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Abstract: In this paper, an improved empirical formula modeling method using neuro-space mapping
(Neuro-SM) for coupled microstrip lines is proposed. Empirical formulas with correction values
are used for the coarse model, avoiding a slow trial-and-error process. The proposed model uses
mapping neural networks (MNNs), including both geometric variables and frequency variables to
improve accuracy with fewer variables. Additionally, an advanced method incorporating simple
sensitivity analysis expressions into the training process is proposed to accelerate the optimization
process. The experimental results show that the proposed model with its simple structure and an
effective training process can accurately reflect the performance of coupled microstrip lines. The
proposed model is more compatible than models in existing simulation software.

Keywords: mapping neural networks; modeling; optimization; coupled microstrip lines; microwave
devices

1. Introduction

With the rapid development of electronic systems, circuit design requires high-
performance microwave devices [1]. Most of the circuit designs are first simulated by
simulation software to obtain the desired circuit performance and then physically fabri-
cated [2]. Simulations not only make it possible to find the appropriate circuit parameters
faster but also save labor and production costs in the physical manufacturing process [3].
Therefore, highly accurate and efficient microwave device models play a very important
role in circuit design simulation [4–7]. Improving device modeling accuracy and shortening
device design cycle have become major fields of research in microwave devices [8,9]. Tradi-
tional modeling methods consume a lot of human and computer resources by constantly
trying and correcting to obtain an accurate model [10,11]. In addition, due to the lack of
degrees of freedom, the models built by the traditional modeling methods often fail to
meet the required accuracy. In order to satisfy the requirements of fast simulation and high
model accuracy [12,13], advanced modeling methods need to be investigated. Coupled
microstrip lines are widely used in microwave semiconductor devices for their small size,
simple structure, stability and reliability [14,15]. However, the existing models of coupled
microstrip lines for device design rely heavily on simulation software [16,17], which limits
the flexibility of the models. This paper focuses on a new modeling method for coupled
microstrip lines to efficiently build an accurate and highly compatible model.

Artificial intelligence and deep learning are now widely used in the field of microwave
device modeling. Research on, development of, and innovation in intelligent approaches in
microwave devices have become popular topics of research in this field [18–20]. Artificial
neural networks (ANNs) are one of the early machine learning algorithms [21]. Modeling
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methods using ANNs are considered an effective alternative in the field of microwave de-
vice modeling [22,23]. ANNs have strong learning and generalization capabilities, and can
learn the nonlinear relationship between the input and output of modeled microwave de-
vices by optimizing weights. The trained model can accurately reflect the output responses
of the modeled device. The more data that provide a nonlinear relationship within a certain
range, the more accurate the prediction of the ANNs will be [24,25]. To avoid the large
amount of data required for ANNs, Neuro-SM is proposed for modeling microwave de-
vices [26–28]. Compared with traditional ANN modeling methods, the Neuro-SM method
can effectively save training cost and improve the generalization capability of ANNs. Nor-
mally, accurate data obtained by the simulation or measurement of the modeled microwave
devices are defined as the fine model, while the coarse model is expressed by empirical
formulas that can match the fine model approximately. The Neuro-SM model consists of
two parts: the coarse model and the MNNs. By adjusting the MNNs, the coarse model is
gradually adapted to the characteristics of the fine model, enabling the Neuro-SM model to
achieve both high accuracy and high simulation efficiency. This method has been widely
used for device modeling in the microwave field [29–34].

The first presentation of the Neuro-SM modeling method is in [35], which modifies the
modeled microwave device behavior with new space mapping formulas. If the performance
of the coarse model is similar to the modeled microwave device, the Neuro-SM model
matches the fine model well by introducing the input MNNs. The frequency MNNs added
to the Neuro-SM model can enhance the frequency characteristics of the coarse model [36].
In [29], the coarse model introduces both the input and output MNNs in order to obtain
a more accurate model. If there is a significant difference between the fine model and
the empirical formulas of the coarse model, the existing Neuro-SM modeling methods
cannot develop a precise model. More degrees of freedom of variables are required in input
MNNs. Frequency MNNs can easily put the training process into an overlearning state.
For output MNNs, it is difficult to achieve passivity in a passive device model. Therefore,
novel modeling methods based on Neuro-SM are needed to cover the differences between
the coarse and fine models.

