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Abstract: This paper proposes a reem-shaped phononic crystal for the performance enhancement
of TPoS resonators. The proposed phononic crystal offers an ultra-wide acoustic band gap that
prevents energy leakage through the supporting substrate upon its placement at the anchoring
boundary, resulting in significant improvements in the resonator quality factor. Simulated results
show reem-shape phononic crystals generate a band gap up to 175 MHz with a BG of 90% and
enhance the anchor quality factor from 180,000 to 6,000,000 and the unloaded quality factor from
133,000 to 160,000, representing 33.3-fold and 1.2-fold improvements, respectively.
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1. Introduction

Micromachined resonators have a great possibility for integration with microelec-
tronics at the die or package level [1–5]. This advantage leads to reduced cost, a smaller
form factor, enhanced performance, and decreased fabrication complexity. Micromachined
resonators are grouped into three main categories: piezoelectric resonators, capacitive
resonators, and piezoresistive resonators. Piezoelectric micromachined resonators have
proven excellent performance and strong reliability in timing applications and also have
good merits such as a strong electromechanical coupling coefficient [6], a large Q, better
temperature stability, and the possibility of the resonator being implemented and fabricated
on a silicon substrate at the die level [7].

Micromachined resonators with large Q are commonly used in oscillators with low
phase noise and filters with low insertion loss [8]. However, before MEMS resonators
spread commercially in markets over other types of resonant devices, some loss factors
should be mitigated. These losses are thermo-elastic damping (TED), support (anchor
loss) [9,10], material loss [11], and other losses like resistive loss, surface loss, and dielectric
loss [12,13]. In this regard, the quality factor of the micromachined resonator consists of
many branches, such as anchor quality factor (Qanchor), electrode quality factor (Qelec-
trode), TED quality factor (QTED), material quality factor (Qmaterial), and unknown quality
factor (Qunknown). The equivalent Q can be expressed with the following equation [14]:

Q = 2π
Estored
Eloss

(1)

where Estored and Eloss represent the stored and dissipated energy in the resonator, respec-
tively. Anchor loss represents the major loss of the piezoelectric resonators vibrating in
width extension mode. This loss is due to the radiation of acoustic waves to the support-
ing substrate through tethers. One of the mechanisms used to mitigate this loss is using
acoustic reflectors [15,16]. The shortcoming of this method is its inefficiency in reducing
anchor loss. The other recently introduced method of improving the Q of the resonator is
using energy-preserving suspended frames [17]. Even though it is reported to provide a
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significant improvement in Q, it introduces spurious modes near the intended resonance
mode. The most widely used method is to apply one- or two-dimensional phononic crys-
tals on anchors of the resonator or on supporting tethers, which is provided by many
researchers [18–20]. Different types of effective phononic crystals have been achieved. This
article introduces a new 2-D phononic crystal structure (Reem-PnC) that generates a wide
acoustic band gap up to 175 MHz, resulting in a high anchor quality factor of 6,000,000.

2. Phononic Crystal & Theory of Wave Propagation
2.1. Principle of Wave Propagation in PnCs

The periodic structure of phononic crystals consists of two or more elastic materials
with excellent mechanical properties [21–23]. Properly designed phononic crystals provide
some range of frequencies in which acoustic waves are inhibited from propagating. This
range of frequencies is defined as an “acoustic band gap” [24]. Bloch’s theorem is usually
used to characterize the propagation of waves in acoustic mediums (phononic crystals) and
periodic dielectric mediums (photonic crystals) [25]. The equation of the acoustic wave
propagation in material with anisotropic nature can be written as [26–28]:

