack requires additional storage
security protection. It needs control flow tracing and stack management during program
execution, significantly impacting processor performance, and resulting in a more than 10%
overhead [7].

Most of the research has focused on detecting invalid control flow transfers after a
CRA attack. Some other researchers have proposed several proactive defense mechanisms
against code reuse attacks, such as code pointer integrity [8], encryption-based control
flow integrity [9,10], and security-enhanced address space layout randomization [11,12].
Qiu proposed a lightweight encryption architecture based on the Advanced Encryption
Standard (LEA-AES) [13]. LEA-AES encrypts and decrypts function return addresses and
indirect jump instructions to ensure that the function call and return instructions, as well as
indirect jumps, are not exploited by the attackers. Clercq implemented SOFIA, a hardware
security architecture, which adopts a fine-grained control flow integrity method based
on data encryption [14]. It effectively protects the program from being compromised by
code reuse attacks at runtime. However, these two methods’ encryption and decryption
operations impose significant runtime overhead on the system due to frequent function
calls and returns during program execution. Furthermore, the implementation of these
systems is limited in practicality for embedded applications due to the additional hardware
resources required.

In this paper, we develop and implement a lightweight hardware-assisted CFI pro-
tection scheme to address CRA attacks in embedded systems, while considering their
stringent real-time requirements, limited performance capabilities, and prohibitive addi-
tional hardware overheads. This mechanism is implemented with a focus on stack data
security, primarily involving backward-edge CFI verification utilizing lightweight shadow
stacks and CFI protection through sensitive data encryption.

Micromachines 2023, 14, 1525 3 of 23

In the design of backward-edge CFI verification, we design a lightweight hardware
shadow stack inspired by the coarse-grained CFI to verify the validation of target addresses
for backward edges at runtime. This mechanism ensures the secure processing of backward-
edge transfers, mainly for returns from functions. Most of the previous research on shadow
stacks tried to back up whole stack data and encountered issues such as significant resource
and performance overhead. Formal software-implemented shadow stacks may be vulnera-
ble due to their inherent imperfections, as they can also become a part of the attack targets.
To tackle these issues, we enhance the previous shadow stack by integrating a lightweight
version into inaccessible hardware for the programmers. This new implementation only
backs up valid return addresses during function calls and verifies actual return addresses
at the returning stage. The depth of the lightweight shadow stack is determined by the
maximum number of function iterations, which indicates the limit of the recursive calls.
In the hardware implementation, the logic finite state machine can directly monitor the
instructions and control signals in the processor pipeline, assert push and pop operations of
return addresses at runtime, and perform backup and verification of the return addresses.
The lightweight hardware shadow stack operates in parallel with the processor pipeline
and remains transparent to the programmers.

To further enhance the security and integrity of crucial sensitive data associated with
CFI, we propose a lightweight stream cipher circuit for runtime stack data encryption and
decryption. This structure can dynamically encrypt and decrypt sensitive data in the stack.
In this case, the dynamic stack data stored in external memory is encrypted, which prevents
attackers from analyzing or tampering with forward-edge (indirect branch and calls) and
backward-edge (returns) transfers, and ensures the security of program control flow. We
then implement the hardware module that connects the processor D-Cache and system bus
interface within the processor core. The cipher circuit is only activated when the D-cache is
accessed in a missing status, effectively reducing the frequency of stack data encryption and
decryption operations. Stream cipher circuits utilize the Advanced Encryption Standard
(AES) in the counter model to encrypt program execution parameters, such as access
address and access counters, instead of conventional data encryption. The encrypted
execution parameters are then passed to XOR gates with the stack data to be encrypted,
and the resulting output is stored in external memory as encrypted stack data. This enables
parallel operation between cryptographic calculations and the program’s memory access.
To achieve stack data encryption and decryption, it is sufficient to implement only the AES
encryption hardware. This is because the encrypted stack data can be decrypted through
an XOR operation with the encrypted execution parameters. The proposed lightweight
stream cipher circuit is particularly suitable for embedded systems with limited hardware
resources and performance overhead.

At last, we implement the proposed lightweight hardware shadow stack and the
runtime data encryption hardware into the OR1200 processor, which was then mapped
onto an Intel EP2C70 FPGA chip. We use a series of benchmark programs to evaluate both
the security and performance overhead. The hardware overhead was assessed under SMIC
0.18µm 1P6M technology using Synopsys tools. The results indicate that the proposed
hardware-assisted lightweight scheme can effectively verify the backward-edge transfers
and resist malicious analysis of the crucial stack data, with less system impact of an
additional 0.39% performance overhead and 0.316 mm2 area footprint.

The main contribution of this paper can be summarized as follows:

• A method for ensuring control flow integrity of backward edges based on the
lightweight shadow stack is proposed. The hardware is integrated into the processor
pipeline and collaborates with the instruction decoding module. In case the return
address of any function does not match the valid parameter in the shadow stack,
potential backward edges CRA attacks can be timely detected.

• A stream cipher-based lightweight runtime stack data encryption and decryption
scheme for embedded systems is proposed. This scheme can block malicious analysis
of the stack data that can be used to launch CRAs. This mechanism automatically

Micromachines 2023, 14, 1525 4 of 23

encrypts stack data during the processor’s write-back phase and decrypts it when
there is a cache miss at stack data loading, which is transparent for the programmers.
The stream cipher circuits parallelize the process of memory access and parameter
encryption, thereby reducing the system performance overhead. Additionally, the pro-
posed scheme only requires to implement AES encryption hardware engine, resulting
in considerable hardware savings.

• In addition, we integrated the aforementioned two mechanisms into the open source
OR1200 processor and verified the system security function on the Terasic DE1-SoC
FPGA board using a suite of selected benchmarks. The hardware overhead has been
evaluated using Synopsys Design Compiler. The experimental results demonstrate that
the proposed hardware-assisted lightweight scheme effectively protects embedded
systems from code reuse attacks with minimal performance overhead and a small
footprint.

The remainder of this paper is organized as follows. Section 2 presents the security
threats to the embedded systems addressed in this work. Section 3 reviews the control flow
integrity mechanisms. Section 4 demonstrates the design details of our proposed hardware-
assisted lightweight scheme for ensuring control flow integrity from CRAs. Section 5
shows the experiment’s results and provides some discussions. Conclusions are drawn in
Section 6.

2. Security Threats for This Work

Code reuse attacks can use existing instructions from valid libraries or executable files
to construct an attack, without the requirement to inject malicious code into the vulnerable
programs. At first, the adversaries conduct an analysis of libraries, executable files, and
dynamic data in the dynamic memory. Then, they may build malicious gadget chains
using valid instructions, such as branch and ret instructions, to create malicious program
functions. During the subsequent running phase of the program, function pointers and
return targets that control program flow may be tampered with to jump to these malicious
gadget chains. Return-oriented Programming (ROP) and Jump-oriented Programming
(JOP) are the primary methods for executing a code reuse attack.

2.1. ROP Attack

The ROP attack can be viewed as an advancement of the Return-to-Libc attack, where
instead of invoking complete function code from the Libc library, it utilizes fragments of
code that end with a ret instruction to achieve a Turing-complete code reuse attack. The
attacker modifies the function’s return address and manipulates the program control flow
to the prepared malicious gadget chains. Therefore, the ROP attack is closely related to the
program call and return transfers.

Figure 1 presents a method to conduct a ROP attack through buffer overflow at
runtime, which is one of the most prevalent methods to temper a function’s return address.
Prior to execution, the attacker conducts a scan of existing binary files within the program to
identify and capture gadgets capable of performing malicious operations. During program
execution, when a function is called, a function stack frame is dynamically allocated in
memory to pass parameters, save local variables, and store the return address. The attacker
exploits buffer overflow vulnerabilities by injecting carefully calculated gadget addresses
and related parameters into the stack, thereby overwriting the original function return
address. Once the function returns, program execution may deviate from its intended path
as it jumps to malicious gadget chains. The actual return address of the function serves
as crucial metadata in detecting ROP attacks. Finally, the attacker continuously employs
ret instructions to manipulate the execution sequence of gadgets and construct a complete
malicious attack program, thereby hijacking the user’s program control flow to achieve the
pre-defined attack.

Micromachines 2023, 14, 1525 5 of 23

Micromachines 2023, 14, 1525 5 of 24

gadgets and construct a complete malicious attack program, thereby hijacking the user’s
program control flow to achieve the pre-defined attack.

Gadget C:
l.sw 0x0(r1),r2
…
ret

Gadget B:
l.addi r2,r0,0xc
…
ret

Gadget A:
 l.addi r1,r0,0x6018
 …
 ret

Buffer[n]
…

Buffer[1]

Register Values

Return Address 1

Data

Data

Gadget Target Address

Gadget Address C

Gadget Address B

…

…

…

Stack Gadget Catalog

① : Adversary injects overloaded data here.

②
③

Bu
ffe

r A
ss

ig
nm

en
t

Bu
ffe

r G
ro

w
s

Attack Code ①
 ② : Stack overflow and overwrite return address.
③ : Jump to malicious location.

Return Address 3

Return Address 2

Gadget Address A

Figure 1. Conducting a ROP attack through buffer overflow.

2.2. JOP Attack
Similar to ROP attacks, JOP attacks also rely on existing gadgets to achieve specific

functions and enable Turing-complete code reuse attacks. However, JOP attacks utilize
indirect jump instructions instead of ret transfers to generate gadget chains. Therefore, the
transfer of the malicious control flow depends on the destination address inferred from
the registers used in the indirect jump instructions. The attacker collects the addresses and
associated data of all possible gadgets to construct a dispatch table, which is then used to
link gadgets by a malicious scheduler. Then, the target address stored in registers may be
tampered with, leading to the execution of a JOP attack. A method to conduct a JOP attack
using a dispatch table is demonstrated in Figure 2. Unlike ROP attacks that exploit back-
ward edge transfers, JOP attacks primarily manipulate forward edge transfers to control
the program execution flow.

We assume the regions within the embedded SoC chip are a trusted zone while re-
garding all interfaces and wires connected to the SoC, as well as all system components
and peripherals off the chip, as untrusted. The indirect jump targets that are mapped to
processor registers can only be maliciously analyzed and modified since they are stored
off the chip. Therefore, dynamic stack data is a vulnerable point for conducting malicious
attacks.