This paper proposes an improved empirical formula modeling method for coupled
microstrip lines. The correction values are added to the empirical formulas and the modified
empirical formulas are used as the coarse model. The MNNs adjusts the correction values
according to the input variables, improving their ability to learn and predict. In addition, an
advanced training method is proposed to automatically optimize the weights of the MNNs
in order to improve the efficiency of modeling. Modeling examples verify the effectiveness
and feasibility of the improved empirical formula modeling method proposed in this paper.

2. Proposed Empirical Formula Modeling Method

The microstrip line is made on a dielectric substrate with height H and relative
permittivity εr. A conductor strip of length L, width W, and thickness T is on one side,
while a grounded metal plate is on the other side. The coupled microstrip lines consist of
two parallel microstrip lines spaced S apart from each other. Let the normalized width be
defined as u, i.e., u = W/H. Let the normalized gap be defined as g, i.e., g = S/H. Figure 1
shows the physical structure of the coupled microstrip lines.

Micromachines 2023, 14, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Physical structure diagram of the coupled microstrip lines [37]. 

The two microstrip lines in the coupled microstrip lines are close to each other, so 
there is a coupling phenomenon of electromagnetic signals when electromagnetic waves 
are transmitted. The coupled microstrip lines are surrounded by the nonuniform medium, 
so the transmitted electromagnetic waves are mixed modes with dispersion characteris-
tics, which makes the analysis more complicated. For the convenience of analysis, the 
mode transmitted in the coupled microstrip lines is considered a transverse electric and 
magnetic field mode in this paper. It can be decomposed into odd-mode and even-mode 
modes when different excitation sources are applied to the coupled microstrip lines. In 
these operating states, the transmission between the two parallel lines is independent of 
each other and coupled with each other. These two transmission states are mathematically 
separated and studied in terms of symmetry and antisymmetry. The even-mode excitation 
means that the magnitude and phase of the incident source excitation at the symmetric 
port are the same, while the odd-mode excitation has the opposite magnitude and phase 
of the incident source excitation at the symmetric port. A mathematical method is used to 
analyze coupled microstrip lines, making the model independent of different simulation 
software and highly compatible. 

2.1. Improved Empirical Formulas of the Coarse Model 
The odd- and even-mode methods are used to develop the empirical formulas from 

geometric variables to generate responses. Some important empirical formulas are de-
rived in this section. The effective permittivity for even-mode and odd-mode excitation is 
given by: 

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2
reffe r r e

reffo r r o

/ / * F

/ / * F

ε ε ε

ε ε ε

= + + −


= + + −  
 (1)

where eF  and oF  are parametric equations related to the geometrical variables, which 
are explained in [38]. 

Equations (2) and (3) represent the characteristic impedance and the characteristic 
capacitance for even-mode and odd-mode excitation, respectively: 

( )
( )
1

1
Oe o reffe o e o

Oo o reffo o o o

Z Z / / Z * /

Z Z / / Z * /

ε φ η

ε φ η

 = −


= −
 (2)

e r effe Oe

o reffo Oo

C / Z / c

C / Z / c

ε

ε

 =


=
 (3)

where oη  is defined as the wave impedance in vacuum, oZ  expresses the impedance of 
the uniform microstrip line, c  represents the speed of light, and eφ  and oφ  are para-
metric equations related to the u  and g  of the coupled microstrip line, which are ex-
plained in [38]. 

Figure 1. Physical structure diagram of the coupled microstrip lines [37].



Micromachines 2023, 14, 1600 3 of 12

The two microstrip lines in the coupled microstrip lines are close to each other, so
there is a coupling phenomenon of electromagnetic signals when electromagnetic waves
are transmitted. The coupled microstrip lines are surrounded by the nonuniform medium,
so the transmitted electromagnetic waves are mixed modes with dispersion characteristics,
which makes the analysis more complicated. For the convenience of analysis, the mode
transmitted in the coupled microstrip lines is considered a transverse electric and magnetic
field mode in this paper. It can be decomposed into odd-mode and even-mode modes when
different excitation sources are applied to the coupled microstrip lines. In these operating
states, the transmission between the two parallel lines is independent of each other and
coupled with each other. These two transmission states are mathematically separated and
studied in terms of symmetry and antisymmetry. The even-mode excitation means that
the magnitude and phase of the incident source excitation at the symmetric port are the
same, while the odd-mode excitation has the opposite magnitude and phase of the incident
source excitation at the symmetric port. A mathematical method is used to analyze coupled
microstrip lines, making the model independent of different simulation software and highly
compatible.

