
Citation: Wu, X.; Wang, Z.; Ma, S.;

Chu, X.; Li, C.; Wang, W.; Jin, Y.; Wu,

D. An RDL Modeling and

Thermo-Mechanical Simulation

Method of 2.5D/3D Advanced

Package Considering the Layout

Impact Based on Machine Learning.

Micromachines 2023, 14, 1531.

https://doi.org/10.3390/

mi14081531

Academic Editor: Ion Stiharu

Received: 15 July 2023

Revised: 28 July 2023

Accepted: 28 July 2023

Published: 30 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

An RDL Modeling and Thermo-Mechanical Simulation Method
of 2.5D/3D Advanced Package Considering the Layout Impact
Based on Machine Learning
Xiaodong Wu 1, Zhizhen Wang 1, Shenglin Ma 1,* , Xianglong Chu 1, Chunlei Li 1, Wei Wang 2, Yufeng Jin 3

and Daowei Wu 4

1 Department of Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China;
wuxiaod1987@stu.xmu.edu.cn (X.W.); zhizhenwang@xmu.edu.cn (Z.W.)

2 School of Integrated Circuits, Peking University, Beijing 100871, China; w.wang@pku.edu.cn
3 School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School,

Shenzhen 518055, China; yfjin@pku.edu.cn
4 Xi’an Microelectronic Technology, Xi’an 710071, China; wudaowei1220@163.com
* Correspondence: mashenglin@xmu.edu.cn

Abstract: The decreasing-width, increasing-aspect-ratio RDL presents significant challenges to the
design for reliability (DFR) of an advanced package. Therefore, this paper proposes an ML-based
RDL modeling and simulation method. In the method, RDL was divided into blocks and subdivided
into pixels of metal percentage, and the RDL was digitalized as tensors. Then, an ANN-based
surrogate model was built and trained using a subset of tensors to predict the equivalent material
properties of each block. Lastly, all blocks were transformed into elements for simulations. For
validation, line bending simulations were conducted on an RDL, with the reaction force as an accuracy
indicator. The results show that neglecting layout impact caused critical errors as the substrate
thinned. According to the method, the reaction force error was 2.81% and the layout impact could
be accurately considered with 200 × 200 elements. For application, the TCT maximum temperature
state simulation was conducted on a CPU chip. The simulation indicated that for an advanced
package, the maximum stress was more likely to occur in RDL rather than in bumps; both RDL and
bumps were critically impacted by layouts, and RDL stress was also impacted by vias/bumps. The
proposed method precisely concerned layout impacts with few resources, presenting an opportunity
for efficient improvement.

Keywords: redistribution layer; layout impact; machine learning; thermo-mechanical simulation;
equivalent material properties

1. Introduction

Redistribution layer (RDL) is one of the most important components of advanced
packages like Chip on Wafer on Substrate (CoWoS) [1], Foveros [2], X-Cube [3] and System
on Integrated Chips (SoIC) [4,5], especially the multilayer RDL interposer-based CoWoS-
R [6], FO-PLP [7] and chiplet-based architectures [8,9]. To enable high-bandwidth signal
processing between chiplets [10], several techniques, such as dual damascene processing,
semi-additive processing (SAP) and polymer damascene processing, have been introduced.
These techniques narrow the RDL trace width/pitch to as small as two microns [11,12]
and even sub-microns [13]. To enhance the electricity transmission capacity, traces become
thicker, with an aspect ratio of up to 4.2 [14], which is very different from traditional
shell-like thin traces. Furthermore, wafer-level integrations can stack up to five metal
layers [1], with an area up to 1200 mm2 [15] or even as extensive as 2500 mm2 [1]. As
a result, RDLs in advanced packages become extremely complex in shape and behavior,
posing great challenges in accurately capturing their thermo-mechanical characteristics.
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Additionally, in advanced packages, substrate is extremely thinned to several microns or
even sub-microns [16] which are similar to or even thinner than RDL, making the RDLs
more prominent compared to other package components [17,18]. For this reason, RDLs are
playing crucial roles in package thermo-mechanical characteristics.

Integrated packages face severe thermo-mechanical risks due to the coefficient of
thermal expansion (CTE) mismatch between materials; the accelerated thermal cycling test
(TCT) [19] is an important approach for assessing their reliability. As a low-cost alternative
to testing, finite element analysis (FEA) simulation under TCT conditions has become a
significant research area for design for reliability (DFR). Balancing between efficiency and
accuracy of simulation is a critical issue in this field.

For traditional integrations, due to the thicker substrate and larger trace width/pitch,
axisymmetric FEA models can meet the efficiency and accuracy requirements for DFR.
Using a 2D axisymmetric model, Lee et al. [20], Che et al. [21] and Machani et al. [22]
simplified the RDLs into homogeneous rectangles and refined the outermost bump, then
evaluated the fatigue life of the bump through transient simulation. Using a 3D axisymmet-
ric model, Lee et al. [23] and Che et al. [24] simplified the RDL into homogeneous films and
refined the corner solder, thus assessing the reliability of stacked-chip packages. However,
advanced packaging has different structural characteristics.