Figure 1. Conducting a ROP attack through buffer overflow.

2.2. JOP Attack

Similar to ROP attacks, JOP attacks also rely on existing gadgets to achieve specific
functions and enable Turing-complete code reuse attacks. However, JOP attacks utilize
indirect jump instructions instead of ret transfers to generate gadget chains. Therefore, the
transfer of the malicious control flow depends on the destination address inferred from
the registers used in the indirect jump instructions. The attacker collects the addresses
and associated data of all possible gadgets to construct a dispatch table, which is then
used to link gadgets by a malicious scheduler. Then, the target address stored in registers
may be tampered with, leading to the execution of a JOP attack. A method to conduct a
JOP attack using a dispatch table is demonstrated in Figure 2. Unlike ROP attacks that
exploit backward edge transfers, JOP attacks primarily manipulate forward edge transfers
to control the program execution flow.

Micromachines 2023, 14, 1525 6 of 24

Gadget 3 : l.lbz
 r 7,0x0(r3)
 …
 jmp

Gadget 2 : l.addi
 r2,r0,0xd
 …
 jmp

Gadget 1 : l.sb
 0x0(r3),r2
 …
 jmp

Buffer[n]
…

Buffer[1]

Register Values

Return Address 1

Data

Data

Return Address 2

Return Address 3

Gadget Target
Address

…

…

…

Stack Gadget Catalog

1

① : Stack overflow and Overwrite return address.

Bu
ffe

r A
ss

ig
nm

en
t

Bu
ffe

r G
ro

w
s

Attack Code

②: Dispatcher chains Gadget execution sequence.

Dispatcher
Gadget

Gadget Address 3

Gadget Address 1

Gadget Address 2

…

…

Gadget Address

②

Dispatch Table

①

③

③ : Jump to malicious location.
Figure 2. Conducting a JOP attack using dispatch table.

3. Related Works
In response to the security threat posed by code reuse attacks, extensive research has

been conducted on defense methods against such attacks. These include CRA defense
methods based on randomization [15,16], protection methods based on CFI protection
[17], and Data Execution Protection (DEP) [18].

DEP adopts a protection strategy that prohibits programs from simultaneously writ-
ing to and executing the same memory section, in order to prevent attackers from execut-
ing malicious code injected by the attackers. However, this defense method is vulnerable
to bypassing through ROP and JOP attacks [18]. Randomization techniques are an effec-
tive defense against CRA attacks as they randomize code segments, data segments, and
control flow paths within a program. This makes it challenging for attackers to accurately
predict the locations of code and data or the execution states of the program.

The ASLR mechanism employs a randomized selection process for the base ad-
dresses and sizes of code and data segments, allocating memory areas in accordance with
pre-defined rules each time the program is executed [15]. This approach effectively
thwarts attackers’ attempts to predict segment locations, thereby bolstering system secu-
rity. Jin proposed a protection model called BoundShield, which utilizes the Software
Fault Isolation (SFI) mechanism to establish an inaccessible confidential area, thereby pre-
venting memory leakage attacks by concealing code segments and pointers [11]. However,
Göktas devised a Position-independent Return-oriented Programming (PIROP) attack
model that effectively circumvented the ASLR security mechanism without any infor-
mation leakage, thereby demonstrating that code reuse attacks still pose a significant
threat to ASLR [16]. It is especially prominent for bare-metal programs without operating
system supports.

Instruction set randomization mechanisms [19] randomize the program’s instruction
order, opcode, and register usage order according to pre-defined rules when the source
code is compiled into binary executable files. Koo proposed a Compiler-assisted Code
Randomization (CCR) mechanism in which the compiler analyzes the source code, gen-
erates an Abstract Syntax Tree (AST), and the rewriter performs code transformation and
randomization based on the AST. However, this method entails transforming and ran-
domizing a large amount of code in the program, leading to decreased code execution
efficiency [20]. Wang investigated the impact of different randomization strategies on pro-
gram security and performance, evaluating and analyzing several existing binary ran-
domization techniques. Wang noted that the efficacy of randomization techniques varies

Figure 2. Conducting a JOP attack using dispatch table.

We assume the regions within the embedded SoC chip are a trusted zone while
regarding all interfaces and wires connected to the SoC, as well as all system components
and peripherals off the chip, as untrusted. The indirect jump targets that are mapped to
processor registers can only be maliciously analyzed and modified since they are stored

Micromachines 2023, 14, 1525 6 of 23

off the chip. Therefore, dynamic stack data is a vulnerable point for conducting malicious
attacks.

3. Related Works

In response to the security threat posed by code reuse attacks, extensive research has
been conducted on defense methods against such attacks. These include CRA defense
methods based on randomization [15,16], protection methods based on CFI protection [17],
and Data Execution Protection (DEP) [18].

DEP adopts a protection strategy that prohibits programs from simultaneously writing
to and executing the same memory section, in order to prevent attackers from executing
malicious code injected by the attackers. However, this defense method is vulnerable to
bypassing through ROP and JOP attacks [18]. Randomization techniques are an effective
defense against CRA attacks as they randomize code segments, data segments, and control
flow paths within a program. This makes it challenging for attackers to accurately predict
the locations of code and data or the execution states of the program.

The ASLR mechanism employs a randomized selection process for the base addresses
and sizes of code and data segments, allocating memory areas in accordance with pre-
defined rules each time the program is executed [15]. This approach effectively thwarts
attackers’ attempts to predict segment locations, thereby bolstering system security. Jin
proposed a protection model called BoundShield, which utilizes the Software Fault Isolation
(SFI) mechanism to establish an inaccessible confidential area, thereby preventing memory
leakage attacks by concealing code segments and pointers [11]. However, Göktas devised a
Position-independent Return-oriented Programming (PIROP) attack model that effectively
circumvented the ASLR security mechanism without any information leakage, thereby
demonstrating that code reuse attacks still pose a significant threat to ASLR [16]. It is
especially prominent for bare-metal programs without operating system supports.

Instruction set randomization mechanisms [19] randomize the program’s instruction
order, opcode, and register usage order according to pre-defined rules when the source
code is compiled into binary executable files. Koo proposed a Compiler-assisted Code Ran-
domization (CCR) mechanism in which the compiler analyzes the source code, generates an
Abstract Syntax Tree (AST), and the rewriter performs code transformation and randomiza-
tion based on the AST. However, this method entails transforming and randomizing a large
amount of code in the program, leading to decreased code execution efficiency [20]. Wang
investigated the impact of different randomization strategies on program security and
performance, evaluating and analyzing several existing binary randomization techniques.
Wang noted that the efficacy of randomization techniques varies depending on program
characteristics, and there remains a risk of reused randomized code segments [12]. Existing
randomization techniques have limitations in scope and effectiveness, often accompanied
by significant performance overhead.

CFI protection mechanisms encompass various implementation methods, such as
control flow validation and program and data encryption, which have proven to be one of
the most effective methods in addressing CRAs.

3.1. CFI Protection Based on Control Flow Validation

Control flow validation methods directly monitor the transfer paths and critical param-
eters between program basic blocks and halt execution upon verification failure. Some of
these techniques involve constructing a control flow graph (CFG) for the program through
source code or binary code analysis [17,21]. The CFG is then utilized as a reference model to
monitor runtime control flow transfers. Jung developed and implemented a vCFI defense
mechanism that improves the effectiveness of CFI protection by employing static analysis
of source programs, extracting control flow-related data, and monitoring and safeguarding
runtime data vulnerable to control flow hijacking [1]. Nevertheless, the vCFI mechanism
incurs a performance overhead as high as 13.6%. Barbar proposed a Live Path Control
Flow Integrity (LPCFI) mechanism that implements forward-edge CFI by dynamically

Micromachines 2023, 14, 1525 7 of 23

calculating CFG, thereby enhancing control flow detection accuracy and enabling the timely
discovery of program control flow hijacking behavior [17]. Park introduced the BGCFI
scheme, a fine-grained forward-edge CFI defense method based on bipartite graphs. The
bipartite graph described the mapping relationships between all indirect branches and
valid destination addresses. It was able to replace the verification of CFI with the edge
presence problem in the bipartite graph when detecting whether the control flow transfer
is legitimate [21].

The CFI protection method based on control flow validation prevents the attacker
from arbitrarily calling code and data segments in memory. It allows them to construct
attack programs and launch attacks using only a few legitimate target addresses, effectively
protecting against code reuse attacks. The main drawback of these methods is that different
programs have different CFGs. Whenever an updated version of a program is executed, the
CFG must be regenerated. The size of the program and the inference target of the indirect
jump/branch instructions both affect the construction process for CFG.

Some works focus on ensuring the parameters of program transfers, such as instruction
sequences, basic block orders, function calls and returns, and stack data, which are critical
information related to program control flow. Das designed a Basic Block CFI (BB-CFI),
which extracts program control flow information and verifies the target address (TA) of
control flow instructions that may be tampered with by attackers to monitor the legality
of program execution flow [22]. Zieris proposed a Leak-Resilient Dual Stack Scheme, a
backward-edge CFI defense method that uses stack separation technology to design a secure
stack, storing program return addresses and related parameters to achieve information
isolation and hiding, thus protecting system integrity [23]. This scheme relies on techniques
such as the LLVM compiler, which can have some impact on system performance and
compatibility. At the same time, the two-stack structure introduces significant hardware
resource overhead. Zhang designed a dynamic shadow stack (RS-Stack) to save sensitive
data, using shadow stack address randomization to prevent attackers from analyzing
shadow stack locations. However, the performance overhead introduced by this shadow
stack protection mechanism increased fivefold [6]. Lehniger combined label-checking
technology with return address obfuscation technology, ensuring the legality of instruction
calls through return address label checking, thereby preventing malicious attacks and
illegal calls [24]. Oh introduced the Active Function List (AFL) for detecting control flow
hijacking behavior. The detection algorithm enforces that return instructions can only
return to active functions, and jump instructions must cross function boundaries. This
algorithm determines whether it is susceptible to control flow hijacking through these
function transfers [25].