2.1. Improved Empirical Formulas of the Coarse Model

The odd- and even-mode methods are used to develop the empirical formulas from
geometric variables to generate responses. Some important empirical formulas are derived
in this section. The effective permittivity for even-mode and odd-mode excitation is given
by: {

εre f f e = (εr + 1)/2 + (εr − 1)/2 ∗ Fe
εre f f o = (εr + 1)/2 + (εr − 1)/2 ∗ Fo

(1)

where Fe and Fo are parametric equations related to the geometrical variables, which are
explained in [38].

Equations (2) and (3) represent the characteristic impedance and the characteristic
capacitance for even-mode and odd-mode excitation, respectively:{

ZOe = Zo/√εre f f e/(1− Zo ∗ φe/ηo)

ZOo = Zo/√εre f f o/(1− Zo ∗ φo/ηo)
(2)

{
Ce =

√
εre f f e/ZOe/c

Co =
√

εre f f o/ZOo/c
(3)

where ηo is defined as the wave impedance in vacuum, Zo expresses the impedance of
the uniform microstrip line, c represents the speed of light, and φe and φo are parametric
equations related to the u and g of the coupled microstrip line, which are explained in [38].

The substrate dielectric of the coupled microstrip lines remains unchanged, while the
medium around the conductor strip of the coupled microstrip lines is completely replaced
by air. In this case, the characteristic capacitance of even- and odd-mode excitation is given
by:  Cae = 1/

(
ZOe ∗

√
εre f f e

)
/c

Cao = 1/
(

ZOo ∗
√

εre f f o

)
/c

(4)

The mutual inductance and the self-inductance are represented by Equation (5), and
the mutual capacitance and the self-capacitance can be expressed by Equation (6):{

Lm = µ0 ∗ ε0/2 ∗ (1/Cae − 1/Cao)
L0 = µ0 ∗ ε0/2 ∗ (1/Cae + 1/Cao)

(5)

{
Cm = 1/2 ∗ (Co − Ce)
C0 = 1/2 ∗ (Co + Ce)

(6)
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where µ0 is defined as permeability of vacuum and ε0 expresses the vacuum absolute
permittivity.

The empirical formulas derived by the odd- and even-mode methods roughly match
the fine model of the coupled microstrip lines, but when the operating frequency is too high
or the input variables vary over a wide range, it takes a lot of time and computer resources
to constantly try and correct the intermediate parameters in the empirical formulas. In
most cases, the empirical formulas fail to build an accurate model. This method finds the
intermediate parameters in the empirical formulas that have a large impact on the response
of the coarse model through control variables. The correction values are considered as
factors multiplied by the intermediate parameters in the corresponding positions of the
empirical formulas, which improve the flexibility of the model. The improved coarse
model consists of empirical formulas with correction values. The whole process of building
the coarse model is performed in NeuroModelerPlus software. In the proposed method,
correction values are added at the locations of relative permittivity, impedance, capacitance
and inductance. For example, Lm is a selected intermediate parameter, ∆Lm is the correction
value, and the improved empirical formula is Lm_improved = Lm ∗ ∆Lm. By changing the
values of the selected intermediate parameter, the response of the coarse model gradually
approaches that of the fine model. The experimental result shows that the method gives
enough degrees of freedom to the coarse model to make it more flexible to accurately match
the fine model.

2.2. Improved Neuro-SM Model Structure

To obtain an accurate model, the improved Neuro-SM model is proposed based on
empirical formulas and correction values. Figure 2 is a schematic diagram of the improved
Neuro-SM model structure. The parameter analysis method was used to determine the
input variables that have significant effects on the response characteristics of the coupled
microstrip lines. The input variables for the improved Neuro-SM model are defined as x,
which includes the geometrical variables xg = [L, S]T and frequency variable f . x are the
inputs to both the coarse model and the MNNs. The vector xm represents the correction
values added to the empirical formulas. The output variables y are the responses of the
improved Neuro-SM model.
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MNNs with a simple structure can accurately represent the nonlinear relationship
between x and xm. The MNNs adjust the internal weights w according to the different x,
and then change xm. The adjusted xm and x are fed into the coarse model, and y are finally
generated. Through the training process of the MNNs, the outputs y of the coarse model
match the outputs yd of the fine model well. The nonlinear relationship between x and xm,
which is adjusted by the MNNs, is represented by fANN . The expression is shown as:

xm = fANN(x, w) (7)
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where w denotes the internal weights of the MNNs and fANN denotes a multilayer percep-
tron neural network that uses the sigmoid function as an excitation function to arbitrarily
approximate the nonlinear relationship between input and output [39].