For advanced packages, RDL plays a more significant role in thermo-mechanical relia-
bility. Therefore, more precise RDL modeling approaches are required for DFR of advanced
packages. Dividing the RDL and then employing material equivalization is a widely used
strategy to improve the accuracy. In this strategy, division size and equivalization method
are crucial for efficiency and accuracy. Where efficiency is concerned, RDL is divided into
large-size regions, and there are three typical material equivalization methods. The first
method, employed by Wang et al. [25], involves calculating the isotropic materials based
on the copper ratio within each region. The second method, used by McCaslin et al. [26], is
determining the anisotropic equivalent material properties of regions consisting of simple
shape traces through composite material mechanics. The third one, utilized by Valdevit
et al. [27], is the morphology-based approach, where regions are categorized into “lines”,
“vias” or “web” types, and then specific mathematical models are developed to compute the
material properties for each type of region. Where accuracy is concerned, RDL is divided
into small-size blocks, and there are also three typical material equivalization methods.
The first method, employed by Lien et al. [28], involves calculating the isotropic equivalent
material properties based on the metal percentage within each block. The second method,
used by Lee et al. [29], focuses on calculating the anisotropic material properties and the
equivalent reference temperature of blocks using composite material mechanics. The third
one, introduced by Gibson [30] and Lee et al. [29], is a simulation-based approach that
calculates the anisotropic equivalent material properties of blocks containing complex
traces. To achieve higher accuracy, Yaddanapudi [31] divided the RDL into extremely
small-size pixels and directly defined each pixel as either metal or dielectric; a high-fidelity
structural response of RDL was achieved by consuming a large amount of solving resources.
In general, existing work indicates that there is a trade-off between division sizes and the
material equivalization method. The key to balancing efficiency and accuracy lies in obtain-
ing the anisotropic equivalent material properties quickly and accurately under a larger
division size.

Recently, machine learning (ML) has shown the capability of extracting interpretable
models from scientific data automatically [32]; it has been increasingly employed in the
design and control of robots [33], actuators [34] and pumps [35]. Material equivalization of
composite materials in 3D and 2D structures is a major aspect of ML research. Regarding
3D, Dai et al. [36] used feature matrixes to digitally represent the lattice orientations of
3D structures, and then created a graph-Artificial Neural Network (ANN) to predict the
structural performance. Regarding 2D, Liu et al. [37], Ye et al. [38] and Gong et al. [39]
used a high-resolution grayscale matrix to digitalize the planar structures, then constructed
convolutional neural networks (CNNs) to quickly predict the equivalent mechanical prop-
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erties. Due to the accurate and fast predictive capabilities of models created based on
ML, it has been introduced into the modeling and simulation of integrated packages. For
example, Selvanayagam et al. [40,41] partitioned an 8-RDLs interposer into 3 × 3 regions,
then established surrogate models that linked the copper ratio in each layer within each
region to the warpage in TCT condition, ultimately optimizing the global package warpage.

In this work, we applied ML to material equivalization and developed an RDL mod-
eling and simulation method for DFR of advanced packages. In this method, an RDL
was divided into equal-size blocks. To describe the layout within each block, we further
subdivided each block into pixels and represented each pixel using the metal percentage.
Consequently, each block could be represented as a tensor composed of pixel metal per-
centages, and the entire RDL was digitalized as a collection of such block tensors. An ANN
was constructed using either fully connected neural networks (FCNNs) or convolutional
neural networks (CNNs) to model the relationship between the block tensor and the corre-
sponding equivalent material properties. Subsequently, the ANN was trained using a small
subset of tensors with the equivalent material properties obtained through finite element
analysis (FEA) as labels, and then the material surrogate model was constructed. Lastly, all
blocks were transformed into FEA elements and assigned the material properties predicted
by the model, completing the modeling and simulations of the RDL.

To validate the efficiency and accuracy of the proposed method, line bending simula-
tions were conducted for a 21.6 × 21.6 mm2 RDL. The detailed fine mesh model served
as the benchmark, with the reaction force being regarded as the accuracy indicator. The
results show that as the substrate thickness reduced, the reaction force error of the tradi-
tional method that neglected layout impact increased sharply, indicating that critical layout
impact must be considered in the simulation of the advanced package. When the proposed
method was used with a substrate thickness of 50 µm, the reaction force error was 2.81%.
The layout impact could be accurately estimated utilizing only 200 × 200 elements; the
number of elements was only 1/15 of the traditional approach.

As an application case, a simulation was introduced to investigate the thermo-mechanical
response of a 2.5D integrated CPU chip at the maximum temperature state in TCT. The
results indicate that for advanced packages, the maximum stress was more likely to occur
in the RDL, which is different from the traditional integrations, where the maximum
stress occurs in the bumps. It also reveals that the stress of both the RDL and bumps is
significantly impacted by the layout. Moreover, it is observed that the stress in RDL is
particularly impacted by vias and bumps in adjacent layers.

The method precisely concerns these layout-related impacts with minimal resources
and time, presenting an opportunity to improve the efficiency of advanced package DFR.

2. Methods

The general workflow of the proposed modeling method is shown in Figure 1 and
consists of the following steps:

Step 1: Two-level RDL digitalization. This step consists of global and local discretiza-
tion. In the global level, the package-level RDL pattern is divided into equal-size RDL
blocks containing part of the traces, and there are Qx blocks along the X direction and
Qy blocks along the Y direction. To capture the layout feature within blocks, in the local
level, each RDL block is divided into pixels with a uniform size. The subdivision results
in PQx pixels along the X direction and PQy pixels along Y; the pixel value is defined as
the metal percentage within the pixel region. Consequently, the RDL block can be repre-
sented by a PQx × PQy tensor, and the package-level RDL can be digitally represented by
Qx × Qy tensors.

Step 2: ANN Training dataset preparing. This step prepares the ANN training dataset
by randomly selecting a small subset of RDL blocks. The dataset consists of input ten-
sors and labels representing the anisotropic equivalent material properties of each block
obtained through 3D FEA simulations [16], including Young’s modulus, Poisson’s ratios,
shear modulus, thermal conductivities and CTEs in all directions.
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Step 3: ANN-based surrogate model establishing. This step establishes an ANN-based
material surrogate model. The input data of the surrogate model include the RDL block
tensor and the output data include all equivalent properties. The surrogate model employs
ANN and is trained with the dataset prepared in Step 2. Once established, the ANN
eliminates the need for repeating Steps 2 and 3; it would be highly advantageous for the
repeated design iteration process.

Step 4: Equivalent properties predicting. All equivalent properties for all the RDL blocks
generated in Step 1 are predicted with the surrogate model established in Steps 2 and 3.

Step 5: Global FEA model building. All RDL blocks are transformed into 3D hexa-
hedral solid elements to construct the global RDL FEA model and assigned the material
properties predicted in Step 4. Each element is built by sweeping the geometry face of the
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RDL block, with the sweep length equal to the RDL thickness; therefore, all elements are
the same size. The model consists of Qx × Qy elements encompassing the entire RDL and
can also serve as a part of the package-level FEA model.