3.2. CFI Protection Based on Program and Data Encryption

Aiming at the feature that CRA attacks need to reuse existing program sections, the
CFI protection methods based on program and data encryption mainly encrypt sensitive
data such as code blocks and control flow transfers. This encryption makes it difficult
for attackers to obtain, analyze, and use these code segments, data segments, and control
flow information to launch attacks and effectively reduces the threat of code reuse attacks.
Encryption of sensitive data related to control flow information can be implemented from
both software [26,27] and hardware [28,29] perspectives. Software implementations offer
advantages such as strong flexibility. The downside is that the software implementation
risks being reverse-engineered and bypassed, and the software itself can be vulnerable
to attack and damage. Moreover, the software implementation introduces significant
performance overhead for embedded systems. Hardware implementations can provide
higher security, faster computation speed, and minimal impact on system performance, but
at the cost of high implementation expenses and difficulties in updating and optimizing.

Software encryption implementation mainly involves obfuscation-based mecha-
nisms [9,26] and dynamic encryption mechanisms based on encryption algorithms. Li
designed an obfuscation algorithm for program control flow graphs. This algorithm trans-

Micromachines 2023, 14, 1525 8 of 23

forms an inline function in a program into a contour function, hiding the basis-block jump
relation in the process. Pseudo-functions and pseudo-control flows are also introduced
to enhance obfuscation strength significantly, aiming to conceal the program’s control
flow [9]. Suk designed an obfuscation tool called SCORE that provides control flow ob-
fuscation techniques at the source code level, optimizing and refactoring programs while
improving the readability of obfuscated source code [26]. While obfuscation techniques
can effectively increase program security, imperfect obfuscation may introduce vulnera-
bilities and redundant code, affecting program performance and maintainability. Hiscock
demonstrated a software encryption and hardware decryption scheme, which involves
encrypting instruction-level code using a stream key before generating executable binary
files and implementing code decryption by adding a hardware decryption module in MIPS
soft-core [27]. However, decryption inevitably introduces a performance overhead that
slows down the execution of the program.

Hardware-based program and data encryption methods incorporate hardware encryp-
tion and decryption modules within the system, encrypting program code and sensitive
data through hardware and implementing dynamic decryption during program execution.
To safeguard code and sensitive data in embedded processors, Savry proposed a memory
encryption and authentication mechanism called CONFIDAENT, which primarily relies on
instruction and data-authenticated encryption to enhance program execution confidential-
ity, preventing code reuse attacks and stack overflows [10]. Gueron designed a coprocessor
to protect information security in memory. However, this approach lacks universality
in resource-constrained embedded systems [28]. Zhang proposed a hardware-assisted
control flow integrity checking mechanism to defend against code reuse attacks using the
Hamming distance matching principle for encryption and linear encryption and decryption.
This mechanism also uses dynamic key updating to enhance security [29]. Yang integrated
the AES engine within a memory controller related to DMA and memory data transfer. The
AES engine consumes extra hardware resources when multiple external memory devices
are present in the system [30]. Wang proposed a scheme for encrypting code and storing
data using the AES [31]. However, encryption with fixed-key introduces security risks
such as key leakage. Encryption and decryption computations also significantly extend the
memory access time. Moreover, the issue of additional hardware resources occupied by the
cipher-computing module cannot be neglected.

4. Microarchitecture Design and Implementation

In this paper, we propose a lightweight hardware-assisted control flow integrity
protection scheme to mitigate code reuse attacks. This mechanism primarily involves
monitoring control flow information and encrypting critical sensitive data. We integrate
a lightweight shadow stack into an inaccessible hardware isolation region, where the
monitoring unit utilizes this shadow stack to examine transfer instructions and control
information within the pipeline. This process validates the validation of backward edge
target addresses in the program and promptly identifies any potential control-flow hijacking
attacks. To further enhance the defense capabilities of embedded systems, we propose an
efficient and secure structure for encrypting runtime stack data. By utilizing an optimized
AES encryption engine working in counter mode and implementing a dynamic key update
strategy based on critical parameters, we reinforce the confidentiality of sensitive data,
thwarting attackers from analyzing both the forward-edge and backward-edge transfer
processes of the program. By implementing these measures, we can proactively defend
against CRA attacks.

4.1. Threat Model

To propose a security protection mechanism suitable for embedded systems, we
first constructed a threat model and security assumptions based on common CRAs such
as ROP and JOP attacks. We intend to incorporate the proposed security mechanism
into the OR1200 processor, creating a processor SoC architecture that safeguards against

Micromachines 2023, 14, 1525 9 of 23

code reuse attacks from a stack security perspective. The OR1200 is a 32-bit open source
microprocessor with Harvard architecture, consist an on-chip DMMU and D-Cache. During
program execution, CFI-related sensitive data such as function parameters, local variables,
return addresses, and register data generated by function calls and jump operations are
stored in the stack. Typically, the stack is located in external memory, which is vulnerable
to malicious attacks. As all programs are executed under the control of the processor
and implement specific functions, an attacker must hijack the program’s control flow to
achieve their attack goals. This requires analyzing and exploiting the data in the stack. The
processor, being a relatively enclosed component, is assumed to be secure and free from
vulnerabilities or malicious programs in this work. In addition, we assume that malicious
attacks originate from external sources and that the IP cores and other circuit units directly
connected to the processor are most susceptible to such attacks. Therefore, securing stack
data from external memory has a direct impact on system security. We consider this part
of stack data as sensitive information related to CFI and protecting it is the main work of
our security mechanism. The threat model depicted in Figure 3 illustrates that a malicious
attacker has the capability to access and read data stored in external memory and external
IPs at any time they will. Furthermore, they possess the ability to manipulate the data from
the stack to construct malicious code chains to launch CRAs.

Micromachines 2023, 14, 1525 10 of 24

OR1200
Processor Core

D-Cache

QMEM DMMU

I-Cache

IMMU

W
ish

bo
ne

 B
us

Stack

Decoding
Driver

Read-write
Circuit

Memory Data

WB_D CU

RAM

Untrusted Zone
Trusted Zone

SOC

Attack on RAM

Register
Return Address

Buffer[n]

Data

Bus Sig

Figure 3. The threat model for this work.

For embedded systems, there exist various malicious attacks that can cause different
security problems. Establishing a certain security threat model can clearly identify the
types of security threats faced by this paper’s research and highlight clear research issues
to be addressed. It is obvious that some attacks can tamper with the data inside the SoC
chip, but this is out of the scope of this paper. Therefore, under the security assumptions
and threat model made by this paper, the work can focus only on off-chip data security
issues. It should be noted that our security assumptions and threat model are reasonable.
At present, the main way of security threats against embedded systems, especially for
CRA attacks, is to intercept data stored outside the chip and break the integrity of forward
and backward control flow transfers. This does not affect the overall validity of the threat
model.

4.2. Microarchitecture Overview
By analyzing the mechanisms of ROP and JOP attacks, as well as the threat model,

we have identified a critical component in the embedded SoC chip architecture that re-
quires protection, namely, the stack unit located in off-chip memory. Subsequently, we
designed and implemented a CFI security mechanism from the perspective of stack safety.
This mechanism consists of a lightweight hardware shadow stack, which traces the vali-
dation of the backward-edge control flow transfers, and a runtime data encryption hard-
ware concentrated on critical data encryption. The hardware overview of the proposed
mechanism is presented in Figure 4.

D-Cache

Instruction
Unit

LSU

W
ish

bo
ne

 B
us Stack

Memory

WB_D

RAM

Trusted Zone

System on Chip

AES
Engine

AES_CU
Key

Management
Excution
Pipeline IF ID EX MA WB

Registers

QMEM

System
Unit MAC

CPU

Monitor

FSM

Shadow
Stack

Return Address 1

Return Address 2

Return Address 3

Stack data
encryption hardware

 Hardware
Shadow Stack

Untrusted Zone

Figure 4. The Overview of the Proposed Mechanism.

Figure 3. The threat model for this work.

The following reasonable assumptions are made in this work: the internal area of
the SoC chip is designated as a trusted zone, while the external area of the SoC chip
is considered untrusted. Additionally, we define the stack area in off-chip memory as
an untrusted critical region, and any sensitive data from this off-chip stack is deemed
untrusted critical sensitive data. When program and stack data are stored in external
memory, malicious attackers may exploit them to launch CRAs.

For embedded systems, there exist various malicious attacks that can cause different
security problems. Establishing a certain security threat model can clearly identify the
types of security threats faced by this paper’s research and highlight clear research issues to
be addressed. It is obvious that some attacks can tamper with the data inside the SoC chip,
but this is out of the scope of this paper. Therefore, under the security assumptions and
threat model made by this paper, the work can focus only on off-chip data security issues. It
should be noted that our security assumptions and threat model are reasonable. At present,
the main way of security threats against embedded systems, especially for CRA attacks, is
to intercept data stored outside the chip and break the integrity of forward and backward
control flow transfers. This does not affect the overall validity of the threat model.

Micromachines 2023, 14, 1525 10 of 23

4.2. Microarchitecture Overview

By analyzing the mechanisms of ROP and JOP attacks, as well as the threat model, we
have identified a critical component in the embedded SoC chip architecture that requires
protection, namely, the stack unit located in off-chip memory. Subsequently, we designed
and implemented a CFI security mechanism from the perspective of stack safety. This
mechanism consists of a lightweight hardware shadow stack, which traces the validation
of the backward-edge control flow transfers, and a runtime data encryption hardware con-
centrated on critical data encryption. The hardware overview of the proposed mechanism
is presented in Figure 4.

Micromachines 2023, 14, 1525 10 of 24

OR1200
Processor Core

D-Cache

QMEM DMMU

I-Cache

IMMU

W
ish

bo
ne

 B
us

Stack

Decoding
Driver

Read-write
Circuit

Memory Data

WB_D CU

RAM

Untrusted Zone
Trusted Zone

SOC

Attack on RAM

Register
Return Address

Buffer[n]

Data

Bus Sig

Figure 3. The threat model for this work.

For embedded systems, there exist various malicious attacks that can cause different
security problems. Establishing a certain security threat model can clearly identify the
types of security threats faced by this paper’s research and highlight clear research issues
to be addressed. It is obvious that some attacks can tamper with the data inside the SoC
chip, but this is out of the scope of this paper. Therefore, under the security assumptions
and threat model made by this paper, the work can focus only on off-chip data security
issues. It should be noted that our security assumptions and threat model are reasonable.
At present, the main way of security threats against embedded systems, especially for
CRA attacks, is to intercept data stored outside the chip and break the integrity of forward
and backward control flow transfers. This does not affect the overall validity of the threat
model.