2.3. The Proposed Training Method

In the proposed method, the most critical step in modeling is to obtain the internal
weights of the MNNs so that the outputs of the developed model are constantly close to
those of the desired device. The training process determines not only the learning effect
of the model but also the prediction effect. In this paper, the evaluation criteria for model
learning and prediction ability are usually presented in term of training error ETr and test
error ETe, and can be formulated as:

E(w) =

 1
NsNy

Ns

∑
n=1

Ny

∑
k=1

∣∣∣∣∣Yk
n(w)−Yk

nD∣∣Yk
D

∣∣
max

∣∣∣∣∣
2

1
2

(8)

where Yk
n(.) and Yk

nD are the responses of the improved Neuro-SM model and the responses

of the fine model, respectively.
∣∣∣Yk

D

∣∣∣
max

represents the maximum value of the absolute
value of the fine model responses. The superscript k is the index of the output response,
and Ny is the total amount of output response. The subscript n indicates the index of the
modeled data n = 1, 2, . . . . . . , Ns, where Ns is the total amount of modeled data. During
the optimization process, the internal weights of the MNNs are continuously adjusted
by using different optimization algorithms to reduce the error until the error meets the
accuracy requirements.

To speed up the training process, the internal weights w of the MNNs are treated as
optimization variables. The first-order derivative ∂y/∂w is used to speed up the search
for the optimal variables. Since the input variables for the fine and coarse models are the
same, the subscript c is added to the signs of the input variable of the coarse model in
Equation (9). The first-order derivative of the fine model outputs yd with respect to the
optimization variables w is given by:

∂yd
T(xg, f , w)

∂w
=

∂yd
T(y)

∂y
(

∂yT(xgc, fc)

∂xgc

∂xT
gc(xg, f , w)

∂w
+

∂yT(xgc, fc)

∂ fc

∂ fc(xg, f , w)

∂w
) (9)

where ∂yd
T(y)/∂y is the derivative of the fine model outputs yd with respect to the coarse

model outputs y. ∂yT(xgc, fc)/∂xgc and ∂yT(xgc, fc)/∂ fc, respectively, represent the deriva-
tive of the coarse model outputs y with respect to the input variables of the coarse model xgc
and the frequency variable of the coarse model fc. ∂xT

gc(xg, f , w)/∂w, and ∂ fc(xg, f , w)/∂w
represents the derivative of the input variables of the coarse model xgc and the frequency
variable of the coarse model fc with respect to the optimization variables w, respectively.

2.4. The Whole Process of the Proposed Modeling Method

The flowchart of the whole process of the proposed modeling method is shown in
Figure 3. In the data generation section, the geometric variables that have significant effects
on the responses of the coupled microstrip lines are first determined. The training and
test data for the proposed model are generated using the design of experiments (DOE)
method [40]. The DOE method can generate the geometric parameters of an orthogonal
distribution, which ensures that the training data can represent the entire modeling range
approximately. The proposed Neuro-SM can learn the nonlinear relationship between x and
yd with the training data, and the predictive capability of the model is verified using the
test data. Test data are within the training data range and different from the training data.



Micromachines 2023, 14, 1600 6 of 12

Micromachines 2023, 14, x FOR PEER REVIEW 7 of 12 
 

 

the number of neurons has reached 100, the process returns to increase the amount of 
correction values and retrains the new model. The training process will not stop until TrE  
meets ε . This process focuses on finding the number of correction values and hidden 
neurons that minimize the training error of the proposed model. The effectiveness of the 
proposed model is demonstrated by obtaining the best results with the fewest correction 
values and hidden neurons. 

In the third training stage, the model is tested against the test data to verify that it 
makes good predictions for untrained data in the modeling range. If TeE  satisfies ε , the 
model development is complete. If TeE  does not satisfy ε , it means that the training 
data are insufficient and the amount of training data needs to be increased for retraining. 
The smaller the test error, the better the generalization ability of the proposed model. 

 
Figure 3. Flowchart of the whole process of the proposed modeling method. 