∂

∂xj

(
Cijkl

∂uk
∂xl

)
= ρ
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where xj represents the coordinate axes (x, y, z), Cijkl represents the tensor of elastic mate-
rial, ui represents the components of displacement (ux, uy, uz), and 𝜌 is the silicon density. 
To calculate the bandgap, the two boundary destinations on the unit cell (a) are adjusted 
to Bloch’s periodic boundary conditions through all the propagation directions. The 
Bloch-Floquet theorem verifies the periodic boundary condition of displacements as de-
fined by [23]: 
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where k and a represent the wave number and the laĴice constants of the PnC. All fre-
quency eigenmodes can be calculated by sweeping k through the boundaries of the first 
irreducible Brillouin zone (IBZ) in the single structure of the phononic crystal. The fre-
quencies are a function of k (k = ω/c), where c represents acoustic wave velocity along the 
(110) direction of silicon and ω represents angular frequency. The relation among gener-
ated displacement due to stress can be expressed as [23]: 
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The Bloch profile shows the calculations of changes in displacements, eigenfrequen-
cies, and stress fields as k varies gradually. Many curves are achieved between k and ω 
due to varying wave vectors through all highly symmetric edges of the first IBZ of the 
Reem-PnC. All the calculations of equations and solutions are done using COMSOL Mul-
tiphysics through the FE analysis method. 
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where xj represents the coordinate axes (x, y, z), Cijkl represents the tensor of elastic material,
ui represents the components of displacement (ux, uy, uz), and ρ is the silicon density. To
calculate the bandgap, the two boundary destinations on the unit cell (a) are adjusted to
Bloch’s periodic boundary conditions through all the propagation directions. The Bloch-
Floquet theorem verifies the periodic boundary condition of displacements as defined
by [23]:

ui (x,y,z + a,t) = ui (x,y,z,t) ejka (3)

where k and a represent the wave number and the lattice constants of the PnC. All frequency
eigenmodes can be calculated by sweeping k through the boundaries of the first irreducible
Brillouin zone (IBZ) in the single structure of the phononic crystal. The frequencies are a
function of k (k = ω/c), where c represents acoustic wave velocity along the (110) direction
of silicon and ω represents angular frequency. The relation among generated displacement
due to stress can be expressed as [23]:

ui(x + a,t) = ejk.a ui(x, t) (4)

σij(x, + a,t) = ejk.a σij(x, t) (5)

The Bloch profile shows the calculations of changes in displacements, eigenfrequencies,
and stress fields as k varies gradually. Many curves are achieved between k and ω due to
varying wave vectors through all highly symmetric edges of the first IBZ of the Reem-PnC.
All the calculations of equations and solutions are done using COMSOL Multiphysics
through the FE analysis method.

2.2. PnC Design

The Reem-PnC is illustrated in Figure 1a,b. The structure of a single unit cell with
lattice constant a = 16 µm consists of two cross blocks perpendicular to each other with
widths and lengths of 12 µm, 8 µm, and 8 µm, 12 µm, respectively, a high of h = 10 µm,
and chamfered edges of radius R = 1 µm. This PnC is connected to arrays of PnCs by four
connectors with widths and lengths of 2 µm and 1 µm. All the designs were constructed
using single-crystal silicon, the mass density of silicon ρ = 2330 kg/m3, and the elastic
constants illustrated in Table 1.
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Figure 1. (a) 2-D view of Reem-PnC with the first irreducible Brillouin zone (IBZ) (b) 3-D view of
Reem-PnC.

Table 1. Elastic constants of single crystal silicon.

Parameter Ex (GPa) Ey (GPa) Ez (GPa) σyz σzx σxy
Gyz

(GPa)
Gzx

(GPa)
Gxy

(GPa)

Value 169 169 130 0.36 0.28 0.064 79.6 79.6 50.9

The axes (x, y, and z) of the lattice synchronized with the (110), (110), and (001)
directions of the original orientation of the silicon wafer (i.e., 100). Adding Floquet periodic
boundary conditions at the edges of the unit cell and sweeping the parameters of k through
the direction of Γ-X-M-Γ for the first IBZ, as illustrated in Figure 1a. The first eigenfrequency
modes of Reem-Shape PnC with the associated bandgap are illustrated in Figure 2a,b. The
desired design of PnC achieves a complete bandgap of 175 MHz in the frequency range
between 105–280 MHz with a (w) of 1 µm and 135 MHz in the frequency range between
125–275 MHz with a (w) of 2 µm.