As the method is implemented, a series of programs are established, including the
ANN implemented with Pytorch, the main framework developed in Python and the FEA
simulator powered by ANSYS 18.2. The RDL block creating processes are implemented
with C++. In addition, the C# developed program is used as the graphical post-processor.

2.1. ANN Architectures

Activation function. The rectified linear unit (ReLU) is selected as the activation
function, shown by (1), (2):

f (x) = max(0, x) (1)

f ′(x) =
{

1, x ≥ 0
0, x < 0

(2)

Loss Function. Cross-entropy loss is selected as the loss function, shown by (3):

Loss = −
n

∑
i=1

wiyi log ŷi (3)

where n is the number of samples, yi represents the true value of the i-th sample, ŷi repre-
sents the predicted value of the i-th sample and wi represents the weight of the i-th sample.
The loss for a batch prediction is shown by (4):

Loss = − 1
batch ∑batch

j=1 ∑n
i=1 wijyij log ŷij (4)

where batch is the number of predicting procedures for one predicted batch. For the
j-th predicting procedure of the batch, yij represents the true value of the i-th sample,
ŷij represents the predicted value of the i-th sample and wi represents the weight of the
i-th sample.

Optimizer. The stochastic gradient descent (SGD) was adopted to optimize the neural
network, and momentum was considered during the optimization process. Learning
rate and momentum parameters were adjusted to fine-tune the optimization process, as
indicated in Equations (5) and (6):

vt= m × vt − 1 − lr × g (5)

wt= wt − 1+vt (6)

where t is the current iteration step number, t − 1 is the number of the previous step,
lr represents the learning rate, g is the gradient and m means the momentum. vt and wt
represent the velocity and weight in the current iteration step, respectively. vt−1 and wt−1
represent the velocity and weight in the previous step, respectively.

ANN networks. The full-connected neural network (FCNN) and convolution neural
network (CNN) are created. As shown in Figure 2, the FCNN includes an input layer,
output layer and several hidden layers. The parameters of the input layer are represented
by the vector shown by (7) and the size of the input vector is shown by (8):

I = [I [0]1 , I[0]2 , . . . , I[0]p , . . . , I[0]Qin

]
(7)

Qin= PQx × PQy (8)

where I[0]p is the metal percentage of the p-th pixel, Qin is the vector size which is equal to
the number of pixels in a single RDL block and PQx and PQy represent the number of RDL
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block pixels along the X and Y directions, respectively. The output vector of the FCNN
includes all 15 anisotropic equivalent material properties of the RDL block, shown by (9):

O = [E x, Ey, Ez, µxy, µxz, µyz, Gxy, Gxz, Gyz, kx, ky, kz, Ax, Ay, Az

]
(9)
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The hidden layer can be represented by vector as (10):

A[n]= [A [n]
1 , A[n]

2 , . . . , A[n]
i , . . . , A[n]

Hn

]
(10)

where A[n]
i is the value of the i-th node and Qn is the number of nodes of the n-th hid-

den layer.
Shown in Figure 3, the CNN consists of the convolution network and the full-connected

network; the input parameter is the tensor with a size of [PQx, PQy, 1], and the output vector
is the same as (7). The convolution network contains convolution layers and max pooling
layers, and the tensor is transformed through layers. The tensor size is [Cnx, Cny, Cnz] after
the n-th convolution layer and [Pnx, Pny, Pnz] after the n-th max pooling layer. The output
tensor of the convolution network can be compressed into a vector of size QLin.

QLin= Pnx × Pny × Pnz (11)

where Pnx, Pny and Pnz are the output tensor size in the X, Y and Z directions, respectively.

2.2. Training Dataset Augmentation

To augment the training dataset of blocks, the geometric symmetry and data transfor-
mations were employed. The initial block with anisotropic properties (Ex = Ex0, Ey = Ey0) is
shown in Figure 4a, and it can be rotated by 90◦, 180◦ and 270◦, as indicated in Figure 4b–d,
respectively. When the angle of rotation is 90◦ or 270◦, the anisotropic properties are
transformed to Ex = Ey0, Ey = Ex0. The initial block and its rotated versions can also be
flipped in the Y direction, as shown in Figure 4e–h, while keeping the same anisotropic
properties. Eight unique blocks can be generated from the initial one without requiring
additional FEA solutions.
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3. Result and Discussions
3.1. Method Validation

The two-layer model containing RDL and a silicon substrate is shown and established
for validation in Figure 5. The model consists of the substrate layer and the RDL (the M1
layer); the materials involved in the simulations are listed in Table 1, and all materials are
assumed to be linear elastic. The substrate is made up of Si; its thickness (TB) is set as a
variable parameter, with a range of values from 20 µm to 500 µm. The RDL consists of Cu
and PI; the thickness (TR) is 10 µm. The layout pattern of the M1 layer is shown in Figure 6
and the domain direction of traces is the X direction.
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Table 1. Material properties used in simulations.

Name Si [42] Cu [43] PI [44]

CTE 2.6 × 10−6 1.64 × 10−5 2 × 10−5

Young’s Modulus (MPa) 1.31 × 10−5 1.30 × 10−5 2.5 × 10−3

Poisson Ratio 0.28 0.34 0.34
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Figure 6. Layout pattern of M1.

The validation of the adaptability to the mechanical loads is based on the parallel trace
bending load case (CaseP) and vertical trace bending load case (CaseV) shown in Figure 5.
In the CaseP, nodes on the X = 0 face were constrained in the X, Y and Z directions, and
nodes on the top line of the X = Length face were set at Z = −0.5 mm. In the CaseV, the
constraints were set on the Y = 0 face, and the displacement load was set on the top line of
the Y = Width face.