3. Experimental Verification 
In this section, the experimental verification is performed by modeling the coupled 

microstrip lines. The fine model is the coupled microstrip line structure built in Advance 
Design System (ADS) simulation software and the coarse model is the model with empir-
ical formulas and correction values. In this experiment, the line length L  and coupled 
lines spacing S  are used as geometric variables, while f  is a frequency variable. In this 
paper, the DOE method is used to generate training and test data ranges for geometric 
and frequency variables, respectively. The data ranges are shown in Table 1. The training 
and test data used for the proposed model are obtained by simulation in ADS software. 
To ensure that the test data are untrained, different starting and ending points are chosen 
for the training and test data with the same intervals. 

Table 1. Ranges of training and test data for the coupled microstrip line modeling. 

Figure 3. Flowchart of the whole process of the proposed modeling method.

The first step of the training process is to build a coarse model according to the
empirical formulas. The odd- and even-mode methods derive all empirical formulas used
for modeling, as described in Section 2.1. If the test error of the initial coarse model is higher
than a user-defined threshold θ, it returns to the derivation part of the empirical formulas.
Otherwise, the development of the coarse model has been preliminarily completed.

The second step is to complete the construction and train the improved Neuro-SM
model in the training process. Based on the improved empirical formulas for the coarse
model in this paper, the correction values are added at appropriate locations. After that, the
whole construction of the model is completed according to the structure of the improved
Neuro-SM model. Before the whole model is trained, unit MNNs are first developed. The
test error of the Neuro-SM model with unit MNNs is identical to that of the coarse model.
The input data of the MNNs are x and the outputs are the value 1. The number of the
MNN outputs is the same as the number of xm. The initial data are randomly generated in
MATLAB software, which has a larger range than the training data. The training data are
used to adjust the internal weights of the MNNs, which affect the intermediate parameters
with the correction values, so that the responses of the coarse model are consistent with
the fine model. When ETr does not satisfy the user-defined threshold ε while the number
of hidden neurons is fewer than 100, the number of hidden neurons can be increased to
increase the nonlinear degree of the proposed model. If the number of neurons has reached
100, the process returns to increase the amount of correction values and retrains the new
model. The training process will not stop until ETr meets ε. This process focuses on finding
the number of correction values and hidden neurons that minimize the training error of the
proposed model. The effectiveness of the proposed model is demonstrated by obtaining
the best results with the fewest correction values and hidden neurons.

In the third training stage, the model is tested against the test data to verify that it
makes good predictions for untrained data in the modeling range. If ETe satisfies ε, the
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model development is complete. If ETe does not satisfy ε, it means that the training data
are insufficient and the amount of training data needs to be increased for retraining. The
smaller the test error, the better the generalization ability of the proposed model.

3. Experimental Verification

In this section, the experimental verification is performed by modeling the coupled
microstrip lines. The fine model is the coupled microstrip line structure built in Advance
Design System (ADS) simulation software and the coarse model is the model with empirical
formulas and correction values. In this experiment, the line length L and coupled lines
spacing S are used as geometric variables, while f is a frequency variable. In this paper, the
DOE method is used to generate training and test data ranges for geometric and frequency
variables, respectively. The data ranges are shown in Table 1. The training and test data
used for the proposed model are obtained by simulation in ADS software. To ensure that
the test data are untrained, different starting and ending points are chosen for the training
and test data with the same intervals.

Table 1. Ranges of training and test data for the coupled microstrip line modeling.

Variable Type Data Type L (mm) S (mm) f (GHz)

Input variables Training data 10:1.67:20 0.0178:0.0089:0.0711
1:0.1:10Test data 10.8:1.67:17.5 0.022:0.0089:0.057

During the training process, finding a suitable set of weights can effectively reduce the
difference between the coarse model and the fine model. Therefore, it is essential to choose
a suitable number of correction values. The choice of correction values depends on the in-
fluence of the intermediate parameters of the empirical formulas on the S-parameter results.
The correction values as factors should be multiplied by the intermediate parameters, which
significantly affect the S-parameters. When correction values are added to intermediate
parameters that have less impact on the responses, it not only wastes computer resources
but also results in slower modeling.