Reem phononic crystal generates a wide bandgap from 105 MHz to 280 MHz. The
ratio between gap and mid-gap is determined by the equation [24]:

Bandgap =

(
ftop − fbot

ftop+ fbot
2

)
(6)

where fbot and f top represent the open and closed frequencies of the bandgap. A wide
acoustic bandgap is obtained with a BG of 90% from Reem-PnC dimensions as mentioned
above with a connector of w = 1 µm; changing the connector width to 2 µm achieves a
decrease in bandgap BG of 75% as shown in Figure 2c. The comparison of Reem-PnC with
other PnC shapes is illustrated in Table 2. The filling fraction of the Reem-PnC, which
represents the area of PnC relative to the area of the lattice, is equal to 0.515, and it is
calculated using the equation [24]:

f illing f raction =
area o f PnC

area o f lattice
(7)
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Solid disk [21] 134 22 93 to 175 61 

Figure 2. Illustration of: (a) the first eigenfrequency mode shape in the band structure of Reem-PnC,
(b) band structure through (Γ-X-M-Γ) direction of the IBZ of Reem-PnC and (c) transmission of S21
parameters of an array of Reem-PnC unit cells.

Table 2. Different PnC shapes in simulated acoustic bandgaps with a resonance frequency in a
close range.

PnC Shape
Resonance
Frequency

(MHz)

Lattice Constant
(µm) Bandgap BG%

Cross-Shape [20] 138 20 90 to 220 83

Spider Web-like [2] 76 24 68 to 84.5 20.9

Solid disk [21] 134 22 93 to 175 61

Reem-PnC (this work) 191 16 105 to 280 90

3. Transmission Characteristics of Reem-PnC

To prove the formation of the acoustic bandgap by the Reem-PnC structure, the trans-
mission characteristic is analyzed using two acoustic delay lines. As shown in Figure 3b, the
Reem PnC plate and silicon plate (two different transmission mediums among sense and
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drive electrodes) are applied to realize the transmission characteristics of the desired PnC.
The end of each delay line boundary in the x-direction is perfectly matched to effectively
decrease the reflected wave interface. The drive electrode is excited by 0.01 watts, and the
sense electrodes are terminated at 0.0 watts. The transmission (S21) is calculated using the
following relationship [29]:

S21(dB) = 10 log10

(
Pout

Pin

)
(8)

where Pin and Pout are the input and output power transferred to the Reem-PnC delay
line and solid silicon delay line, respectively, as shown in Figure 3b. S21 represents the
transmission power coefficient between the input and output ports. Clearly from Figure 3b,
the S21 transmission spectrum with an array of Reem-PnC proofs the proposed design
successfully forms an acoustic bandgap. The finite element simulation results (displacement
profile) illustrate that the wave is strongly attenuated in the transmission spectra at the
beginning of the Reem-PnC delay line and continues to zero, compared to the silicon plate
delay line. Reem-PnC satisfies that there is a strong prohibition on the propagation of
acoustic waves.
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4. Resonator Design

The resonator design can be realized as a mass-spring-damper system. All vibrating
systems have energy dissipation mechanisms. This mechanism is characterized simply as a
damper. The union of the mass-spring-damper system is the basic model for the resonator.
Clearly, from Figure 4b, Newton’s second law of motion realizes the relations between the
motion of mass and input force, which are generally expressed by [1]:

meq
∂2x
∂t2 + ceq

∂x
∂t

+ keqx = F (9)

where meq represents equivalent mass, F represents applied force, keq represents equivalent
stiffness, and ceq is the equivalent total loss. The relationship between the input and output
of the system can be expressed as [1]:

H(s) =
X(s)
F(s)

=
1

m2
eq + ceqs + keq

=
1

keq

(
ω2

n
s2 + ωnQ−1S + ω2

n

)
(10)

where (s) is defined as complex frequency, Q is defined as body quality factor, and ωn
defined as the natural frequency. The resonant frequency for systems of second order is
given by [24]:

ωn = 2π fn =

√
keq

meq
(11)
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The relation between natural frequency ωn and the resonance frequency ωr of the
system of second order is expressed by [1]:

ωr = ωn

√
1− 1

2Q2 (12)

It is clear from the above relation that for high Q, as in MEMS resonators, the natural
frequency equals the resonance frequency (i.e., ωr ≈ ωn). By applying a single frequency
analysis, the resonance frequency of the MEMS resonator can be extracted from the dis-
placement curve in the frequency response by using the general formula [20]:

Q =
fr

∆ f (−3dB)
(13)

where ∆ f (−3dB) is defined as the −3 dB bandwidth between the resonant frequency and
the frequency response curve. In all cases, the resonator is expressed as an electric circuit
with series R, L, and C. Figure 4b,c show an equivalent mechanical and electrical model
for a MEMS resonator. The input voltage represents the input force, the current represents
velocity, the damping loss is represented by Rm (motional resistance), the Cm (motional
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capacitance) is represented by the inverse of stiffness, and the mass is represented by the
motional inductance Lm. The relation among Rm, Cm, Qu (unloaded quality factor), and
insertion loss IL of the resonator is given by [3]:

Rm =
1

Rel(Y11)
, Rm =

1
2π frCmQu

(14)

where Y11 is the admittance curve of the resonator.
A 5th-order piezoelectric on silicon MEMS resonator was implemented, simulated,

and analyzed using COMSOL Multiphysics, as demonstrated in Figure 5. A thin film
of the AlN layer is bonded to a silicon substrate. The Al electrode positioned on top of
piezoelectric material with a depth of 0.5 µm excites the vibration on the piezoelectric
resonator by applying a voltage of 1 V, while the gap between the two electrodes is set
to be 0.4 µm. The dimensions of the resonator are 110 µm width and 330 µm length,
respectively. The wavelength of the resonator λ is equal to 44 µm. The tether length and
width of the desired resonator are set to 1.5 λ and 17.6, respectively. A Reem-PnC consists
of two cross blocks perpendicular to each other with width and length of 12 µm and 8 µm,
respectively, chamfering radius R at the edges of 1 µm, and lattice constant a = 16 µm. The
PnC arrays are positioned externally in anchors to generate a bandgap that coincides with
the resonant frequency to prohibit acoustic wave propagation to the device substrate and
cause a loss in energy. The resonant frequency (fr) of the resonator body can be obtained
from [16]:

fr =
1
λ

√
E
ρ

(15)

where λ defined as wavelength, E is defined as Young’s modulus in (110) axes, and ρ
defined as the density of single-crystal silicon. The fr calculated from Equation (16) is
around 191 MHz in the desired design λ = 44 µm. The resonator design parameters are
listed in Table 3.

Table 3. Resonator design parameters.

Parameter Value (µm)

Resonator length, l 330

Resonator width, W 110

Piezoelectric thickness, Pt 0.5

Electrode thickness, Ew 0.5

Tether length, Tl 1.5λ

Electrode gap 0.4

Resonant frequency, fr 191.49 (MHz)

Wavelength, λ 44

Electrode gap 4

Silicon substrate high 10

Perfect matched layer width 3λ
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5. Techniques for Anchor Loss Enhancement in the Resonator

A 2-dimensional array of Reem-PnC is deployed in the anchoring boundaries of the
resonator to enhance the anchor quality factor and, as a result, the total quality factor (Qtot).
From Figure 6, the Qanchor of the TPoS MEMS resonator can be generally obtained from the
resonance frequency divided by the −3 dB of bandwidth of the resonance maximum point
in displacement profile at the frequency response [16]:

Qanchor =
fr

∆ f (−3dB)
(16)

where f r is defined as resonance frequency, the resonator mode shape with and without
PnC and associated anchor quality factor are shown in Figure 6.
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6. Calculation of Resonator Performance

Simulated S21 parameters and admittance Y11 curves of a desired resonator with and
without Reem-PnC were calculated by the FEA simulation at the frequency domain in
COMSOL Multiphysics to obtain the insertion loss, loaded Q, unloaded Q, the figure of
merit, effective electromechanical coupling coefficient (k2

eff), and motional resistance Rm.
The relationships of Q, Qu, FoM, and k2

eff are given by [30]:

Ql =
fr

∆ f(−3dB)
, Qu =

Ql

1− 10(
−IL
20 )

, k2
e f f =

π2

8

(
f 2
s − f 2

p

f 2
p

)
, FoM = Qu ∗ k2

e f f (17)

7. Discussion

Figure 7 presents different values of the anchor quality factor as a function of lon-
gitudinal wavelength (λ. The minimum value of the anchor quality factor exists at the
tether length equal to integer multiples of the wavelength (i.e., 1*λ, 2*λ, 3*λ), while the
maximum points of Q are obtained at the integer multiples of a quarter of the wavelength.
The maximum Qanchor was achieved at 1.5 λ.
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Figure 8 illustrates the displacement plot across the line A-A′, which verifies the
proposed resonator with Reem-PnC and offers a high enhancement in the total displacement
of the resonator in comparison with the resonator without PnC. This verifies that the
amount of stored energy in the resonator with Reem-PnC is larger than the resonator
without PnC.
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Figure 8. Illustration of: A–A′ line total displacement (µm) of the resonator with and without
Reem-PnC.

Figure 9a,b illustrates the absolute value of the z component displacement field along
the B–B′ line in the two resonators with and without Reem-PnC. It is clear from the plot
that the displacement at peak point P1 in the tether is higher than the displacement at
peak point P2. Continuously, the displacement in the resonator is enhanced in comparison
between points P′1 and P′2. Figure 9c,d illustrate the absolute value of the x component
displacement field along the B–B′ line. It is clear from the plots that the displacement
of the peak point P3 in the tethers is greater than the displacement in point P4, and the
displacement component in the resonator is enhanced in comparison between points P′3
and P′4. The displacement components x and z in the resonator with Reem-PnC are greater
than those in the resonator without PnC.

It is clearly shown from Figure 10 that there is no significant displacement in the
PnC array at the anchor boundary of the resonator with Reem-PnC as in cutting plane
C-C′. Also, the displacement profile in Figure 10a,b shows there is a displacement in-
crease on the anchoring boundaries of the resonator without PnC (i.e., ∆disp = 5.72 µm).
This proves there is energy loss due to energy transverse from the resonant body to the
anchor’s boundary.
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Figure 9. Illustration of: B–B′ displacement (µm) z component of the resonator (a) with and
(b) without Reem-PnC, B–B′ displacement (µm) x component of the resonator (c) with and
(d) without Reem-PnC.

As is seen from Table 4, the simulated Qanchor and Qu of the designed resonator
with Reem-shape PnC are enhanced by 13.5 and 1.2 folds, respectively, in comparison
with the resonator without PnC. The remaining parameters of the resonator, such as
insertion loss (IL) and motional resistance (Rm), were obtained from the transmission
magnitudes (S21, dB) and admittance (Y11, dB) at the quarter of the resonator, as shown
in Figure 11. The plots of the parameters are illustrated in Figure 12a,b, respectively.
These parameters clearly show enhancement due to the proposed design, while keff
remains unchanged.
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Table 4. Performance of the resonators with Reem-PnC and without PnC.

Resonator fr (MHz) Qanchor IL (dB) Ql Qu K2eff% Rm (Ω) FoM

With Reem PnC 191.49 6,00,000 1.9 31,915 160,000 0.10 166 159

Without PnC 191.29 180,000 2.1 29,363 133,000 0.10 183 133
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8. Conclusions

This work proposes Reem-PnC as a new phononic crystal design used for anchor loss
reduction in thin-film piezoelectric-on-silicon MEMS resonators. The proposed design
generates a wide bandgap that prevents acoustic wave propagation to the support structure.
Moreover, tether length and width are tuned to optimum dimensions to achieve a high
anchor quality factor. The combination of the two approaches achieves a high-quality
factor. In this regard, an anchor quality factor of about 6,000,000 and an unloaded quality
factor (Qu) of about 160,000 are obtained from the resonator with Reem-PnC, which
accounts for 33.3-fold and 1.2-fold enhancement in comparison with the resonator without
PnC, respectively.
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