As the benchmark, a detailed RDL fine mesh model consisting of 640,365 nodes and
606,482 elements was established with a substrate thickness of 50 µm. The solving process
cost 176 s. The stress distributions are depicted in Figure 7; stress concentrations can be
observed at discontinued positions, indicating the critical impact from the layout.
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The sums of the Z-direction reaction forces of all nodes applied and the displacement
loads in CaseP and CaseV are FRDP: −7.174 × 10−3 N and FRDV: −6.464 × 10−3 N,
respectively. The reaction force errors serve as accuracy indicators, as shown in (12).{

ErrorP = |(FR P − FRDP) / FRDP| × 100%
ErrorV = |(FR V − FRDV) / FRDV | × 100%

(12)

where ErrorP and ErrorV are reaction force errors for CaseP and CaseV, respectively. FRP
and FRV are reaction forces to be evaluated for CaseP and CaseV, respectively.

For the proposed method, considering the efficiency and accuracy, we set the global
mesh divisions at Qx = Qy = Q = 200 and the local pixel division at PQx = PQy = PQ = 15, as
well as building 40,000 RDL blocks. Qt blocks were randomly selected as the ANN training
dataset, the default value of Qt was 1000, and the testing dataset contained all 40,000 blocks.
An FCNN with two hidden layers was employed for the ML-based method. As depicted
in Figure 2, the first hidden layer contained 400 nodes (H1 = 400), while the second one
had 300 nodes (H2 = 300). The learning rate was set at lr = 0.02, the momentum was set
at m = 0.5 and the training epoch was set at q = 250. The training and testing processes
were run using a GPU of NVidia RTX 3070Ti; the average predicting time of all blocks was
3.652 s. The calculated material properties are shown in Figure 8 and the loss variation is
shown in Figure 9.
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The calculated material properties indicate the material properties predicted by the
ML-based method were very close to those obtained with the simulation-based method,
which demonstrates the accuracy of the ANN-based surrogate model. Additionally, there
was a notable difference between Young’s modulus along the trace direction (Ex) and along
the perpendicular direction (Ey). Moreover, the reduction in Ey is obvious within the gap
area between traces, indicating the critical impact of RDL layout on the mechanical behavior
of RDL.

The stress distribution shown in Figure 10 is consistent with the result of the detailed
fine mesh model presented in Figure 7. Additionally, the reaction force errors for CaseP
and CaseV are 1.72% and 2.81%, respectively, validating the precision of this method.
Furthermore, the proposed approach only requires 200 × 200 FEA elements, whereas the
detailed fine mesh model consists of 15 times more elements. This demonstrates that the
approach contributes significant resource savings in simulation.
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Furthermore, to verify the accuracy of thermo-mechanical simulations, a parallel trace
warpage case (CasePT) and vertical trace warpage case (CaseVT) were created, as shown
in Figure 11. Except for the 150 ◦C temperature, nodes on the X = 0 and Y = 0 faces were
constrained in the X, Y and Z directions in the CasePT and CaseVT cases, respectively.
Figures 12 and 13 show the Z direction displacement and von Mises stress distributions of
the cases; they present almost identical deformation and stress distributions as the detailed
fine mesh model.
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ods, on seven substrate thickness values: 20, 50, 100, 200, 300, 400 and 500 µm. Figure 14 
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Figure 13. Result for the vertical trace warpage case (CaseVT). (a) Z-direction displacement distri-
bution of the proposed ML-based method, (b) Z-direction displacement distribution of the detailed
fine mesh model, (c) von Mises stress distribution of the proposed ML-based method, (d) von Mises
stress distribution of the detailed fine mesh model.
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3.2. Key Factors Influence

The influence of the substrate thickness, global mesh division, training dataset size,
and ANN architecture on the prediction process was investigated.

The influence of the substrate thickness.
Three simulation methods were performed, including the traditional layout-neglecting

block-based method, the simulation-based method and the proposed ML-based methods,
on seven substrate thickness values: 20, 50, 100, 200, 300, 400 and 500 µm. Figure 14
summarizes the reaction force errors of each case, demonstrating the fact that as the
substrate thickness decreased, the impact of RDL layout became more and more critical;
neglecting the layout features resulted in substantial errors.
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Figure 14. Reaction force errors of CaseP and CaseV variation by substrate thickness for different
modeling methods when global mesh division Q = 200.

The influence of the global mesh division.
Two more global division values of 100 and 300 were conducted to investigate the

influence of the global division; the reaction force errors of different cases are summarized
in Figure 15. The reaction force error of CaseP was 2.255% when Q = 100; it fell to 1.149%
when Q = 200 and only 0.076% when Q = 300, illustrating that larger global mesh divisions
can improve solution accuracy. When Q increased from 100 to 300, the solution time
increased by a factor of 11.5 and the memory occupation increased by a factor of 6.59. This
suggests that a higher global mesh division can achieve lower error, but it also increases
the solution time and resource consumption.
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Figure 16 depicts stress distributions at Q = 100 and Q = 300; the stress distribution
shown in Figure 16a is similar to those shown in Figures 7 and 10, indicating that the
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proposed method can accurately capture the layout impact shown in Figure 6 using only
100 × 100 elements. Moreover, larger Q values can capture more accurate pattern features,
but more solving time and resources are needed. Regarding the block-based method, as
shown in Figure 17, an obvious stress inhomogeneity was only captured until Q ≥ 600.
Moreover, even when Q = 800, Figure 18 demonstrates that the accuracy could not match
that of the proposed method. However, simulation costs became exorbitant.
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The influence of the training dataset size.
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ANNs were established using ten different dataset sizes ranging from 500 to 5000.
Figure 19 summarizes the loss and training time. The prediction loss curves indicate that
the prediction loss decreased as the size of the training dataset increased, but the effect of
dataset size diminished. When the dataset size exceeded 2000, curves of prediction losses
were nearly parallel to the X-axis, suggesting that even if the dataset size further increased,
the prediction accuracy would not be improved. The prediction loss curves using the
dataset augmentation were lower than the curves without dataset augmentation, indicating
that the proposed dataset augmentation algorithm can improve the prediction accuracy.
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The equivalent material properties predicted with the dataset augmentation algorithm
are shown in Figure 20. The results indicate a heightened similarity to the simulation-based
method results depicted in Figure 9.