4.2. Microarchitecture Overview
By analyzing the mechanisms of ROP and JOP attacks, as well as the threat model,

we have identified a critical component in the embedded SoC chip architecture that re-
quires protection, namely, the stack unit located in off-chip memory. Subsequently, we
designed and implemented a CFI security mechanism from the perspective of stack safety.
This mechanism consists of a lightweight hardware shadow stack, which traces the vali-
dation of the backward-edge control flow transfers, and a runtime data encryption hard-
ware concentrated on critical data encryption. The hardware overview of the proposed
mechanism is presented in Figure 4.

D-Cache

Instruction
Unit

LSU

W
ish

bo
ne

 B
us Stack

Memory

WB_D

RAM

Trusted Zone

System on Chip

AES
Engine

AES_CU
Key

Management
Excution
Pipeline IF ID EX MA WB

Registers

QMEM

System
Unit MAC

CPU

Monitor

FSM

Shadow
Stack

Return Address 1

Return Address 2

Return Address 3

Stack data
encryption hardware

 Hardware
Shadow Stack

Untrusted Zone

Figure 4. The Overview of the Proposed Mechanism. Figure 4. The Overview of the Proposed Mechanism.

4.3. Lightweight Hardware Shadow Stack

The detection mechanism employs a backward edge CFI method to implement control
flow integrity, which enables the identification of CRAs during program execution. It
is assumed that the attacker gains access and control over the external circuitry of the
SoC chip in an attempt to manipulate the program’s control flow within the processor.
According to the aforementioned analysis of the CRA attack mechanism, an attacker can
obtain the instruction fragment capable of performing a specific operation from the existing
code fragment and construct the program flow by calling a series of instruction fragments.
Among them, ROP attacks exploit memory vulnerabilities to connect instruction fragments
by manipulating the return address of ret instructions on the stack, thereby redirecting
program execution flow to the desired fragment. It is evident that the attack involves
tampering with the return address in the function stack frame, resulting in a misalignment
of program breakpoints at function call and return. In the defense design, we incorporate
a lightweight shadow stack into the hardware isolation area. This stack is dedicated to
storing return addresses in function stack frames, ensuring that they cannot be accessed or
tampered with by any program. To mitigate the risk of bypassing monitoring mechanisms
and tampering with return addresses after popping from the stack, our CFI monitoring
module directly monitors function calls and returns from the processor pipeline. At the
function calling stage, the lightweight hardware shadow stack automatically stores the
return address without backing up any other data from the original stack. Upon completion
of execution and return to the calling function’s state on the stack, the system performs an
automatic comparison and verification of the return address to ensure the validity of the
program control flow. The CFI checking mechanism enables the detection of ROP attacks
during each transmission, thereby indirectly verifying the security of sensitive data stored
in the stack. Algorithm 1 shows a detailed description of the backward-edge control flow
checking method.

Micromachines 2023, 14, 1525 11 of 23

Algorithm 1: The procedure of the backward-edge control flow checking

Input : Binary Instructions in Pipeline, PC, Shadow Stack, Parallel Decode
Output : Security Status
EX_insn ← Pipeline instructions
W_addr ← Return address written into shadow stack during function call
R_addr ← Return address read from shadow stack during function return
EX_addr ← Address being executed in pipeline during function call
ST_addr ← Return address obtained from memory during function return
For all EX_insn do

Opcode = Parallel Decode (EX_insn)
EX_addr = PC + 4 /* PC: Instruction address during the decoding phase */
if Opcode = Function Call then

W_addr = EX_addr + 4
Shadow Stack←W_addr

else if Opcode = Function Return then
R_addr← Shadow Stack
while (ST_addr != NULL)
; /* Waiting for memory access to finish */
Security Status = (ST_addr = R_addr)? NO_WARNING: WARNING

else
Security Status = NULL

END

Based on the analysis of the proposed lightweight hardware shadow stack, the hard-
ware is implemented through three components: (a) monitoring unit, (b) lightweight
shadow stack, and (c) control unit. The monitoring unit analyzes instructions executed in
the pipeline at runtime through signals fetched from the pipeline, enabling it to monitor
each function call and return. This allows for obtaining breakpoint addresses and return
addresses during execution when functions are returned. The lightweight shadow stack is
situated in a hardware-isolated enclave that is inaccessible to software and dedicated solely
to storing return addresses within function stack frames. The control unit is implemented
using a finite state machine, with backup and verification of the return address being
completed based on feedback signals from the monitoring unit. The three components are
implemented through hardware and operate automatically without the need for software
control. The module’s contents can only be accessed by the control unit’s alarm signal, and
the proposed module’s overall structure is illustrated in Figure 5.

The monitoring unit is dedicated to the command and control signals within the
pipeline. The processor implements a five-stage pipeline comprising instruction fetch
(IF), instruction decode (ID), execute (EX), memory access (MA), and write-back (WB).
During the decoding phase of the pipeline, the monitoring unit acquires the binary code
of instructions, jump signals, and program counters, verifying their correspondence with
the function call and return signals. The OR1200 embedded processor is capable of sup-
porting delay slot instructions, which means that it will not execute two jump instructions
consecutively. In the event that a function call is detected by the monitoring unit, both the
program counter read from the pipeline and the function call signal are sent to the control
unit. Similarly, when a return instruction is detected, the monitoring unit retrieves the
jump address from the rB register and transmits it to the control unit after the pipeline
fetches the target address from the function stack frame. It should be noted that monitoring
command and control signals in the pipeline does not alter its structure. Instead, it achieves
this through the addition of a few minor components. Moreover, the proposed lightweight
hardware shadow stack operates much faster than the instruction execution speed and is
guaranteed not to impact pipeline performance.

Micromachines 2023, 14, 1525 12 of 23

Micromachines 2023, 14, 1525 12 of 24

Based on the analysis of the proposed lightweight hardware shadow stack, the hard-
ware is implemented through three components: (a) monitoring unit, (b) lightweight
shadow stack, and (c) control unit. The monitoring unit analyzes instructions executed in
the pipeline at runtime through signals fetched from the pipeline, enabling it to monitor
each function call and return. This allows for obtaining breakpoint addresses and return
addresses during execution when functions are returned. The lightweight shadow stack
is situated in a hardware-isolated enclave that is inaccessible to software and dedicated
solely to storing return addresses within function stack frames. The control unit is imple-
mented using a finite state machine, with backup and verification of the return address
being completed based on feedback signals from the monitoring unit. The three compo-
nents are implemented through hardware and operate automatically without the need for
software control. The module’s contents can only be accessed by the control unit’s alarm
signal, and the proposed module’s overall structure is illustrated in Figure 5.

Excution
PipelineIF ID EX MA WB

Registers Monitor

FSM

Shadow Stack

Return Address 1

Return Address 3

CFI Monitor

Stack_CU

XOR

Push

Pop

Warn

Parallel
Decode

Instruction
Unit

0 1

Return Address

PC Address

Actul
Return Address

Return Address in
Shandow Stack

 Data Direction

 Data Direction
 Message

Description

Return Address 2

Figure 5. Hardware details of the lightweight hardware shadow stack.

The monitoring unit is dedicated to the command and control signals within the
pipeline. The processor implements a five-stage pipeline comprising instruction fetch (IF),
instruction decode (ID), execute (EX), memory access (MA), and write-back (WB). During
the decoding phase of the pipeline, the monitoring unit acquires the binary code of in-
structions, jump signals, and program counters, verifying their correspondence with the
function call and return signals. The OR1200 embedded processor is capable of supporting
delay slot instructions, which means that it will not execute two jump instructions consec-
utively. In the event that a function call is detected by the monitoring unit, both the pro-
gram counter read from the pipeline and the function call signal are sent to the control
unit. Similarly, when a return instruction is detected, the monitoring unit retrieves the
jump address from the rB register and transmits it to the control unit after the pipeline
fetches the target address from the function stack frame. It should be noted that monitor-
ing command and control signals in the pipeline does not alter its structure. Instead, it
achieves this through the addition of a few minor components. Moreover, the proposed
lightweight hardware shadow stack operates much faster than the instruction execution
speed and is guaranteed not to impact pipeline performance.

Based on the features of a function call and return procedure, a lightweight hardware
shadow stack is implemented in the trusted region of the SoC chip to store the return

Figure 5. Hardware details of the lightweight hardware shadow stack.

Based on the features of a function call and return procedure, a lightweight hardware
shadow stack is implemented in the trusted region of the SoC chip to store the return
address of the function stack frame. The depth of the shadow stack depends on the maxi-
mum number of iterations of functions, which has an impact on both system security and
hardware implementation cost. In the benchmarks we selected from MiBench embedded
benchmark [32], the maximum function call iteration depth is in the quick sort test program,
which is 16 layers. Therefore, we have set the shadow stack depth to 30 layers to provide
redundancy. Depending on different application scenarios, the size of the shadow stack can
be adjusted according to function iteration depth. Furthermore, this lightweight implemen-
tation only backups the return address, which does not impose any significant resource
burden on embedded systems. To prevent malicious tampering of data in the shadow stack,
hardware isolation measures are implemented in its design. This prohibits any program
from accessing it and only allows the control unit to autonomously complete push and pop
operations of return addresses, ensuring relatively high security of the shadow stack.

The control unit comprises a finite state machine that executes specific actions based
on feedback signals received from the monitoring unit. Upon receiving a function call
signal, the control unit enters backup mode wherein it automatically translates the program
breakpoint pointer into the address at function return and pushes it onto the shadow
stack. Upon receipt of a function return signal, the control unit enters the verification state
wherein it performs a pop operation on the shadow stack and compares the return address
stored therein with that executed in the pipeline to ascertain any potential tampering with
the function return address. The verification method indirectly guarantees the security
of data in the external stack of SoC chips. In case a malicious modification is detected in
the return address, the control unit will enter an alarm state and send an alarm signal to
the system. Users can write specific programs to protect their systems, such as halting all
current work on the processor and running embedded security defense software in a secure
memory region to further mitigate the risks of such attacks. Furthermore, in the event of a
malicious attack causing an overflow of the shadow stack, the control unit will enter into
an alarm state.