Table 2 shows the training and test errors for different numbers of correction values
and hidden neurons for the proposed model. When the number of correction values is
fixed, the number of hidden neurons is continuously varied to find the minimum number of
hidden neurons, making the training error and test error satisfy the user-defined threshold.
The training and test errors are compared at different correction values to find the most
appropriate number of correction values. According to Table 2, we can find that the result
with only 15 hidden neurons when the correction value is 12 is much better than the result
with 35 hidden neurons when there are 8 correction values. When the number of correction
values is increased to 15, the result with 18 hidden neurons is not as good as the result with
12 correction values. The result shows that too few correction values cannot satisfy the
nonlinear relationship of the coupled microstrip lines, while too many correction values
represent high nonlinearity and complex structure of the MNNs, leading to lower accuracy.

Table 2. Training and test errors for different numbers of correction values and hidden neurons.

Number of
Correction Values

Number of Hidden
Neurons Training Error Test Error

8 35 1.02% 1.25%
10 25 0.85% 0.91%
12 15 0.54% 0.55%
15 18 0.61% 0.68%

At a fixed number of correction values of 12, the errors for different numbers of
hidden neurons are shown in Table 3. When the number of hidden neurons is 10, the
training and test errors of the model are higher than that of the model with 15 hidden
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neurons. This indicates that the nonlinear relationship between the input and output of the
proposed model cannot be accurately expressed when the number of hidden neurons is
small. However, when the number of hidden neurons is increased to 20 or 25, the training
errors decrease while testing errors increase significantly. Because the models in this case
are in the overlearning state, fewer hidden neurons are needed to retrain the model. It can
be concluded that the best result of the proposed model can be achieved when the number
of correction values is 12 and the number of hidden neurons is 15.

Table 3. Errors for different numbers of hidden neurons when the correction values are fixed at 12.

Number of Hidden Neurons Training Error Test Error

10 1.89% 1.92%
15 0.54% 0.55%
20 0.51% 1.90%
25 0.45% 2.31%

The correction values at the three frequency points for the geometric variables xg =

[10.8, 0.022]T(mm) are shown in Table 4. The results show that the correction values change
with the frequency, making the coarse model responses at each frequency point fit the fine
model responses well. Numerically, the correction values vary around 1, which proves that
the choice of the correction values is appropriate. Small changes in the correction values
can lead to large changes in response, thus ensuring the smoothness of the model output.

Table 4. The correction values at the three frequency points.

Correction Values f = 1 GHz f = 5 GHz f = 10 GHz

∆εre f f e 1.00453 1.00712 1.00686
∆εre f f o 0.987161 0.989964 1.00512
∆ZOe 1.00457 1.01083 1.03535
∆ZOo 1.01008 0.998378 0.950367
∆Ce 1.00453 1.00729 1.00744
∆Co 0.987346 0.990366 1.00582
∆Cae 1.0053 0.994982 0.966435
∆Cao 1.01865 1.02539 1.05195
∆L0 1.00796 1.00766 1.00403
∆Lm 1.00555 1.00739 1.00805
∆C0 0.97079 0.975827 0.984218
∆Cm 1.05755 1.05757 1.06318

The feasibility of the proposed model is compared using two existing modeling
approaches based on Neuro-SM. Model 1 adds the MNNs to the coarse model input, while
model 2 adds the MNNs to both the coarse model input and output [32,38]. The proposed
model achieves the lowest training and test error, as shown in Table 5. Comparing the
results of 15 hidden neurons and 55 hidden neurons in model 1, it is found that increasing
the number of hidden neurons did not reduce the training error, but significantly increased
the test error. Model 1 is in the overlearning state. The error comparison of model 2 reveals
that the accuracy of the model is not significantly improved only by increasing the number
of hidden neurons in the input MNNs. By increasing the number of hidden neurons in
the output MNNs, the training error of model 2 is reduced, but the test error fails to meet
the requirement. This indicates that the amount of data used to train the model is not
enough. Additional modules are needed to ensure model passivity due to the introduction
of output MNNs. The above conclusions demonstrate that the proposed modeling method
can accurately match the fine model while keeping the device passive.
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Table 5. Comparison of the training and test errors for 4 models.