The influence of the FCNN architectures.
Three different types of FCNNs with two hidden layers and varying numbers of

hidden nodes were established. The training and prediction losses are summarized in
Figure 21a. The prediction loss curves with more hidden layer nodes were lower, indicating
that increasing hidden layer nodes resulted in improved prediction accuracy. However, the
loss reduction in H1 from 800 to 1200 was smaller than that from 400 to 800, indicating the
effect diminished as nodes increased. Additionally, Figure 21b illustrates the loss curves of
the FCNNs with three hidden layers, showing that additional hidden layers could improve
accuracy, but it required more training time.

Application of the CNN architectures.
Figure 22 summarizes the losses and training time for “1 CNN + 1 FCNN”, “1 CNN

+ 2 FCNNs” and “2 CNNs + 2 FCNNs”. The results demonstrate that while CNNs had a
shorter training time, they exhibited significantly larger losses across all three architectures.
The intermediate tensors during convolution and max pooling operations are shown in
Figure 23, which indicates the fact that the key features of the initial block tensor were
eliminated after those operations. The undesirable defeaturing has a negative impact on
the prediction accuracy.

3.3. Large Area 2.5D-Integrated CPU Chip Thermo-Mechanical Simulation

As an application, a 2.5D-integrated CPU chip was constructed, as shown in Figure 24.
All three RDLs were modeled using the proposed method; the division parameters were
Q = 200, PQ = 15. The training dataset size of Qt = 1000 was utilized with data aug-
mentation. Predictions were made using FCNNs with two hidden layers consisting of
400 and 300 nodes, respectively. In the package-level FEA model, the maximum element
size was 0.12 mm; it contained 1,072,658 nodes and 625,648 elements.
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Figure 24. Geometry model of the 2.5D-integrated CPU chip as an application.

The equivalent Young’s module distributions of the M1B and M2 layers are shown in
Figures 25 and 26, respectively. A good consistency with the simulation-based method is
shown. The equivalent material property prediction times for the M1B and M2 layers are
only 2.8211 s and 2.833 s, respectively.
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backgrounded by the M1 layout pattern and the vias and bumps in adjacent layers.

Firstly, it is found from Figure 28a that the maximum stress occurs in the M1 layer
rather than bumps; this indicates that for 2.5D advanced packages, as the substrate thickness
decreases and the trace width/pitch reduces, the thermo-mechanical risk of RDL becomes
more significant. The conclusion for traditional integrations—that the maximum risk
always occurs at bumps—is no longer accurate.

Secondly, Figure 28b,c demonstrate the fact that the stress distribution of RDL is
critically impacted by layout; neglecting the layout impact would bring in critical errors,
and the proposed method can accurately capture the impact.

Furthermore, it can also be found from Figure 28a that the location and magnitude of
the maximum stress of bumps and TSVs are influenced by the layouts and surrounding
structures, and it is different from the conventional understanding that the outermost
bumps are the most vulnerable. Therefore, the impact of the vias and bumps layouts
should also be considered in the simulation.

Finally, the detailed view of the maximum stress region of M1 layer in Figure 28d
illustrates that the stress on RDL is not only influenced by the RDL layout but also critically
impacted by the vias and bumps within adjacent layers.

To investigate the reasons behind the local influence of RDL geometric features, adja-
cent vias and bumps on stress distribution, five probe nodes were set near the maximum
stress position in the M1 layer, as shown in Figure 28d. The stress components of each
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probe node are shown in Table 2, which provides several insights. Firstly, for nodes N1
and N5, located under the ubump, the shear and normal stresses in the Z-direction were
significantly larger than those of other probe nodes. This highlights the substantial impact
of the adjacent vias and bumps on the Z stress components. Secondly, node N1, positioned
far from the dielectric region where the trace area was continuous, exhibited large normal
stress in the X and Y directions. The combination of in-plan stress and Z stress components
caused a significant increase in the local stress. Furthermore, node N3, located within the
local dielectric region, had much smaller normal stress in the X and Y directions than N1,
suggesting that the discontinuity of the trace area resulted in a substantial reduction in
the in-plane normal stress. Finally, node N5, situated beside the long dielectric region in
the X-direction, had significantly smaller Y-direction normal stress than N4, indicating the
substantial influence of the directional dielectric region on the stress perpendicular to the
region’s direction.

Table 2. Stress components of probe nodes in M1 layer.

Probe
Nodes

X Normal
Stress
(MPa)

Y Normal
Stress
(MPa)

Z Normal
Stress
(MPa)

XY Shear
Stress
(MPa)

YZ Shear
Stress
(MPa)

XZ Shear
Stress
(MPa)

Location

N1 −392.25 −394.70 101.78 −1.31 −0.66 −8.05 Metal under ubump
N2 −250.24 −230.09 1.77 0.10 −3.08 3.39 Metal beside small dielectric region
N3 −109.31 −103.23 32.40 0.18 −1.74 1.36 Inside local dielectric region
N4 −180.49 −117.92 −3.94 0.40 −6.37 1.17 Metal beside local dielectric region

N5 −188.31 −46.89 84.21 0.18 −5.46 0.97 Metal beside dielectric region in X
direction, under ubump

The proposed method can obtain the structure response of RDL concerning the layout
impact. It is useful not only for quick identification under high-level stress but also for
providing reliable loads and boundary conditions for fine mesh assessments. It enables
efficient DFR within the iterative process of advanced package design.