4.4. Runtime Data Encryption Hardware

The success of ROP and JOP attacks hinges on the availability of a chain of gadgets
in the code. In order to invoke these gadgets, the program counter needs to be accurately

Micromachines 2023, 14, 1525 13 of 23

redirected to the desired gadget. Attackers typically employ ret and jump instructions to
achieve this program’s counter redirection. However, accurately redirecting the program
counter from normal program execution to the gadget is a challenging task. To perform
further data tampering, it is imperative to conduct a precise analysis of the stack data
structure and its contents in order to locate relevant elements such as registers, return
addresses, and available arrays that are crucial for program execution.

We consider information related to program execution and control flow transfers as
critical and sensitive data. To hinder attackers from analyzing and identifying this data,
we designate the stack data, mainly for the function stack frames, as sensitive data. By
encrypting stack data with AES before storing it in external memory, even if attackers gain
access to memory through high-privileged interfaces like JTAG and acquire read/write
permissions for the data, they are unable to construct attack programs by analyzing and
exploiting sensitive information. Therefore, a security mechanism that can encrypt stack
data can provides defense against control flow-related CRAs.

To minimize the time overhead associated with stack data encryption and decryption
processes, we have designed hardware for runtime stack data encryption, optimized the
encryption structure, and implemented it internally within the SoC chip. This optimization
ensures more efficient and secure encryption while mitigating the performance impact of
encryption on stack data. This architecture enables fast encryption of sensitive data when it
enters the stack during program execution, as well as efficient decryption when the data
is fetched from the external memory. To enhance encryption efficiency, we have opted to
integrate this encryption structure between the D-Cache and the system bus. D-cache’s
working mechanism can effectively help to reduce the encryption and decryption frequency.
The encryption module comprises two components: an encryption control unit and an AES
encryption engine.

Given the limited system resources of embedded systems, it is imperative to minimize
the impact of encryption on both performance and hardware overheads when designing an
encryption structure for such systems. Therefore, this paper integrates the AES encryption
engine between the D-Cache and the system bus, designed within the trusted area of the
SoC chip. As the stack units in the off-chip memory are located in the untrusted region,
sensitive data must be encrypted when transferring from the trusted to the untrusted area
to ensure data security. The initiation of this bus transfer is automatically controlled by the
hardware BUS CU and, in conjunction with the encryption key and XOR circuit, achieves
encrypted storage of sensitive data and decryption during data access. The monitoring
circuit in the encryption control unit is responsible for checking the D-Cache hit status
and data transfer direction, providing feedback signals to the FSM within the control unit.
Sensitive data is integrated into data blocks under the control of FSM, which are then
prepared for encryption and stored in the encryption FIFO along with bus signals. The
KEY_CU manages the critical information, generating non-reproducible encryption keys
based on feature values against CRA attacks and the accessed address information. Figure 6
illustrates the encryption architecture for stack data. It is important to note that in this
design, the content encrypted using the AES is the sensitive data, and the process involves
XOR operations between the encrypted key and plaintext or cipher text. The AES engine is
responsible for encrypting the encryption key itself.

The encryption mechanism for sensitive data in the stack operates as follows: When
the processor accesses sensitive data, it first accesses the trusted region’s D-Cache. If there
is a hit in the D-Cache, the processor directly performs read or modification operations on
the data. In the case of a D-Cache miss, the cache initiates the update strategy to replace
the existing cache block. During the cache block update process, the D-Cache establishes
a data path with the stack units located in the external memory through the system bus,
enabling burst transfers of 16-byte cache blocks between the cache and the stack units.
However, it is important to note that the stack, which holds the sensitive data, resides
in the untrusted region. To address this, an encryption control unit is introduced during
the data transfer process. Sensitive data written to the stack units through the system

Micromachines 2023, 14, 1525 14 of 23

bus undergoes encryption using AES. Similarly, sensitive data read from the stack units
undergo AES decryption. The AES encryption operates on 128-bit data, matching the block
size in the update strategy. Leveraging the high hit rate of the D-Cache, the AES encryption
engine is only activated when a cache miss occurs, significantly reducing the frequency of
encryption and decryption operations and minimizing their performance impact on the
system. Moreover, the bus transfer process for this segment is controlled by the encryption
unit hardware, effectively preventing external malicious attacks from circumventing the
encryption unit to obtain unencrypted data.

Micromachines 2023, 14, 1525 14 of 24

cache’s working mechanism can effectively help to reduce the encryption and decryption
frequency. The encryption module comprises two components: an encryption control unit
and an AES encryption engine.

Given the limited system resources of embedded systems, it is imperative to mini-
mize the impact of encryption on both performance and hardware overheads when de-
signing an encryption structure for such systems. Therefore, this paper integrates the AES
encryption engine between the D-Cache and the system bus, designed within the trusted
area of the SoC chip. As the stack units in the off-chip memory are located in the untrusted
region, sensitive data must be encrypted when transferring from the trusted to the un-
trusted area to ensure data security. The initiation of this bus transfer is automatically
controlled by the hardware BUS CU and, in conjunction with the encryption key and XOR
circuit, achieves encrypted storage of sensitive data and decryption during data access.
The monitoring circuit in the encryption control unit is responsible for checking the D-
Cache hit status and data transfer direction, providing feedback signals to the FSM within
the control unit. Sensitive data is integrated into data blocks under the control of FSM,
which are then prepared for encryption and stored in the encryption FIFO along with bus
signals. The KEY_CU manages the critical information, generating non-reproducible en-
cryption keys based on feature values against CRA attacks and the accessed address in-
formation. Figure 6 illustrates the encryption architecture for stack data. It is important to
note that in this design, the content encrypted using the AES is the sensitive data, and the
process involves XOR operations between the encrypted key and plaintext or cipher text.
The AES engine is responsible for encrypting the encryption key itself.

D-
Cache

LSU

W
is

hb
on

e
B

us

Stack

RAM

Trusted Zone

SOC

KEY_CU

CPU

CFI Encryption Mechanism

Data
Bus

Inter-
face

FIFO

Monitor

BUS

CU

Push

Pop128bit data
4bit control

32bit addr

FSM

Flag Value

Expand
AES

Encryption
Engine

XOR

XOR

Bus_control_sig

Bus_ack_sig

Data Plaintext

128bit 128bit

Data
Ciphertext

32bit Address

BUS

CU

Value1

Value2 Untrusted
Zone

DMMU

QMEM

Con_sig
Addr
Data

Figure 6. Hardware details of the runtime data encryption hardware.

The encryption mechanism for sensitive data in the stack operates as follows: When
the processor accesses sensitive data, it first accesses the trusted region’s D-Cache. If there
is a hit in the D-Cache, the processor directly performs read or modification operations on
the data. In the case of a D-Cache miss, the cache initiates the update strategy to replace
the existing cache block. During the cache block update process, the D-Cache establishes
a data path with the stack units located in the external memory through the system bus,
enabling burst transfers of 16-byte cache blocks between the cache and the stack units.
However, it is important to note that the stack, which holds the sensitive data, resides in
the untrusted region. To address this, an encryption control unit is introduced during the
data transfer process. Sensitive data written to the stack units through the system bus un-
dergoes encryption using AES. Similarly, sensitive data read from the stack units undergo

Figure 6. Hardware details of the runtime data encryption hardware.

The encryption control unit comprises a finite-state machine with four primary opera-
tional states: monitoring, missing, encryption, and decryption.

(1) In the monitoring state, the state machine assesses the hit status of the D-Cache
primarily based on the cache_miss signal within the DC_FSM. If there is a hit in the D-
Cache upon accessing, the state machine remains in the monitoring state. Otherwise,
it transitions to the missing state.

(2) In the missing state, the encryption control unit obtains a 128-bit encryption key and
feeds it into the AES encryption engine. If the D-Cache data needs to be written back
to the stack units, the state machine transitions to the encryption state. If the D-Cache
needs to access data in the stack units, the state machine enters the decryption state.

(3) In the encryption state, the encryption control unit stores the encrypted data in the
164-bit encryption buffer, which includes 128 bits of plaintext, a 32-bit storage address,
and a 4-bit bus control signal. The plaintext represents the stack data to be encrypted,
while the cipher text represents the encrypted stack data. It is important to note that
once the encrypted information is obtained, the AES encryption engine immediately
performs the encryption using the encryption key. Simultaneously, a response signal
is sent to the processor to initiate the data write-back process, preventing the processor
from remaining in a stalled state for an extended period. From the perspective of the
processor, the duration of an encryption storage operation is equivalent to that of a
regular data block storage. Upon completion of the key encryption, the plaintext is
encrypted by applying the XOR operation between the plaintext and the encrypted
key. Subsequently, the BUS CU stores the resulting cipher text into the stack unit
based on the information stored in the encryption buffer.

(4) In the decryption state, once the encryption control unit provides the encryption
key and initiates the start signal, the AES encryption engine immediately enters
the operational state. Unlike the previous decryption method where the cipher

Micromachines 2023, 14, 1525 15 of 23

text had to wait for memory access to complete before decryption, causing a delay
in the processor’s data retrieval and leading to performance loss, the optimized
encryption/decryption architecture introduces parallel processing. In the optimized
encryption/decryption architecture, the bus transfer for access operations starts after
waiting for the bus to become idle. Meanwhile, the AES encryption engine is already
activated before the bus transfer, allowing the decryption computation and memory
access processes to run in parallel. After completing the key encryption and obtaining
the encrypted data blocks from the stack, the final decryption step is performed
through the XOR operation between the encryption key and the encrypted data
blocks. The duration of one decryption access operation depends on the maximum
duration of memory access and key encryption computation. This effectively reduces
the processor’s waiting time and improves the efficiency of encryption and decryption
operations.

Figure 7 provides a visual representation of the access operation time for different
encryption methods.

Micromachines 2023, 14, 1525 16 of 24

systems, we opted to construct the hardware-based section of the 128-bit AES encryption
circuit to minimize the overall circuit area of the AES engine.

Time

T1

T2

T3

Optimised Parallel Structure

Se
ria

l
St

ru
ct

ur
e

Storing Data Access Data Access Data Storing Data

Memory access/storage operation time.

Data encryption operation time/Data decryption operation time.