Model Type Hidden Neurons
in Input Mapping

Hidden Neurons
in Output Mapping Training Error Test Error

Coarse model — — 19.37% 18.32%

Existing model 1 15 — 6.71% 6.65%
55 — 5.98% 10.22%

Existing model 2
15 15 2.85% 2.51%
55 15 2.09% 1.86%
15 55 0.58% 1.04%

Proposed model 15 — 0.54% 0.55%

The comparison of the S-parameter responses among the fine model, the coarse model
and the proposed model for the test data xg = [10.83, 0.022]T(mm) is shown in Figure 4.
The fine model is shown as a red line, the coarse model as a magenta dashed line and the
proposed model as a green down triangle. It can be seen that there is a certain gap between
the coarse model and the fine model, while the S-parameter responses of the proposed
model and fine model are basically consistent. The matching results with the test data in
the modeling range illustrate the feasibility of the improved empirical formula modeling
method for coupled microstrip lines.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 12 
 

 

The comparison of the S-parameter responses among the fine model, the coarse 
model and the proposed model for the test data [ ]10.83,0.022 (mm)Τ=gx  is shown in Fig-
ure 4. The fine model is shown as a red line, the coarse model as a magenta dashed line 
and the proposed model as a green down triangle. It can be seen that there is a certain gap 
between the coarse model and the fine model, while the S-parameter responses of the 
proposed model and fine model are basically consistent. The matching results with the 
test data in the modeling range illustrate the feasibility of the improved empirical formula 
modeling method for coupled microstrip lines. 

  
(a) (b) 

  
(c) (d) 

Figure 4. Comparisons of S-parameters among the fine model, the coarse model and the proposed 

model at [ ]10.83,0.022 (mm)Τ=gx . (a) 11S real.⋅  (b) 11S imag.⋅  (c) 12S real.⋅  (d) 12S imag.⋅  

To verify the efficiency of the modeling method, computation time comparisons be-
tween the fine model in High-Frequency Structure Simulator (HFSS) software and the 
model built with the proposed method are shown in Table 6. The proposed model is de-
veloped with 25 sets of EM data generated by the DOE method, and the modeling time is 
19.7 m. The trained proposed model can be used instead of the EM model in circuit design, 
because the two models have the same characteristics in the modeling range. From Table 
6, it can be seen that the proposed model consumes less time than the fine model in the 
HFSS software when generating the same data. The more data that are needed, the more 
obvious the advantage of the proposed model. The proposed model applied into circuit 
design can significantly reduce the simulation time and thus shorten the device design 
cycle. 

Table 6. Comparison of computation time between the model in HFSS and the proposed model. 

Sets of Data  
Computation Time 

Model in HFSS Proposed Model 
1 0.8 m 19.7 m + 0.02 s 

Figure 4. Comparisons of S-parameters among the fine model, the coarse model and the proposed
model at xg = [10.83, 0.022]T(mm). (a) |S11| · real. (b) |S11| · imag. (c) |S12| · real. (d) |S12| · imag.



Micromachines 2023, 14, 1600 10 of 12

To verify the efficiency of the modeling method, computation time comparisons
between the fine model in High-Frequency Structure Simulator (HFSS) software and the
model built with the proposed method are shown in Table 6. The proposed model is
developed with 25 sets of EM data generated by the DOE method, and the modeling time is
19.7 m. The trained proposed model can be used instead of the EM model in circuit design,
because the two models have the same characteristics in the modeling range. From Table 6,
it can be seen that the proposed model consumes less time than the fine model in the HFSS
software when generating the same data. The more data that are needed, the more obvious
the advantage of the proposed model. The proposed model applied into circuit design can
significantly reduce the simulation time and thus shorten the device design cycle.

Table 6. Comparison of computation time between the model in HFSS and the proposed model.

Sets of Data
Computation Time

Model in HFSS Proposed Model

1 0.8 m 19.7 m + 0.02 s
50 35.05 m 19.7 m + 0.11 s

100 77.08 m 19.7 m + 0.22 s

4. Conclusions

In this paper, an efficient modeling method based on empirical formulas is proposed.
Correction values are added to the empirical formulas, increasing the flexibility of the coarse
model. The improved Neuro-SM model establishes a nonlinear relationship between the
coarse and fine models through the input MNNs, avoiding a slow trial-and-error process.
Analytical expressions are used for training methods and sensitivity analysis, and the
internal weights of the MNNs are optimized effectively. The proposed model uses fewer
variables and provides more accurate results than existing Neuro-SM modeling methods.
The coupled microstrip line model obtained by the proposed method is independent of
any simulation software and has high compatibility, which expands the application of the
model. In practice, this proposed modeling method can be used for other microstrip lines
or microwave devices where equivalent circuits or empirical formulas exist, and accurate
and efficient models can be obtained with the proposed training process.
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