4. Conclusions

This paper proposes a machine learning (ML)-based RDL modeling and simulation
method for DFR of 2.5D/3D advanced packages, taking the critical layout impact into
consideration. In the method, RDL was divided into blocks and subdivided into pixels
of metal percentage, such that the RDL could be digitalized as metal percentage tensors.
Consequently, an ANN-based surrogate model was built and trained with a small subset
of tensors to predict the equivalent material properties of each block. Lastly, all blocks
were transformed into elements to build an FEA model for simulations. For the validation
of accuracy, line bending simulations were conducted for a 21.6 × 21.6 mm2 RDL using
the proposed method, where the reaction force was compared with a benchmark result
obtained with detailed fine mesh simulation. The results show that through the proposed
method, the reaction force error can be as low as 2.81% and the layout impact can be
accurately considered with 200 × 200 elements, just 1/15 of the traditional approach. The
results also show that if the layout impact is neglected, the reaction force error will increase
sharply as the substrate thins. Therefore, the impact must be considered in advanced
package simulation. As an application case, a simulation was introduced to investigate the
thermo-mechanical response of a 2.5D-integrated CPU chip at the maximum temperature
state in TCT. The results indicate that for advanced packages, the maximum stress is more
likely to occur in the RDL, which is different from the traditional integrations, where the
maximum stress occurs in the bumps. It also reveals that the stress factors of both the
RDL and bumps are significantly impacted by the layout. Moreover, it is observed that the
stress in RDL is particularly impacted by vias and bumps in adjacent layers. The proposed
method precisely concerns the layout-related impacts with minimal resources, presenting
an opportunity to enhance the efficiency of advanced package DFR.



Micromachines 2023, 14, 1531 20 of 22

Author Contributions: Conceptualization, X.W. and S.M.; methodology, X.W.; software, X.W.; val-
idation, X.W. and Z.W.; investigation, X.W.; resources, S.M.; writing—original draft preparation,
X.W.; writing—review and editing, X.W., S.M., Z.W., X.C., C.L., W.W., Y.J. and D.W.; visualization,
X.W.; project administration, S.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, P.K.; Lu, C.Y.; Wei, W.H.; Chiu, C.; Ting, K.C.; Hu, C.; Tsai, C.H.; Hou, S.Y.; Chiou, W.C.; Wang, C.T.; et al. Wafer Level

System Integration of the Fifth Generation CoWoS®-S with High Performance Si Interposer at 2500 Mm2. In Proceedings of the
2021 IEEE 71st Electronic Components and Technology Conference (ECTC), Virtual, 1 June–4 July 2021; IEEE: San Diego, CA, USA,
2021; pp. 101–104.

2. Ingerly, D.B.; Enamul, K.; Gomes, W.; Jones, D.; Kolluru, K.C.; Kandas, A.; Kim, G.-S.; Ma, H.; Pantuso, D.; Petersburg, C.F.;
et al. Foveros: 3D Integration and the Use of Face-to-Face Chip Stacking for Logic Devices. In Proceedings of the 2019 IEEE
International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 9–11 December 2019; IEEE: San Francisco, CA, USA,
December 2019; pp. 19.6.1–19.6.4.

3. SAMSUNG, X-Cube Technology. Available online: https://semiconductor.samsung.com/us/foundry/advanced-package/
(accessed on 28 June 2023).

4. Yu, D.C.H.; Wang, C.-T.; Lin, C.-C.; Lu, C.-H.; Wu, G.; Huang, C.-Y.; Chen, W.-T.; Ku, T.; Yee, K.-C.; Tsai, C.-H. SoIC_H Technology
for Heterogeneous System Integration. IEEE Trans. Electron. Devices 2022, 69, 7167–7172. [CrossRef]

5. TSMC-SoIC. Available online: https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/SoIC.htm#SoIC_CoW (ac-
cessed on 28 June 2023).

6. Lin, M.L.; Liu, M.S.; Chen, H.W.; Chen, S.M.; Yew, M.C.; Chen, C.S.; Jeng, S.-P. Organic Interposer CoWoS-R + (plus) Technology.
In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31
May–3 June 2022; IEEE: San Diego, CA, USA, May 2022; pp. 1–6.

7. Kim, H.; Co, S.E. Advanced Fan-Out Panel Level Package (FO-PLP) Development for High-End Mobile Application. In
Proceedings of the 2023 IEEE 73st Electronic Components and Technology Conference (ECTC), Virtual, 30 May–2 June 2023; IEEE:
Orlando, FL, USA, June 2023; pp. 2377–5726.

8. Ahmad, M.; DeLaCruz, J.; Ramamurthy, A. Heterogeneous Integration of Chiplets: Cost and Yield Tradeoff Analysis. In
Proceedings of the 2022 23rd International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in
Microelectronics and Microsystems (EuroSimE), St Julian, Malta, 25–27 April 2022; IEEE: St Julian, Malta, April 2022; pp. 1–9.

9. Suggs, D.; Subramony, M.; Bouvier, D. The AMD “Zen 2” Processor; IEEE Micro: Los Alamitos, CA, UDA, 2020; Volume 40,
pp. 45–52. [CrossRef]

10. High Bandwidth Memory (HBM) DRAM. Available online: https://www.jedec.org/standards-documents/docs/jesd235a
(accessed on 28 June 2023).

11. Kudo, H.; Takano, T.; Tanaka, M.; Mawatari, H.; Kitayama, D.; Tai, T.; Tsunoda, T.; Kuramochi, S. Panel-Based Large-Scale RDL
Interposer Fabricated Using 2-Mm-Pitch Semi-Additive Process for Chiplet-Based Integration. In Proceedings of the 2022 IEEE
72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; IEEE: San Diego,
CA, USA, May 2022; pp. 836–844.

12. Choi, J.; Jin, J.; Kang, G.; Hwang, H.; Kim, B.; Yun, H.; Park, J.; Lee, C.; Kang, U.-B.; Lee, J. Novel Approach to Highly Robust Fine
Pitch RDL Process. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), Virtual, 1
June–4 July 2021; IEEE: San Diego, CA, USA, June 2021; pp. 2246–2251.

13. Nimbalkar, P.; Bhaskar, P.; Blancher, C.; Kathaperumal, M.; Swaminathan, M.; Tummala, R. Novel Zero Side-Etch Process for
<1µm Package Redistribution Layers. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference
(ECTC), San Diego, CA, USA, 31 May–3 June 2022; IEEE: San Diego, CA, USA, May 2022; pp. 2168–2173.