Time for data to be written to the Encryption buffers.
Figure 7. Comparison of memory operation time after encryption structure optimization.

The encryption of sensitive data in this article utilizes a stream cipher encryption
method by AES counter mode. The encryption key plays a crucial role in the security of
the encryption algorithm and is considered the most sensitive component. Traditional
fixed-key encryption methods present security risks due to potential key leakage. Addi-
tionally, attackers may attempt to deduce the encryption key by analyzing the plaintext
and cipher text of multiple encrypted datasets. To mitigate these risks and enhance secu-
rity, the key used in the XOR operation requires a dynamic update mechanism, and it is
encrypted by the AES engine.

This paper introduces a dynamic key update mechanism based on specific character-
istics, referred to as “flag value,” to ensure security. The key to be encrypted consists of
two parts: the storage address of the sensitive data and the CRA attack flag values. It is
essential to note that the AES engine does not directly store this key. Instead, it retains the
CRA attack flag values. To enable the AES encryption engine to promptly obtain the key
to be encrypted before the state machine enters the encryption and decryption state, the
transformation relationship between the key and the flag values is shown in Algorithm 2.

Algorithm 2. Initial key generation process
Input: Access address for the stack, number of accesses to the stack address
Output: Key
Flag ← Number of accesses to the stack address
Key_addr ← Access address for the stack
For all Key_addr do

tempH ← Expend(Key_addr) [127:64]
tempL ← Expend(Key_addr) [63:0]

 While (Flag>0)
Swap [16/8/4/2/1: 0] = tempH [16/8/4/2/1: 0]

 tempH = tempH and tempL [16/8/4/2/1: 0]
tempL = tempL and Swap [16/8/4/2/1: 0]
Flag = Flag – 16/8/4/2/1

Key = {tempH, tempL}
END

Figure 7. Comparison of memory operation time after encryption structure optimization.

The data paths for both AES encryption and decryption blocks are separated and
essentially self-contained, requiring access to a set of round keys and a data block [33].
This design approach leads to a significant reduction of approximately 50% in the circuit
area of the AES core when only the encryption circuit is implemented, after trimming the
decryption circuit portion. Considering the constrained hardware resources of embedded
systems, we opted to construct the hardware-based section of the 128-bit AES encryption
circuit to minimize the overall circuit area of the AES engine.

The encryption of sensitive data in this article utilizes a stream cipher encryption
method by AES counter mode. The encryption key plays a crucial role in the security of the
encryption algorithm and is considered the most sensitive component. Traditional fixed-
key encryption methods present security risks due to potential key leakage. Additionally,
attackers may attempt to deduce the encryption key by analyzing the plaintext and cipher
text of multiple encrypted datasets. To mitigate these risks and enhance security, the key
used in the XOR operation requires a dynamic update mechanism, and it is encrypted by
the AES engine.

This paper introduces a dynamic key update mechanism based on specific character-
istics, referred to as “flag value”, to ensure security. The key to be encrypted consists of
two parts: the storage address of the sensitive data and the CRA attack flag values. It is
essential to note that the AES engine does not directly store this key. Instead, it retains the
CRA attack flag values. To enable the AES encryption engine to promptly obtain the key
to be encrypted before the state machine enters the encryption and decryption state, the
transformation relationship between the key and the flag values is shown in Algorithm 2.

Micromachines 2023, 14, 1525 16 of 23

Algorithm 2: Initial key generation process

Input: Access address for the stack, number of accesses to the stack address
Output: Key
Flag← Number of accesses to the stack address
Key_addr← Access address for the stack
For all Key_addr do

tempH← Expend(Key_addr) [127:64]
tempL← Expend(Key_addr) [63:0]

While (Flag>0)
Swap [16/8/4/2/1: 0] = tempH [16/8/4/2/1: 0]

tempH = tempH and tempL [16/8/4/2/1: 0]
tempL = tempL and Swap [16/8/4/2/1: 0]
Flag = Flag − 16/8/4/2/1

Key = {tempH, tempL}
END

During the analysis of the CRA attack and the defense mechanism, it has been observed
that the CRA attack relies on accessing sensitive data stored in the stack, necessitating
frequent stack accesses. To effectively mitigate such attacks, we utilize the access frequency
of sensitive data block addresses during the D-Cache update process as flag values. By
leveraging this approach, each time-sensitive data is accessed, the encryption key under-
goes modifications based on the corresponding access address and its associated flag values.
This dynamic key update mechanism significantly enhances the security of the encryption
algorithm, ensuring robust confidentiality during both encryption and decryption opera-
tions. The key initial and update method involves swapping the high and low bits of the
data block address, with the number of bits exchanged determined by the flag values. The
swapped bits directly form the initial key, ensuring timely access for the AES encryption
engine while maintaining symmetry between the encryption and decryption keys. This
dynamic key update mechanism helps to enhance the security of AES, ensuring robust
confidentiality during both encryption and decryption operations.

Furthermore, the encryption control unit automatically records and manages flag
values to enhance confidentiality and security. The system design employs hardware
isolation techniques to strictly prohibit unauthorized access or manipulation of flag values
by software components, ensuring the integrity and security of the encryption system.

5. Experiments and Discussions

We integrated the proposed lightweight shadow stack and stack data encryption
hardware into an OR1200 embedded processor, constructing a SoC prototyping capable
of against CRAs. The main frequency of the SoC is configured at 50 MHz, and the clock
frequency of the proposed hardware is synchronized with the SoC. The internal D-Cache
of the processor is configured to be 8 KB in size, with support for other sizes such as
4 KB and 16 KB. We utilized Verilog HDL to develop the system, conducted logic synthesis
and implementation in Quartus Prime 18.1, and subsequently mapped the hardware
implementation onto the Intel EP2C70 FPGA chip.

5.1. Hardware Overhead

The hardware resources of embedded systems are severely constrained. In light of
practical considerations, we must ensure that the designed hardware security mechanism
will not cause too much overhead to the hardware resources of the system. Our security
mechanism is implemented on-chip and the overhead of hardware resources is more
important.

We have completed the FPGA verification of the entire system on the Terasic DE1-
SoC FPGA development board and evaluated its hardware overhead both using Quartus
Prime and Synopsys tools under SMIC 0.18 µm 1P6M technology. During implementation,
the lightweight shadow stack and stack data encryption engine were found to consume

Micromachines 2023, 14, 1525 17 of 23

most additional hardware resources. We aim to optimize the hardware overhead in both
architecture design and implementation, ensuring that the proposed hardware scheme is
suitable for a wide range of embedded systems.

The depth of the shadow stack is related to the maximum number of iterations of the
function, and its depth affects both the security of the system and the cost of hardware
implementation. Insufficient depth of the shadow stack can result in inadequate handling
of the function call depth by the backward-edge control flow validation, while excessive
depth increases the hardware resource overhead of the embedded system. After analyzing
the embedded benchmarks selected from Mibench, we found that the required shadow
stack depth is between 9 and 15 layers, as shown in Table 1.

Table 1. Max. iterations and shadow stack depths for the selected benchmarks.

Benchmark Functions Num. Max. Iterations Shadow Stack Depth

AES 57 10 9
OpenECC 81 10 9
Quicksort 47 16 15
bitcount 60 10 9

blowfish 47 10 9
patricia 49 15 14
SHA1 53 11 10
FFT 78 13 12
CRC 46 10 9

basicmath 70 11 10

In order to provide redundancy, we decided to set the shadow stack depth supporting
to 30 layers, with a storage size of 120 bytes. The hardware resource overhead for the
shadow stack memory to store return addresses is 385 Logic Cells and 773 Registers for the
FPGA end, as shown in Table 2. In different application scenarios, the shadow stack size
can be expanded.

Table 2. FPGA resource used for the proposed lightweight shadow stack.

Resource Utilization Logic Cells Registers Memory Bits

Shadow Stack
Memory 385 773 0

Whole Shadow Stack 488 781 0

In the process of designing an AES hardware engine, there are two ways to implement
the encryption and decryption hardware. One is to directly utilize the AES encryption
circuit for data encryption and the decryption circuit for data decryption. However, this
approach requires both circuits to be included in the hardware implementation, which
increases the hardware resource overhead of embedded systems. Another approach,
namely the stream cipher encryption method or AES counter mode method, relies solely
on the AES encryption circuit for executing encryption operations to generate a PAD, and
then the PAD is used to XOR with the data to be encrypted and decrypted.

We used the stream cipher encryption method for sensitive data encryption and
decryption operations during the AES encryption engine design process. Therefore, we
trimmed the AES decryption circuit and only retained the encryption circuit part to reduce
hardware resource overhead. The overhead resource comparison of the AES engine after
trimming the decryption circuit part is shown in Table 3. The hardware resource overhead
is evaluated both target to the FPGA platform and ASIC.

Finally, we evaluated the hardware resource overhead from the complete lightweight
hardware-based CRA defense mechanism. Table 4 describes the hardware resource usage
for both the FPGA platform and ASIC. The results show that this defense mechanism brings
a relatively small resource overhead to embedded systems, improving the practicality of
the design.

Micromachines 2023, 14, 1525 18 of 23

Table 3. Comparison of hardware resource overhead of different AES engine implementations.

Resource Utilization Full AES Encryption-Only AES Saves

FPGA
Logic Cells 2243 1118 50.2%
Registers 1011 388 61.6%

Memory Bits 1408 0 -

ASIC
Total Cells 26,045 12,168 53.3%
Total Area 0.551 mm2 0.227 mm2 58.8%

Table 4. Hardware implementation overhead of the proposed system on FPGA and ASIC.

Resource Utilization Original Security Enhanced Overhead

FPGA
Logic Cells 5426 7106 31.0%
Registers 5284 5930 12.2%

Memory Bits 416,492 416,768 0.1%

ASIC
Total Area 5.496 mm2 5.812 mm2 5.7%

Power Consumption 83.17 mW 92.43 mW 11.1%

5.2. Performance Overhead

Another crucial aspect of embedded systems is their high real-time requirements and
limited system performance. The design process should minimize the impact on embedded
system performance. This section evaluates the performance overhead caused by the CRA
defense mechanism. The lightweight shadow stack is implemented by adding components
to the pipeline while preserving its original structure. Moreover, the hardware-based
checking logic executes significantly faster than the pipeline itself. Therefore, the impact of
the lightweight shadow stack on system performance is almost negligible. However, the
encryption-based CFI protection mechanism inevitably introduces performance overhead
to embedded systems during the encryption and decryption of sensitive data. This paper
primarily assesses the performance overhead caused by the encryption-based CFI protection
mechanism.

During the encryption process of sensitive data, we effectively reduced the frequency
of encryption and decryption operations by taking advantage of D-Cache, minimizing
the impact of cipher operations on system performance. It is important to note that since
malicious attacks originate from outside of the SoC, reducing the frequency of encryption
and decryption does not compromise the security of the encryption effect. Concurrently, the
design of the encryption cache area, parallel processing of decryption key calculation and
memory access operations, and the fast XOR encryption and decryption method effectively
reduce the time for individual encryption and decryption operations.

In the performance evaluation, we used program runtime as the performance metric.
We selected ten different benchmark programs from the MiBench suite to evaluate the
performance of the stack data encryption and decryption hardware. Table 5 illustrates
the performance overhead introduced by the proposed CRA defense mechanism with the
OR1200 D-Cache in size of 8KB.

In most benchmarks, the performance overhead caused by the defense mechanism
does not exceed 2.68%, with an average performance overhead of 0.39%. The performance
overhead of the OpenECC program is significantly higher than the average value because
the encryption mechanism for sensitive data mainly works when accessing a D-Cache miss.
During the cache block update process, the defense mechanism introduces additional clock
cycles. The lower the D-Cache hit rate of the test program, the higher the frequency of AES
engine encryption and decryption, and the greater the performance overhead caused by the
defense mechanism. To this end, we configured the size of the D-Cache to 4 KB, 8 KB, and
16 KB, respectively, and used these 10 benchmark test programs to evaluate the performance
overhead of the defense mechanism under different D-Caches. The experimental results
are shown in Table 6.

Micromachines 2023, 14, 1525 19 of 23

Table 5. Performance overhead of the proposed CRA defense mechanism with 8KB D-Cache.

MiBench Total Insn

Original Security Enhanced
Performance

OverheadRuntime
(Clock) Insn Time Runtime

(Clock)
Insn
Time

AES 289,938 1,004,453 3.464 1,008,833 3.479 0.436%
bitcount 1,161,921 2,908,610 2.503 2,922,885 2.516 0.491%

basicmath 2,214,608,140 6,419,201,007 2.899 6,434,932,285 2.906 0.245%
blowfish 933,371 3,313,098 3.550 3,337,085 3.575 0.724%

CRC 295,164 772,774 2.618 777,768 2.635 0.646%
FFT 779,207 2,314,083 2.970 2,322,604 2.981 0.368%

OpenECC 122,316,893 406,662,908 3.325 417,553,731 3.414 2.678%
patricia 5,171,456 12,891,252 2.493 12,911,580 2.497 0.158%

quicksort 1,810,410 4,832,696 2.669 4,836,078 2.671 0.070%
SHA1 625,490 1,796,576 2.872 1,810,651 2.895 0.783%

Total 2,347,991,990 68,55,697,457 - 6,882,413,500 - -
Average - - 2.920 - 2.931 0.390%

Table 6. Performance overhead of the benchmarks with the different sizes of D-Cache.

MiBench 4 KB D-Cache 8 KB D-Cahe 16 KB D-Cache

AES 0.457% 0.436% 0.434%
OpenECC 2.691% 2.678% 0.005%
quicksort 0.070% 0.070% 0.070%
bitcount 0.846% 0.491% 0.185%
blowfish 4.974% 0.724% 0.720%
patricia 0.575% 0.158% 0.092%
SHA1 0.880% 0.783% 0.363%
FFT 0.715% 0.368% 0.368%
CRC 0.840% 0.646% 0.605%

basicmath 0.272% 0.245% 0.245%

The results show that the system’s performance overhead is related to the hit rate of
D-Cache. The larger the D-Cache, the higher the hit rate, the lower the frequency of AES
engine encryption and decryption, and the smaller the system’s performance overhead.
The impact of the defense mechanism on embedded systems is weaker. In particular, the
two groups of programs, OpenECC and blowfish, increase with D-Cache, and the perfor-
mance overhead from the defense system decreases significantly.

5.3. Security Analysis

In the lightweight shadow stack validating the backward-edge control flow transfers,
the monitoring unit directly monitors the function call and return processes from the
pipeline perspective, preventing CRA attacks from bypassing the checking mechanism.
During the function call process, the hardware shadow stack automatically backs up the
return address. Upon completion of the function and returning the parent function state
from the stack, the monitoring unit validates the backward edge transfer by verifying the
return address, indirectly ensuring sensitive data security within the stack. If an illegal
location is targeted for transfer, the checking mechanism will raise an alert, thwarting
further execution of malicious programs. In designing the shadow stack, we implemented
hardware on-chip and prevented access by any program to ensure that it would not be
tampered with by malicious attacks.

In the encryption-based CFI protection mechanism, to prevent attackers from analyz-
ing and locating critical sensitive data related to CFI, we classify all stack data where the
function stack frames are located as sensitive data and provide encryption protection for it.
Thus, the stack data stored in external memory cannot be directly analyzed and manipu-
lated by adversaries. This ensures the security of the program during both forward-edge
and backward-edge transfers. The encryption process employs a stream cipher encryp-

Micromachines 2023, 14, 1525 20 of 23

tion method to encrypt sensitive data rapidly. The security of the encryption is linked
to the security of the cipher key. We implemented a dynamic key update mechanism by
transforming the addresses of sensitive data based on the feature values of CRA attacks.
This guarantees the security of the sensitive data encryption effect, making it hard for the
attackers to locate and analyze sensitive data even if they have obtained read and write
permissions for the stack data.

We compare the proposed CRA defense mechanism with some other previous works,
as shown in Table 7. This article categorizes defense mechanisms into two security levels:

• Level I: can only defend against ROP attacks;
• Level II: can defend against both ROP and JOP attacks.

Table 7. Comparison of our work with some other works.

Security
Mechanism

Security Implementation

Level Inst-Level
Protection

Encryption
Data

Key
Risk

ISA
Extensions

Modify
Compiler

Hardware
Overhead

Performance
Overhead

vCFI [1] I Yes No - No Yes Medi Medi (13.6%)
CFI [10] II Yes Yes Medi Yes Yes Low High (36.0%)

LEA-AES [13] II Yes Yes Medi No Yes Low Low (3.19%)
Dual Stack [23] I Yes No - Yes Yes High Low (2.72%)
LLVM-LSE [27] I Yes Yes High No Yes High High (48.0%)

HCIC [29] II Yes Yes Low No No Medi Low (0.95%)
EC-CFI [34] II Yes Yes Low No Yes High High (27.0%)
Our work II Yes Yes Low No No Low Low (2.68%)

Compared to the software CFI checking mechanism, the hardware-implemented
CRA defense mechanism achieves pipeline signals instruction-level monitoring, making
it difficult for malicious attack programs to bypass and effectively detect control flow
tampering behavior. Moreover, the implementation presented in this paper exerts minimal
impact on the performance of embedded systems, with a performance overhead below
2.68% and an average of 0.39%. A stack data encryption circuit significantly enhances
encryption and decryption speeds compared to software encryption. Compared to fixed-
key encryption methods, the dynamic key update mechanism makes it difficult for attackers
to infer the key even if they have obtained the plaintext and cipher text.

6. Conclusions

Considering the inherent features of embedded systems, such as stringent real-time
requirements, limited performance capabilities, and prohibitive additional hardware over-
heads, this paper proposes a lightweight hardware-assisted security scheme to address
CRAs in embedded systems. This mechanism is implemented with a focus on stack data
security, primarily involving backward-edge control flow validation and runtime CFI pro-
tection through sensitive data encryption. (1) The CFI verification employs a method for
ensuring control flow integrity of backward edges based on the lightweight shadow stack.
It verifies the match between the return address of any function and the valid parameter
in the shadow stack, enabling timely detection of potential backward edges CRA attacks.
(2) CFI protection employs a stream cipher-based lightweight runtime stack data encryption
and decryption scheme, which dynamically encrypts and decrypts stack data at runtime us-
ing the AES counter mode. This approach significantly enhances the security and integrity
of crucial sensitive data associated with CFI, effectively preventing malicious analysis of
the stack data that could be used to launch CRAs.

In the implementation, we have taken into full consideration the features of embedded
systems and employed various techniques to minimize hardware resource overhead while
reducing the impact on system performance. Finally, we integrated both mechanisms into
the OR1200 processor. We verified the system security function on the DE1-SoC FPGA
platform and evaluated the hardware overhead using the Synopsys Design Compiler.

Micromachines 2023, 14, 1525 21 of 23

The results indicate that the proposed lightweight hardware-assisted scheme can provide
a dedicated defense capability against code reuse attacks for embedded systems, with
a hardware resource overhead of only 0.316 mm2 and an average system performance
overhead of 0.39%.

Author Contributions: Z.A. and W.W. wrote this paper; W.W. conceived the proposed scheme;
Z.A. designed the proposed hardware architecture and the experiments; W.L. and S.L. joined in the
data analysis and discussion phases; D.Z. helped with the structure of the paper and reviewed the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Science Foundation of China under Grant
62201325, in part by the Shandong Provincial Natural Science Foundation under Grant ZR2020QF027,
in part by the Qingdao West Coast New Area Science and Technology Project under Grant 2021-25,
and the Shandong Provincial College Students’ Innovation and Entrepreneurship Training Program
under Grant S202210424069.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
AES Advanced Encryption Standard
AFL Active Function List
ASLR Address Space Layout Randomization
AST Abstract Syntax Tree
BB-CFI Basic Block CFI
CCR Compiler-assisted Code Randomization
CFG Control-flow Graph
CFI Control-flow Integrity
CRA Code Reuse Attack
DEP Data Execution Protection
ICT Indirect Control-flow Transfer
JOP Jump-oriented Programming
LEA-AES Lightweight Encryption Architecture based on Advanced Encryption Standard
LPCFI Live Path Control Flow Integrity
PIROP Position-independent Return-oriented Programming
RCFI Random Control Flow Integrity
ROP Return-oriented Programming
SFI Software Fault Isolation
SOFIA Software and Control Flow Integrity Architecture
TA Target Address
UCT Unique Code Target
vCFI Value-based Constraint Control Flow Integrity
WˆX Write XOR eXecution
XOR eXclusive OR

References
1. Jung, D.; Kim, M.; Jang, J.; Kang, B. Value-Based Constraint Control Flow Integrity. IEEE Access 2020, 8, 50531–50542.
2. Maunero, N.; Prinetto, P.; Roascio, G.; Varnale, A. A FPGA-based Control-Flow Integrity Solution for Securing Bare-Metal

Embedded Systems. In Proceedings of the 2020 15th IEEE International Conference on Design & Technology of Integrated
Systems in Nanoscale Era, Marrakech, Morocco, 1–3 April 2020; pp. 1–10.