14. Takano, T.; Kudo, H.; Tanaka, M.; Akazawa, M. Submicron-Scale Cu RDL Pattering Based on Semi-Additive Process for
Heterogeneous Integration. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC),
Las Vegas, NV, USA, 28–31 May 2019; IEEE: Las Vegas, NV, USA, May 2019; pp. 94–100.

15. Hou, S.Y.; Chen, W.C.; Hu, C.; Chiu, C.; Ting, K.C.; Lin, T.S.; Wei, W.H.; Chiou, W.C.; Lin, V.J.C.; Chang, V.C.Y.; et al. Wafer-Level
Integration of an Advanced Logic-Memory System Through the Second-Generation CoWoS Technology. IEEE Trans. Electron.
Devices 2017, 64, 4071–4077. [CrossRef]

https://semiconductor.samsung.com/us/foundry/advanced-package/
https://doi.org/10.1109/TED.2022.3205144
https://3dfabric.tsmc.com/english/dedicatedFoundry/technology/SoIC.htm#SoIC_CoW
https://doi.org/10.1109/MM.2020.2974217
https://www.jedec.org/standards-documents/docs/jesd235a
https://doi.org/10.1109/TED.2017.2737644


Micromachines 2023, 14, 1531 21 of 22

16. Jourdain, A.; Schleicher, F.; De Vos, J.; Stucchi, M.; Chery, E.; Miller, A.; Beyer, G.; Van der Plas, G.; Walsby, E.; Roberts, K.; et al.
Extreme Wafer Thinning and Nano-TSV Processing for 3D Heterogeneous Integration. In Proceedings of the 2020 IEEE 70th
Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; IEEE: Orlando, FL, USA, June
2020; pp. 42–48.

17. Serbulova, K.; Chen, S.-H.; Hellings, G.; Hiblot, G.; Veloso, A.; Jourdain, A.; De Boeck, J.; Groeseneken, G.; Horiguchi, N. Impact
of Sub-Mm Wafer Thinning on Latch-up Risk in STCO Scaling Era. In Proceedings of the 2021 43rd Annual EOS/ESD Symposium
(EOS/ESD), Tucson, AZ, USA, 26 September–1 October 2021; IEEE: Tucson, AZ, USA, September 2021; pp. 1–6.

18. Pham, V.-L.; Wang, H.; Xu, J.; Wang, J.; Park, S.; Singh, C. A Study of Substrate Models and Its Effect On Package Warpage
Prediction. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV,
USA, 28–31 May 2019; IEEE: Las Vegas, NV, USA, May 2019; pp. 1130–1139.

19. JESD22-A104C; Temperature Cycling. JEDEC: Arlington County, VA, USA, 2005.
20. Lee, C.-C.; Lin, Y.-M.; Liu, H.-C.; Syu, J.-Y.; Huang, Y.-C.; Chang, T.-C. Reliability Evaluation of Ultra Thin 3D-IC Package under

the Coupling Load Effects of the Manufacturing Process and Temperature Cycling Test. Microelectron. Eng. 2021, 244–246, 111572.
[CrossRef]

21. Che, F.X.; Lin, J.-K.; Au, K.Y.; Hsiao, H.-Y.; Zhang, X. Stress Analysis and Design Optimization for Low-k Chip with Cu Pillar
Interconnection. IEEE Trans. Compon. Packag. Manufact. Technol. 2015, 5, 1273–1283. [CrossRef]

22. Machani, K.V.; Kuechenmeister, F.; Breuer, D.; Klewer, C.; Cho, J.K.; Young-Fisher, K. Chip Package Interaction (CPI) Risk
Assessment of 22FDX® Wafer Level Chip Scale Package (WLCSP) Using 2D Finite Element Analysis Modeling. In Proceedings
of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; IEEE:
Orlando, FL, USA, June 2020; pp. 1100–1105.

23. Lee, C.-C.; Kao, K.-S.; Liu, H.-C.; Hsieh, C.-P.; Chang, T.-C. Micro Solder Joint Reliability and Warpage Investigations of Extremely
Thin Double-Layered Stacked-Chip Packaging. J. Electron. Packag. 2022, 144, 011001. [CrossRef]

24. Che, F.X.; Pang, J.H.L. Fatigue Reliability Analysis of Sn–Ag–Cu Solder Joints Subject to Thermal Cycling. IEEE Trans. Device
Mater. Relib. 2013, 13, 36–49. [CrossRef]

25. Wang, M.; Wells, B. Substrate Trace Modeling for Package Warpage Simulation. In Proceedings of the 2016 IEEE 66th Electronic
Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; IEEE: Las Vegas, NV, USA, May
2016; pp. 516–523.

26. McCaslin, L.O.; Yoon, S.; Kim, H.; Sitaraman, S.K. Methodology for Modeling Substrate Warpage Using Copper Trace Pattern
Implementation. IEEE Trans. Adv. Packag. 2009, 32, 740–745. [CrossRef]

27. Valdevit, L.; Khanna, V.; Sharma, A.; Sri-Jayantha, S.; Questad, D.; Sikka, K. Organic Substrates for Flip-Chip Design: A
Thermo-Mechanical Model That Accounts for Heterogeneity and Anisotropy. Microelectron. Reliab. 2008, 48, 245–260. [CrossRef]

28. Lien, C.-Y.; Chuang, Y.-C.; Yao, Y.; Charn, E.; Chen, E. Block-Based Finite Element Modeling, Simulation, and Optimization of
the Warpage of Embedded Trace Substrate. In Proceedings of the 2018 IEEE 20th Electronics Packaging Technology Conference
(EPTC), Singapore, 4–7 December 2018; IEEE: Singapore, December 2018; pp. 802–806.