3. Hu, H.; Qian, C.X.; Yagemann, C.; Chung, S.P.H.; Harris, W.R.; Kim, T.; Lee, W. Enforcing Unique Code Target Property for
Control-Flow Integrity. In Proceedings of the 2018 Acm Sigsac Conference on Computer and Communications Security, Toronto,
ON, Canada, 15–19 October 2018; pp. 1470–1486.

4. Zhi-Feng, C.; Qing-Bao, L.I.; Ping, Z.; Ye, W. Kernel Code Reuse Attack Detection Technique for Linux. J. Softw. 2017, 28,
1732–1745.

Micromachines 2023, 14, 1525 22 of 23

5. Park, M.C.; Lee, D.H. Random CFI (RCFI): Efficient Fine-Grained Control-Flow Integrity Through Random Verification. IEEE
Trans. Comput. 2021, 70, 733–745.

6. Zhang, H.; Ke, Z.; Zhang, Y.; Guo, R.; Li, S.; Yuan, J. RS-Stack: Defense against Stack Buffer Overflow Attack with Random
Shadow Stack. In Proceedings of the 2022 IEEE 2nd International Conference on Data Science and Computer Application, Dalian,
China, 28–30 October 2022; pp. 1432–1436.

7. Dang, T.H.Y.; Maniatis, P.; Wagner, D. The Performance Cost of Shadow Stacks and Stack Canaries. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security, Singapore, 17 March–14 April 2015; pp. 555–566.

8. Mashtizadeh, A.J.; Bittau, A.; Boneh, D.; Mazières, D. CCFI: Cryptographically Enforced Control Flow Integrity. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp.
941–951.

9. Li, Y.; Sha, Z.; Xiong, X.; Zhao, Y. Code Obfuscation Based on Inline Split of Control Flow Graph. In Proceedings of the 2021 IEEE
International Conference on Artificial Intelligence and Computer Applications, Dalian, China, 28–30 June 2021; pp. 632–638.

10. Savry, O.; El-Majihi, M.; Hiscock, T. Confidaent: Control FLow protection with Instruction and Data Authenticated Encryption. In
Proceedings of the 2020 23rd Euromicro Conference on Digital System Design, Kranj, Slovenia, 26–28 August 2020; pp. 246–253.

11. Jin, H.; Liu, B.; Du, Y.; Zou, D. BoundShield: Comprehensive Mitigation for Memory Disclosure Attacks via Secret Region
Isolation. IEEE Access 2018, 6, 36341–36353. [CrossRef]

12. Wang, P.; Zhang, J.; Wang, S.; Wu, D. Quantitative Assessment on the Limitations of Code Randomization for Legacy Binaries. In
Proceedings of the 2020 IEEE European Symposium on Security and Privacy, Genoa, Italy, 7–11 September 2020; pp. 1–16.

13. Qiu, P.; Lyu, Y.; Zhang, J.; Wang, D.; Qu, G. Control Flow Integrity Based on Lightweight Encryption Architecture. IEEE Trans.
Comput.-Aided Des. Integr. Circuit Syst. 2018, 37, 1358–1369. [CrossRef]

14. De Clercq, R.; Götzfried, J.; Übler, D.; Maene, P.; Verbauwhede, I. SOFIA: Software and control flow integrity architecture. Comput.
Secur. 2017, 68, 16–35. [CrossRef]

15. Zhan, X.; Zheng, T.; Gao, S. Defending ROP Attacks Using Basic Block Level Randomization. In Proceedings of the 2014 IEEE
Eighth International Conference on Software Security and Reliability-Companion, San Francisco, CA, USA, 30 June–2 July 2014;
pp. 107–112.

16. Goktas, E.; Kollenda, B.; Koppe, P.; Bosman, E.; Portokalidis, G.; Holz, T.; Bos, H.; Giuffrida, C. Position-independent Code Reuse:
On the Effectiveness of ASLR in the Absence of Information Disclosure. In Proceedings of the 2018 IEEE European Symposium
on Security and Privacy, London, UK, 24–26 April 2018; pp. 227–242.

17. Barbar, M.; Sui, Y.; Zhang, H.; Chen, S.; Xue, J. Poster: Live Path Control Flow Integrity. In Proceedings of the 2018 IEEE/ACM
40th International Conference on Software Engineering: Companion, Gothenburg, Sweden, 27 May–3 June 2018; pp. 195–196.

18. Wei, Y.; Luo, S.; Zhuge, J.; Gao, J.; Zheng, E.; Li, B.; Pan, L. ARG: Automatic ROP Chains Generation. IEEE Access 2019, 7,
120152–120163. [CrossRef]

19. Zuo, S.; Zhuang, J.; Liu, Y.; Wang, M.; Yu, Z. Hardware Based RISC-V Instruction Set Randomization. In Proceedings of the
2022 IEEE International Conference on Integrated Circuits, Technologies and Applications, Xi’an, China, 28–30 October 2022; pp.
96–97.

20. Koo, H.; Chen, Y.; Lu, L.; Kemerlis, V.; Polychronakis, M. Compiler-Assisted Code Randomization. In Proceedings of the 2018
IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–24 May 2018; pp. 461–477.

21. Park, M.; Lee, D. BGCFI: Efficient Verification in Fine-Grained Control-Flow Integrity Based on Bipartite Graph. IEEE Access 2023,
11, 4291–4305. [CrossRef]

22. Das, S.; Zhang, W.; Liu, Y. A Fine-Grained Control Flow Integrity Approach Against Runtime Memory Attacks for Embedded
Systems. IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 3193–3207. [CrossRef]

23. Zieris, P.; Horsch, J. A Leak-Resilient Dual Stack Scheme for Backward-Edge Control-Flow Integrity. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, Incheon, Republic of Korea, 4–8 June 2018; pp. 369–380.

24. Lehniger, K.; Scholze, M.; Jelonek, J.; Tabatt, P.; Aftowicz, M.; Langendorfer, P. Combination of ROP Defense Mechanisms for
Better Safety and Security in Embedded Systems. In Proceedings of the 2022 25th Euromicro Conference on Digital System
Design, Maspalomas, Spain, 31 August–2 September 2022; pp. 480–487.

25. Oh, H.; Yang, M.; Cho, Y.; Paek, Y. ActiMon: Unified JOP and ROP Detection with Active Function Lists on an SoC FPGA. IEEE
Access 2019, 7, 186517–186528. [CrossRef]

26. Suk, J.; Lee, Y.; Lee, D. SCORE: Source Code Optimization & REconstruction. IEEE Access 2020, 8, 129478–129496.
27. Hiscock, T.; Savry, O.; Goubin, L. Lightweight Software Encryption for Embedded Processors. In Proceedings of the 2017

Euromicro Conference on Digital System Design, Vienna, Austria, 30 August–1 September 2017; pp. 213–220.
28. Gueron, S. Attacks on Encrypted Memory and Constructions for Memory Protection. In Proceedings of the 2016 Workshop on

Fault Diagnosis and Tolerance in Cryptography, Santa Barbara, CA, USA, 16 August 2016; pp. 1–3.
29. Zhang, J.; Qi, B.; Qin, Z.; Qu, G. HCIC: Hardware-Assisted Control-Flow Integrity Checking. IEEE Internet Things J. 2019, 6,

458–471. [CrossRef]
30. Yang, X.; Wen, W.; Fan, M. Improving AES Core Performance via an Advanced ASBUS Protocol. ACM J. Emerg. Technol. Comput.

Syst. 2018, 14, 1–23. [CrossRef]

https://doi.org/10.1109/ACCESS.2018.2835838
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1016/j.cose.2017.03.013
https://doi.org/10.1109/ACCESS.2019.2937585
https://doi.org/10.1109/ACCESS.2023.3234184
https://doi.org/10.1109/TVLSI.2016.2548561
https://doi.org/10.1109/ACCESS.2019.2961416
https://doi.org/10.1109/JIOT.2018.2866164
https://doi.org/10.1145/3110713

Micromachines 2023, 14, 1525 23 of 23

31. Wang, W.; Wang, X.; Du, P.; Tian, Y.; Zhang, X.; Hao, Q.; Zhang, Z.; Xu, B. Embedded System Confidentiality Protection by
Cryptographic Engine Implemented with Composite Field Arithmetic. In Proceedings of the MATEC Web of Conferences,
Majorca, Spain, 14–17 July 2018; pp. 1–5.

32. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization,
Austin, TX, USA, 2 December 2001; pp. 3–14.

33. Strömbergson, J. AES Implementation. Available online: https://github.com/secworks/aes (accessed on 10 June 2023).
34. Nasahl, P.; Sultana, S.; Liljestrand, H.; Grewal, K.; LeMay, M.; Durham, D.M.; Schrammel, D.; Mangard, S. EC-CFI: Control-Flow

Integrity via Code Encryption Counteracting Fault Attacks. In Proceedings of the 2023 IEEE International Symposium on
Hardware Oriented Security and Trust, San Jose, CA, USA, 1–4 May 2023; pp. 24–35.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/secworks/aes

	Introduction
	Security Threats for This Work
	ROP Attack
	JOP Attack

	Related Works
	CFI Protection Based on Control Flow Validation
	CFI Protection Based on Program and Data Encryption

	Microarchitecture Design and Implementation
	Threat Model
	Microarchitecture Overview
	Lightweight Hardware Shadow Stack
	Runtime Data Encryption Hardware

	Experiments and Discussions
	Hardware Overhead
	Performance Overhead
	Security Analysis

	Conclusions
	References