29. Lee, C.-C.; Wang, C.-W.; Chen, C.-Y. Comparison of Mechanical Modeling to Warpage Estimation of RDL-First Fan-Out Panel-
Level Packaging. IEEE Trans. Compon., Packag. Manufact. Technol. 2022, 12, 1100–1108. [CrossRef]

30. Gibson, R.F.; Ganapathy, V.; Jardine, A.K.S.; Tsang, A.H.C.; Thulukkanam, K.; Karnopp, D. Principles of Composite Material
Mechanics, 4th ed.; CRC Press: Boca Raton, FL, USA, 2017.

31. Yaddanapudi, V.K.; Krishnaswamy, S.; Rath, R.; Gandhi, R. Validation of New Approach of Modelling Traces by Mapping
Mechanical Properties for a Printed Circuit Board Mechanical Analysis. In Proceedings of the 2015 IEEE 17th Electronics
Packaging and Technology Conference (EPTC), Singapore, 2–4 December 2015; IEEE: Singapore, December 2015; pp. 1–6.

32. Lee, K.; Nam, S.; Ji, H.; Choi, J.; Jin, J.-E.; Kim, Y.; Na, J.; Ryu, M.-Y.; Cho, Y.-H.; Lee, H.; et al. Multiple Machine Learning
Approach to Characterize Two-Dimensional Nanoelectronic Devices via Featurization of Charge Fluctuation. Npj 2D Mater. Appl.
2021, 5, 4. [CrossRef]

33. Mao, Z.; Asai, Y.; Yamanoi, A.; Seki, Y.; Wiranata, A.; Minaminosono, A. Fluidic Rolling Robot Using Voltage-Driven Oscillating
Liquid. Smart Mater. Struct. 2022, 31, 105006. [CrossRef]

34. Peng, Y.; Yamaguchi, H.; Funabora, Y.; Doki, S. Modeling Fabric-Type Actuator Using Point Clouds by Deep Learning. IEEE
Access 2022, 10, 94363–94375. [CrossRef]

35. Mao, Z.; Peng, Y.; Hu, C.; Ding, R.; Yamada, Y.; Maeda, S. Soft Computing-Based Predictive Modeling of Flexible Electrohydrody-
namic Pumps. Biomim. Intell. Robot. 2023, 3, 100114. [CrossRef]

36. Dai, M.; Demirel, M.F.; Liang, Y.; Hu, J.-M. Graph Neural Networks for an Accurate and Interpretable Prediction of the Properties
of Polycrystalline Materials. Npj Comput. Mater. 2021, 7, 103. [CrossRef]

37. Liu, Q.; Gao, Y.; Xu, B. Transferable, Deep-Learning-Driven Fast Prediction and Design of Thermal Transport in Mechanically
Stretched Graphene Flakes. ACS Nano 2021, 15, 16597–16606. [CrossRef] [PubMed]

38. Ye, S.; Huang, W.-Z.; Li, M.; Feng, X.-Q. Deep Learning Method for Determining the Surface Elastic Moduli of Microstructured
Solids. Extrem. Mech. Lett. 2021, 44, 101226. [CrossRef]

39. Gong, Z.; Xu, Z.; Hu, J.; Yan, B.; Ding, X.; Sun, J.; Zhang, P.; Deng, J. Thermal Conductivity Prediction of UO2-BeO Composite
Fuels and Related Decisive Features Discovery via Convolutional Neural Network. Acta Mater. 2022, 240, 118352. [CrossRef]

https://doi.org/10.1016/j.mee.2021.111572
https://doi.org/10.1109/TCPMT.2015.2461020
https://doi.org/10.1115/1.4050198
https://doi.org/10.1109/TDMR.2012.2195007
https://doi.org/10.1109/TADVP.2009.2023464
https://doi.org/10.1016/j.microrel.2007.03.006
https://doi.org/10.1109/TCPMT.2022.3175953
https://doi.org/10.1038/s41699-020-00186-w
https://doi.org/10.1088/1361-665X/ac895a
https://doi.org/10.1109/ACCESS.2022.3204652
https://doi.org/10.1016/j.birob.2023.100114
https://doi.org/10.1038/s41524-021-00574-w
https://doi.org/10.1021/acsnano.1c06340
https://www.ncbi.nlm.nih.gov/pubmed/34648261
https://doi.org/10.1016/j.eml.2021.101226
https://doi.org/10.1016/j.actamat.2022.118352


Micromachines 2023, 14, 1531 22 of 22

40. Selvanayagam, C.; Duong, P.L.T.; Raghavan, N. AI-Assisted Package Design for Improved Warpage Control of Ultra-Thin
Packages. In Proceedings of the 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and
Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland, 5–8 July 2020; IEEE: Cracow, Poland, July 2020;
pp. 1–7.

41. Selvanayagam, C.; Duong, P.L.T.; Wilkerson, B.; Raghavan, N. Global Optimization of Surface Warpage for Inverse Design of
Ultra-Thin Electronic Packages Using Tensor Train Decomposition. IEEE Access 2022, 10, 48589–48602. [CrossRef]

42. Silicon-Si. Available online: https://www.matweb.com/search/DataSheet.aspx?MatGUID=7d1b56e9e0c54ac5bb9cd433a099
1e27&ckck=1 (accessed on 28 April 2023).

43. Material: Copper—PVD or Electroplated. Available online: https://www.mit.edu/~6.777/matprops/copper.htm (accessed on
28 April 2023).

44. McKeen, L.W. Film Properties of Plastics and Elastomers, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-813292-0.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2022.3170455
https://www.matweb.com/search/DataSheet.aspx?MatGUID=7d1b56e9e0c54ac5bb9cd433a0991e27&ckck=1
https://www.matweb.com/search/DataSheet.aspx?MatGUID=7d1b56e9e0c54ac5bb9cd433a0991e27&ckck=1
https://www.mit.edu/~6.777/matprops/copper.htm

	Introduction 
	Methods 
	ANN Architectures 
	Training Dataset Augmentation 

	Result and Discussions 
	Method Validation 
	Key Factors Influence 
	Large Area 2.5D-Integrated CPU Chip Thermo-Mechanical Simulation 

	Conclusions 
	References

